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1. Supplementary figures and tables 
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Figure S1. Pyrolysis temperature profile of the CMS hollow fiber membranes. 
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Figure S2. Comparing CMS hollow fiber membrane permeation data during pressurization and 

depressurization. (A) CO2 permeances during pressurization and depressurization for feed 

comprising 50% CO2/50% CH4; (B) CO2/CH4 separation factors during pressurization and 

depressurization for feed comprising 50% CO2/50% CH4; (C) CO2 permeances during 

pressurization and depressurization for feed comprising 10% CO2/90% CH4; (D) CO2/CH4 

separation factors during pressurization and depressurization for feed comprising 10% CO2/90% 

CH4. All measurements were at 35 
o
C. 
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Figure S3. a. Phase envelop of feed C (50% CO2, 250 ppm toluene, balanced by CH4). b. phase 

envelop of feed D (50% CO2, 250 ppm toluene, 250 ppm n-heptane, balanced by CH4). The 

phase envelops were calculated using the Peng-Robinson equation of state by UniSim
®
 Design 

(Honeywell Process Solutions). 
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Figure S4. CO2 permeances (squares) and CO2/CH4 separation factors (triangles) of CMS 

hollow fiber membranes (solid points) and crosslinked PDMC hollow fiber membranes (open 

points).
1
 Permeation were both measured at 35 

o
C using feeds comprising 50% CO2 and 500 ppm 

C7 hydrocarbons (toluene and/or n-heptane). 
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Table S1. CO2 permeances (GPU) of CMS hollow fiber membranes under different feed 

compositions at 35 
o
C. Feed A: 10%/90% CO2/CH4; Feed B: 50%/50% CO2/CH4; Feed C: 50% 

CO2 with 250 ppm toluene, balanced with CH4; Feed D: 50% CO2 with 250 ppm toluene and 250 

ppm n-heptane, balanced with CH4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feed pressure/psia Feed A Feed B Feed C Feed D 

~100 N/A 110.0 106.2 49.0 

~300 69.1 95.1 70.2 51.0 

~500 72.6 100.6 72.7 51.9 

~700 71.3 95.3 80.1 N/A 

~800 N/A N/A N/A 58.4 

~900 78.1 92.6 78.4 N/A 

~1200 75.0 93.5 80.9 57.1 

~1500 71.6 92.7 73.4 53.1 

~1800 69.4 88.5 75.8 51.1 
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Table S2. CO2/CH4 separation factors of CMS hollow fiber membranes under different feed 

compositions at 35 
o
C. Feed A: 10%/90% CO2/CH4; Feed B: 50%/50% CO2/CH4; Feed C: 50% 

CO2 with 250 ppm toluene, balanced with CH4; Feed D: 50% CO2 with 250 ppm toluene and 250 

ppm n-heptane, balanced with CH4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feed pressure/psia Feed A Feed B Feed C Feed D 

~100 N/A 58.9 65.2 56.5 

~300 54.5 50.4 54.6 60.4 

~500 48.0 48.0 56.9 53.5 

~700 46.9 51.6 55.2 N/A 

~800 N/A N/A N/A 55.0 

~900 47.2 44.9 55.6 N/A 

~1200 50.8 50.8 55.8 57.7 

~1500 50.6 54.8 54.7 56.4 

~1800 52.3 52.1 53.5 58.8 
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2. Calculation of apparent permeation activation energy 

Membrane permeance is pressure difference normalized flux and can be described by dividing 

permeability by membrane thickness. Since permeability is the product of diffusivity and 

sorption coefficient, permeance can be written as: 

 (permeance)
P D S

l l

×
=  

in which P is permeability, l  is membrane thickness, D is diffusivity, and S is sorption 

coefficient. The diffusivity and sorption coefficient can be described by the Arrhenius equation 

and Van’t Hoff equation, respectively:
2
 

0 exp  ( )DED D
RT

= × −  

0 exp  ( )SH
S S

RT
= × −  

in which  0D  is the pre-exponential factor for diffusion, DE is the apparent diffusion activation 

energy, 0S is the pre-exponential factor for sorption, and SH  is apparent heat of sorption. As a 

result, permeance can be written as: 

0 0 0 (permeance)  exp (- )=  exp (- )D S P
D S E H P EP D S

l l l RT l RT

× +×
= =  

in which 0P is the pre-exponential factor for permeation, and P D SE E H= +  is the apparent 

activation energy for permeation. By plotting experimentally measured data ln( )
P

l
 vs. 

1

T
 , the 

apparent activation energy for permeation PE  can thus be obtained: 

0 1
ln( ) ln( ) P

P EP

l l R T
= − ×  
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