Supporting Information for:

Agar Aerogel Containing Small-Sized Zeolitic Imidazolate

Framework Loaded Carbon Nitride: A Solar-Triggered

Regenerable Decontaminant for Convenient and Enhanced

Water Purification

Wentao Zhang, † Shuo Shi, † Wenxin Zhu, † Lunjie Huang, † Chengyuan Yang, † Sihang Li, †

Xinnan Liu, † Rong Wang, † Na Hu, § Yourui Suo, § Zhonghong Li, † Jianlong Wang*, †

Number of pages: 25

Number of figures: 19

Number of Tables: 04

S1

Supporting Figures:

Figure S2. XRD patterns of C_3N_4 , simulated ZIF-8 and the as-obtained ZIF-8/ C_3N_4 .

Figure S3. FT-IR spectra of C_3N_4 , ZIF-8 and the as-obtained ZIF-8/ C_3N_4 .

Figure S4. SEM image of C_3N_4 nanosheets.

Figure S5. The size distribution of ZIF-8 nanoparticles on C_3N_4 , over 150 particles were counted, indicating ZIF-8 nanoparticles possess average particle size, about 14.95 nm.

Figure S6. SEM image and size distribution of big-sized bulk ZIF-8, over 150 particles were counted. a, b) ZIF-8 nanoparticles, synthesized by a reported method, ¹ possess average particle size of 227.61 nm. c,d) ZIF-8 nanoparticles with size of 1193.20 nm were synthesized by the same condition for ZIF-8/ C_3N_4 but without the presence of C_3N_4 .

Figure S7. FT-IR spectra of agar, ZIF-8, C_3N_4 and Hgel-50.

Figure S8. SEM of the hybrid aerogel containing 11.1% ZIF-8/ C_3N_4 .

Figure S9. SEM of the hybrid aerogel containing 33.3% ZIF-8/ C_3N_4 .

Table S1. Adsorption capacities of various absorbents for Congo red.

Kind of adsorbent ——	Adsorption capacity Q _t [mg g ⁻¹]			
	Detected ^{a)}	Simulated ^{b)}		
Pure aerogel	8.23	-		
C_3N_4	14.87	-		
Big-sized bulk ZIF-8	789.73	-		
ZIF-8/C ₃ N ₄	504.42	352.71		
11.1% ZIF-8/C ₃ N ₄ -aerogel	61.44	63.37		
33.3% ZIF-8/C ₃ N ₄ -aerogel	178.63	173.46		
50% ZIF-8/C ₃ N ₄ -aerogel	260.21	256.33		

^{a)}The data was the equilibrium absorption value in Figure 2b, which was conducted by soaking 5 mg acsorbent into 20 mL CR solution at 200 ppm over 10 h in a shaker; ^{b)}The simulated capacity of ZIF-8/C₃N₄ was calculated according to the proportions and data mesured for big-sized bulk ZIF-8 and C₃N₄; the capacity of three hybrid aerogel was calculated based on the mesured data for ZIF-8/C₃N₄ and Pure aerogel.

Figure S10. The adsorption isotherms of CR by Hgel-50 (correlation curve was drawn using the isotherm parameters calculated from the single-site adsorption isotherm model) and the linear fit of the model (inset).

Figure S11. The adsorption isotherms of CR by Hgel-50 (correlation curve was drawn using the isotherm parameters calculated from the Freundlich isotherm model) and the linear fit of the model (inset).

Table S2. Thermodynamic parameters of Hgel-50 for CR adsorption.

	Single-site adsorption isotherm		Dual-site	Dual-site adsorption isotherm			Freundlich isotherm		
	Q_{m}	$K_{ m L}$	R^2	$Q_{ m m}$	K_{d}	R^2	K_{F}	1/n	R^2
	(mg g ⁻¹)	$(L mg^{-1})$		(mg g ⁻¹)	$(L mg^{-1})$		(mg g ⁻¹)		
Hgel-50	272.87	0.76	0.985	287.35	1.10	0.995	141.56	0.11	0.929
	±6.11	±0.14		±5.77	±0.07		± 18.17	±0.02	
Hgel-Z	190.13	0.14	0.989	208.75	0.24	0.997	82.79	0.13	0.942
	±3.75	±0.02		±1.55	±0.02		±11.82	±0.03	

Figure S12. a) Photograph, b,c) SEM images and d) XRD pattern of aerogel containing 21.8% ZIF-8 (Hgel-Z).

Figure S13. The single-site adsorption a), dual-site adsorption b) and Freundlich c) isotherm model for the adsorption isotherms of CR by Hgel-Z and the linear fit of the model (inset).

Figure S14. The single-site adsorption a), dual-site adsorption b) and Freundlich c) isotherm model for the adsorption isotherms of methylene blue by Hgel-50 and the linear fit of the model (inset).

Figure S15. Invalidity of the pseudo-second-order conditions for the full time range of 5 hours.

Figure S16. The adsorption kinetics of CR by Hgel-50 (correlation curve was drawn using the kinetic parameters calculated from the pseudo-second-order model of full time) and pseudo-second-order plots (inset).

Table S3. Adsorption kinetics parameters of Hgel-50 for CR adsorption.

	Pseudo-first-order		Pseu	Pseudo-second-order			Pseudo-second-order		
					of full times			of lower times	3
$Q_{ m e,exp}$	$Q_{ m e,c}$	$k_1(\mathbf{h}^{-1})$	R^2	$Q_{ m e,c}$	$k_2 \times 10^{-2}$	R^2	$Q_{ m e,c}$	$k_2 \times 10^{-2}$	R^2
$(mg g^{-1})$	$(mg g^{-1})$			$(mg g^{-1})$	$(g mg h^{-1})$		$(mg g^{-1})$	$(g mg h^{-1})$	
260.21	249.90	3.05	0.991	276.69	1.49	0.995	288.59	1.28	0.996
	±3.13	±0.17		±3.44	±0.11		±5.54	±0.11	

	Initial Phase			Se	Secondary Phase			
Intraparticle	$K_{\rm pl}$	C_{I}	R^2	K_{p2}	C_{I}	R^2		
diffusion model	$(mg g^{-1} h^{-0.5})$			$(mg g^{-1} h^{-0.5})$				
	256.24±25.84	1.03±15.29	0.961	20.84±4.28	215.31±7.04	0.792		

Figure S17. The adsorption kinetics of CR by Hgel-50 (correlation curve was drawn using the kinetic parameters calculated from the pseudo-first-order model of full time) and pseudo-first-order plots (inset).

Figure S18. The intra-particle diffusion model for the adsorption of CR by Hgel-50.

Figure S19. XRD pattern of the regenerated Hgel-50.

Table S4. Zn²⁺ concentration detected by atomic absorption spectrometer on pure water and water after treatment with Hgel-50.

	Pure water	CR solution after aerogel adsorption	CR solution after synergistic removal
Zn ²⁺ concentration	0.088±0.016	0.092±0.012	0.087±0.019
(ppm)			

Reference

1. Torad, N. L.; Hu, M.; Kamachi, Y.; Takai, K.; Imura, M.; Naito, M.; Yamauchi, Y. Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. *Chem. Commun.* **2013**, *49* (25), 2521-2523.