Supporting Information

Reactive adsorption desulfurization on Cu/ZnO adsorbent: effect of

ZnO polarity ratio on the selective hydrogenation

Yaqing Liu, Hongying Wang, Yunqi Liu*, Jinchong Zhao, Chenguang Liu*

State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National

Petroleum Corporation (CNPC), China University of Petroleum (East China), 66 West Changjiang

Road, Qingdao, Shandong 266580, P. R. China

Author information

Corresponding Author

*Tel.: +86 532 8698 1861. Fax: +86 832 8698 1861.

E-mail: liuyq@upc.edu.cn (Yunqi Liu)

cgliu.upc.edu.cn@gmail.com (Chenguang Liu)

S1

Figure S1 the TG patterns of ZnO precursor (a) addition P ₁₂₃ ; (b) no addition	P_{123} S3
Figure S2 XRD patterns of the reduced Cu/ZnO adsorbent	S4
Figure S3 XRD patterns of the spent Cu/ZnO adsorbent	S4
Table S1 the crystal diameter for (100), (002) and (101)	S5
Figure S4 the SAED images of the ZnO supports, (A)ZnO ₃₇₀₋₁₀ ;	(B)ZnO ₃₇₀₋₀ ;
(C)ZnO ₃₅₀₋₁₀ ;(D)ZnO ₃₅₀₋₀ ;	S5
Table S2 the properties of FCC gasoline and the products of Cu-based	catalyst and
Ni-based catalyst	S6
Figure S5 the curve of the breakthrough of the Cu/ZnO catalyst	S6

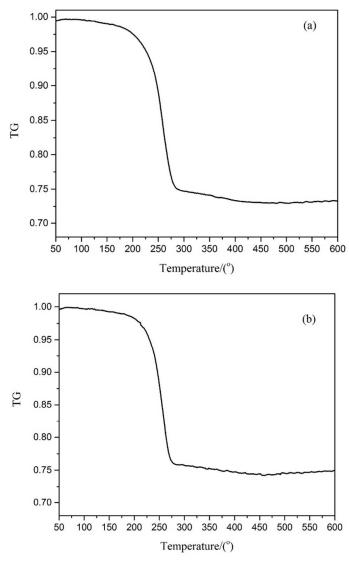


Figure S1 the TG patterns of ZnO precursor (a) addition P_{123} ; (b) no addition P_{123}

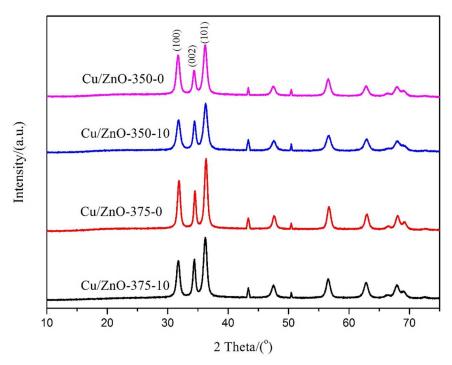


Figure S2 XRD patterns of the reduced Cu/ZnO adsorbents

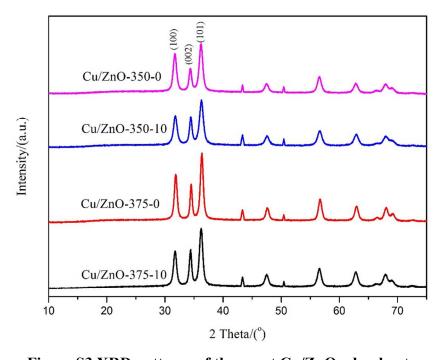
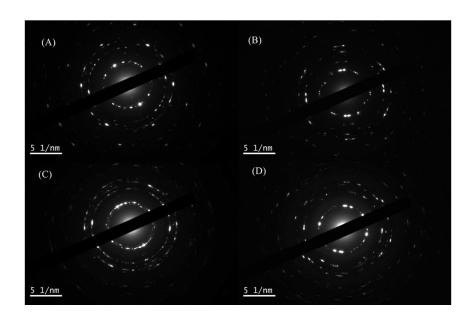



Figure S3 XRD patterns of the spent Cu/ZnO adsorbents

Table S1 the crystal diameter for (100), (002) and (101)

Crystal	ZnO ₃₇₅₋₁₀	ZnO ₃₇₅₋₀	ZnO ₃₅₀₋₁₀	ZnO ₃₅₀₋₀
Diameter (nm)				
100	20.9	17.8	17.8	70.9
002	46.5	33.8	51.3	58.6
101	15.8	51.6	18.1	16.7

 $\label{eq:Figure S4} \textbf{Figure S4} \ \text{the SAED images of the ZnO supports, (A)} ZnO_{370\text{-}10}; \ (B)ZnO_{370\text{-}0}; \ (C)ZnO_{350\text{-}10}; \\ (D)ZnO_{350\text{-}0}; \\$

Table S2 the properties of FCC gasoline and the product of Cu-based catalyst and Ni-based catalyst

	Density /(g/cm ⁻³)	sulfur content (mg/L)	paraffin	olefin	Naphthe nic	Aromati c
FCC gasoline	0.73	103.3	41.52	16.19	7.37	32.92
Copper-based Product	0.73	<20	46.07	14.14	8.88	30.91
Nickel-based product	0.73	<20	66.14	4.92	7.79	21.15

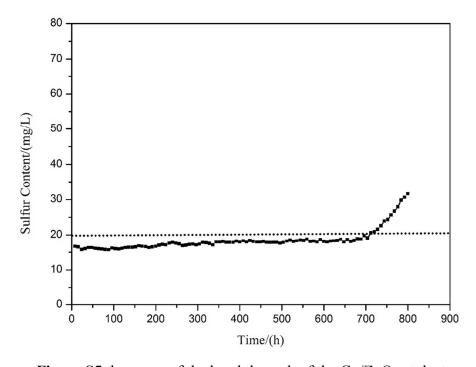


Figure S5 the curve of the breakthrough of the Cu/ZnO catalyst