Supporting Information

New 4V-class and zero-strain cathode material for Na ion batteries

Jongsoon Kim ${ }^{1, \dagger}$, Gabin Yoon ${ }^{2,3,4 \dagger}$, Myeong Hwan Lee ${ }^{2,3}$, Hyungsub Kim ${ }^{5}$, Seongsu Lee ${ }^{5}$, and Kisuk Kang **2,3,4
${ }^{l}$ Department of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
${ }^{2}$ Department of Materials Science and Engineering and ${ }^{3}$ Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
${ }^{4}$ Center for Nanoparticle Research at Institute for Basic Science (IBS), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
${ }^{5}$ Korea Atomic Energy Research Institute (KAERI), Daedeok-daero 989 Beon-Gil, Yuseonggu, Daejeon, Korea
${ }^{\dagger}$ These authors contributed equally to this paper.

Corresponding Author: Prof. Kisuk Kang

E-mail: matlgen1@snu.ac.kr

TEL: +82-2-880-7088

Supporting Figure S1 SEM image of $\mathrm{Na}_{3} \mathrm{~V}\left(\mathrm{PO}_{3}\right)_{3} \mathrm{~N}$.

Supporting Figure S2 Refined XRD pattern of $\mathrm{Na}_{3} \mathrm{~V}\left(\mathrm{PO}_{3}\right)_{3} \mathrm{~N}\left(\mathrm{R}_{\mathrm{p}}=7.52 \%, \mathrm{R}_{\mathrm{I}}=8.53 \%, \mathrm{R}_{\mathrm{F}}=\right.$ $\left.7.39 \%, \chi^{2}=8.78 \%\right)$.

Supporting Figure S3 Charge/discharge curve of $\mathrm{Na}_{3} \mathrm{~V}\left(\mathrm{PO}_{3}\right)_{3} \mathrm{~N}$ from $2.0-4.5 \mathrm{~V}$ at $\mathrm{C} / 10$

 amounts in the structure

(b)

Supporting Figure S5 (a) Site energy of a single Na vacancy from $\mathrm{Na}_{3} \mathrm{~V}\left(\mathrm{PO}_{3}\right)_{3} \mathrm{~N}$ plotted as a type of Na site. (b) Volume change of the $\mathrm{Na}_{3} \mathrm{~V}\left(\mathrm{PO}_{3}\right)_{3} \mathrm{~N}$ structure upon the removal of all Na ions in each Na site.

Atom	Multiplicity	x	y	z	$\mathrm{B}_{\text {iso }}$	Occupancy
P 1	12	$0.3327(5)$	$0.0826(4)$	$0.2444(5)$	$0.95(6)$	1
V 1	4	$0.0798(3)$	$-0.0798(3)$	$0.4202(3)$	$0.2(13)$	1
Na 1	4	$0.0094(6)$	$0.0094(6)$	$0.0094(6)$	$1.56(10)$	$0.989(7)$
Na 2	4	$0.3901(8)$	$0.3901(8)$	$0.3901(8)$	$1.56(10)$	$0.997(3)$
Na 3	4	$0.7022(7)$	$0.2022(7)$	$0.2978(7)$	$1.56(10)$	$0.998(2)$
O 1	12	$0.2693(4)$	$-0.0261(4)$	$0.3488(4)$	$1.03(5)$	1
O 2	12	$0.3711(4)$	$0.0009(4)$	$0.1112(4)$	$0.92(4)$	1
O 3	12	$0.4506(3)$	$0.1671(4)$	$0.3065(4)$	$1.19(5)$	1
N 1	4	$0.1956(3)$	$0.1956(3)$	$0.1956(3)$	$0.88(5)$	1

Supporting Table T1 Atomic information of $\mathrm{Na}_{3} \mathrm{~V}\left(\mathrm{PO}_{3}\right)_{3} \mathrm{~N}$.

	$\mathrm{Na}_{3} \mathrm{~V}\left(\mathrm{PO}_{3}\right)_{3} \mathrm{~N}$	$\mathrm{Na}_{2} \mathrm{~V}\left(\mathrm{PO}_{3}\right)_{3} \mathrm{~N}$
$\mathrm{Na} 1-\mathrm{O}_{6}(\AA)$	$2.60(3), 2.52(3)$	$2.80(3), 2.58(3)$
$\mathrm{V}-\mathrm{O}_{6}(\mathrm{~A})$	$2.04(6)$	$1.96(6)$

Supporting Table T2 Na1-O and V-O Bond lengths of $\mathrm{Na}_{3} \mathrm{~V}\left(\mathrm{PO}_{3}\right)_{3} \mathrm{~N}$ and $\mathrm{Na}_{2} \mathrm{~V}\left(\mathrm{PO}_{3}\right)_{3} \mathrm{~N}$.

	$\mathrm{Na}_{3} \mathbf{V}\left(\mathrm{PO}_{3}\right)_{3} \mathbf{N}$ $(x, y, z)(\AA)$	$\mathrm{Na}_{2} \mathbf{V}\left(\mathrm{PO}_{3}\right)_{3} \mathbf{N}$ $(x, y, z)(\AA)$	Displacement $(x, y, z)(\AA)$
V1	$(0.761,8.832,4.035)$	$(0.796,8.802,4.003)$	$(0.035,-0.030,-0.032)$
V2	$(4.035,0.761,8.832)$	$(4.003,0.796,8.802)$	$(-0.032,0.035,-0.030)$
V3	$(8.832,4.035,0.761)$	$(8.802,4.003,0.796)$	$(-0.030,-0.032,0.035)$
V4	$(5.557,5.557,5.557)$	$(5.594,5.594,5.594)$	$(0.038,0.038,0.038)$

Supporting Table T3 Cartesian coordinates of four V ions in the unit cell of $\mathrm{Na}_{3} \mathrm{~V}\left(\mathrm{PO}_{3}\right)_{3} \mathrm{~N}$ and $\mathrm{Na}_{2} \mathrm{~V}\left(\mathrm{PO}_{3}\right)_{3} \mathrm{~N}$. The displacements vectors of V ions upon desodiation is also tabulated. Due to the symmetry of $\mathrm{Na}_{3} \mathrm{~V}\left(\mathrm{PO}_{3}\right)_{3} \mathrm{~N}$ and desodiated $\mathrm{Na}_{2} \mathrm{~V}\left(\mathrm{PO}_{3}\right)_{3} \mathrm{~N}$, the direction of V ion movement cancels out each other, resulting in the negligible vector sum of net V ion displacements.

