## Supporting Information

# Purification of aggressive supercritical natural gas using carbon molecular sieve hollow fiber membranes

Chen Zhang<sup>a</sup>, Graham B. Wenz<sup>a</sup>, P. Jason Williams<sup>b</sup>, Joseph M. Mayne<sup>b</sup>, Gongping Liu<sup>ac</sup>, and William. J. Koros<sup>a</sup>\*

<sup>a</sup> School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta GA USA30332

<sup>b</sup> Shell International Exploration and Production Inc., 3333 Highway 6 South, Houston TX USA 77082

<sup>c</sup> State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China 210009

\* Corresponding author email: wjk@chbe.gatech.edu

### 1. Supplementary figures and tables



Figure S1. Pyrolysis temperature profile of the CMS hollow fiber membranes.



**Figure S2.** Comparing CMS hollow fiber membrane permeation data during pressurization and depressurization. (A) CO<sub>2</sub> permeances during pressurization and depressurization for feed comprising 50% CO<sub>2</sub>/50% CH<sub>4</sub>; (B) CO<sub>2</sub>/CH<sub>4</sub> separation factors during pressurization and depressurization for feed comprising 50% CO<sub>2</sub>/50% CH<sub>4</sub>; (C) CO<sub>2</sub> permeances during pressurization and depressurization and depressurization for feed comprising 10% CO<sub>2</sub>/90% CH<sub>4</sub>; (D) CO<sub>2</sub>/CH<sub>4</sub> separation factors during pressurization and depressurization and depressurization for feed comprising 10% CO<sub>2</sub>/90% CH<sub>4</sub>; (D) CO<sub>2</sub>/CH<sub>4</sub> separation factors during pressurization and depressurization for feed comprising 10% CO<sub>2</sub>/90% CH<sub>4</sub>; (D) CO<sub>2</sub>/90% CH<sub>4</sub>. All measurements were at 35 °C.



**Figure S3.** a. Phase envelop of feed C (50%  $CO_2$ , 250 ppm toluene, balanced by  $CH_4$ ). b. phase envelop of feed D (50%  $CO_2$ , 250 ppm toluene, 250 ppm n-heptane, balanced by  $CH_4$ ). The phase envelops were calculated using the Peng-Robinson equation of state by UniSim<sup>®</sup> Design (Honeywell Process Solutions).



**Figure S4.**  $CO_2$  permeances (squares) and  $CO_2/CH_4$  separation factors (triangles) of CMS hollow fiber membranes (solid points) and crosslinked PDMC hollow fiber membranes (open points).<sup>1</sup> Permeation were both measured at 35 °C using feeds comprising 50%  $CO_2$  and 500 ppm  $C_7$  hydrocarbons (toluene and/or n-heptane).

**Table S1.**  $CO_2$  permeances (GPU) of CMS hollow fiber membranes under different feed compositions at 35 °C. Feed A: 10%/90%  $CO_2/CH_4$ ; Feed B: 50%/50%  $CO_2/CH_4$ ; Feed C: 50%  $CO_2$  with 250 ppm toluene, balanced with  $CH_4$ ; Feed D: 50%  $CO_2$  with 250 ppm toluene and 250 ppm n-heptane, balanced with  $CH_4$ .

| Feed pressure/psia | Feed A | Feed B | Feed C | Feed D |
|--------------------|--------|--------|--------|--------|
| ~100               | N/A    | 110.0  | 106.2  | 49.0   |
| ~300               | 69.1   | 95.1   | 70.2   | 51.0   |
| ~500               | 72.6   | 100.6  | 72.7   | 51.9   |
| ~700               | 71.3   | 95.3   | 80.1   | N/A    |
| ~800               | N/A    | N/A    | N/A    | 58.4   |
| ~900               | 78.1   | 92.6   | 78.4   | N/A    |
| ~1200              | 75.0   | 93.5   | 80.9   | 57.1   |
| ~1500              | 71.6   | 92.7   | 73.4   | 53.1   |
| ~1800              | 69.4   | 88.5   | 75.8   | 51.1   |
|                    |        |        |        |        |

**Table S2.**  $CO_2/CH_4$  separation factors of CMS hollow fiber membranes under different feed compositions at 35 °C. Feed A: 10%/90%  $CO_2/CH_4$ ; Feed B: 50%/50%  $CO_2/CH_4$ ; Feed C: 50%  $CO_2$  with 250 ppm toluene, balanced with  $CH_4$ ; Feed D: 50%  $CO_2$  with 250 ppm toluene and 250 ppm n-heptane, balanced with  $CH_4$ .

| Feed pressure/psia | Feed A | Feed B | Feed C | Feed D |
|--------------------|--------|--------|--------|--------|
| ~100               | N/A    | 58.9   | 65.2   | 56.5   |
| ~300               | 54.5   | 50.4   | 54.6   | 60.4   |
| ~500               | 48.0   | 48.0   | 56.9   | 53.5   |
| ~700               | 46.9   | 51.6   | 55.2   | N/A    |
| ~800               | N/A    | N/A    | N/A    | 55.0   |
| ~900               | 47.2   | 44.9   | 55.6   | N/A    |
| ~1200              | 50.8   | 50.8   | 55.8   | 57.7   |
| ~1500              | 50.6   | 54.8   | 54.7   | 56.4   |
| ~1800              | 52.3   | 52.1   | 53.5   | 58.8   |
|                    |        |        |        |        |

#### 2. Calculation of apparent permeation activation energy

Membrane permeance is pressure difference normalized flux and can be described by dividing permeability by membrane thickness. Since permeability is the product of diffusivity and sorption coefficient, permeance can be written as:

$$\frac{P}{l}$$
 (permeance) =  $\frac{D \times S}{l}$  (S1)

in which P is permeability, l is membrane thickness, D is diffusivity, and S is sorption coefficient. The diffusivity and sorption coefficient can be described by the Arrhenius equation and Van't Hoff equation, respectively:<sup>2</sup>

$$D = D_0 \times \exp\left(-\frac{E_D}{RT}\right) \tag{S2}$$

$$S = S_0 \times \exp\left(-\frac{H_s}{RT}\right) \tag{S3}$$

in which  $D_0$  is the pre-exponential factor for diffusion,  $E_D$  is the apparent diffusion activation energy,  $S_0$  is the pre-exponential factor for sorption, and  $H_s$  is apparent heat of sorption. As a result, permeance can be written as:

$$\frac{P}{l} \text{ (permeance)} = \frac{D \times S}{l} = \frac{D_0 \times S_0}{l} \exp\left(-\frac{E_D + H_S}{RT}\right) = \frac{P_0}{l} \exp\left(-\frac{E_P}{RT}\right)$$
(S4)

in which  $P_0$  is the pre-exponential factor for permeation, and  $E_P = E_D + H_S$  is the apparent activation energy for permeation. By plotting experimentally measured data  $\ln(\frac{P}{l})$  vs.  $\frac{1}{T}$ , the apparent activation energy for permeation  $E_P$  can thus be obtained:

$$\ln(\frac{P}{l}) = \ln(\frac{P_0}{l}) - \frac{E_P}{R} \times \frac{1}{T}$$
(S5)

### References

1. Omole, I. C.; Bhandari, D. A.; Miller, S. J.; Koros, W. J., Toluene impurity effects on CO2 separation using a hollow fiber membrane for natural gas. *J. Membr. Sci.* **2011**, *369* (1), 490-498.

2. Rungta, M.; Xu, L.; Koros, W. J., Structure–performance characterization for carbon molecular sieve membranes using molecular scale gas probes. *Carbon* **2015**, *85*, 429-442.