Supporting Information

Retrosynthetic reaction prediction using neural sequence-to-sequence models

Bowen Liu¹, Bharath Ramsundar², Prasad Kawthekar², Jade Shi¹, Joseph Gomes¹, Quang Luu Nguyen¹, Stephen Ho¹, Jack Sloane¹, Paul Wender^{1,3}, Vijay Pande^{1,2,4}

¹ Department of Chemistry, Stanford University, Stanford, CA 94305, USA

² Department of Computer Science, Stanford University, Stanford, CA 94305, USA

³ Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA

⁴ Department of Structural Biology, Stanford University, Stanford, CA 94305, USA

Email: pande@stanford.edu

The neural network model, processed datasets and evaluation code will be made available at: https://github.com/pandegroup/reaction_prediction_seq2seq.git

General	
Batch size	32
Optimizer	Adam
Learning rate	0.0001
Max gradient norm	5.0
Max sequence length	140
Attention dim	512
Bidirectional LSTM encoder	
# layers	2
Embedding dim	512
Dropout (keep)	0.8
LSTM decoder	
# layers	4
Embedding dim	512
Dropout (keep)	0.8
Max decode length	140

Table S1: Key hyperparameters of the seq2seq model

Table S2: Beam search statistics. A completed candidate sequence contains an end of sequence character.The seq2seq beam search inference was performed on a system containing an Intel i7-7700K CPU and aNVIDIA GTX 1080 Ti GPU, using the GPU

	beam size				
	3	5	10	20	50
average # of complete candidates	2.93	4.84	9.56	19.26	48.34
# examples with all candidates complete	4700	4330	3679	3511	3314
# examples with no candidates complete	5	3	3	0	0
inference time gpu (s)	443	465	487	691	712

Figure S1: Attention weights for a reaction class 1 (Heteroatom alkylation and arylation) example. Note that for Figures S1-S10, darker blue represents larger attention weights. The input sequence characters (reaction type and target molecule) are along the x axis, and the output sequence characters (predicted reactants) are along the y axis

Figure S2: Attention weights for a reaction class 2 (Acylation and related processes) example

Figure S3: Attention weights for a reaction class 3 (C-C bond formation) example

Figure S4: Attention weights for a reaction class 4 (Heterocycle formation) example

Figure S5: Attention weights for a reaction class 5 (Protections) example

Figure S6: Attention weights for a reaction class 6 (Deprotections) example

Figure S7: Attention weights for a reaction class 7 (Reductions) example

Figure S8: Attention weights for a reaction class 8 (Oxidations) example

Figure S9: Attention weights for a reaction class 9 (Functional group interconversion) example

Figure S10: Attention weights for a reaction class 10 (Functional group addition) example