Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li₇La₃Zr₂O₁₂

Asma Sharafi,[†] Eric Kazyak,[†] Andrew L. Davis,[†] Seungho Yu,[†] Travis Thompson,[†] Donald J. Siegel, ^{†,‡,#,Δ} Neil P. Dasgupta,^{†*} and Jeff Sakamoto^{†,‡,#*}

[†]Department of Mechanical Engineering, [‡]Department of Materials Science and Engineering [#]Michigan Energy Institute, and ^ΔApplied Physics Program, University of Michigan, Ann Arbor, MI 48109, United States

*Corresponding Authors: email: jeffsaka@umich.edu, ndasgupt@umich.edu

Figure S1. XPS analysis of LLZO showing the O is core level of sample after dry polishing (DP-Control) and after dry polishing and heat treatment at 400°C (DP-400°C). **Table S1.** Calculated lattice constants for bulk Li, LLZO, Li₂CO₃, and LiOH.

Sample/Lattice constant	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)
Bulk Li	3.436	-	-	90	-	-
Bulk LLZO	13.026	-	-	90	-	-
Bulk Li ₂ CO ₃	8.432	5.016	6.312	90	114.67	90
Bulk LiOH	3.535	-	4.408	90	-	-

Table S2. Number of atoms in the supercell, lattice parameters in the interfacial plane, the in-plane strain of Li, the calculated W_{ad} , and the contact angle for the Li-LLZO, Li-Li₂CO₃, and Li-LiOH interfaces.

Interface	No. of atoms	a (Å)	b (Å)	$\epsilon_{x,Li}$ (%)	ε _{y,Li} (%)	W_{ad} (J.m ⁻²)	Contact angle (°)
Li-LLZO	570	18.421	18.421	-0.43	-0.43	0.667	61.6
Li-Li ₂ CO ₃	252	16.864	10.032	-1.83	-2.67	0.096	142.0
Li-LiOH	260	14.140	14.140	-0.18	-0.18	0.191	125.3

Figure S2. Optimization of the translation state within the interfacial plane and the interfacial distance for the Li-LLZO interface: a) contour plot of W_{ad} as a function of translation state for the Li slab relative to the LLZO slab using a 5×5 grid with a constant interfacial distance of 2 Å. b) W_{ad} as a function of interfacial distance between slabs fitted by the UBER for the five lowest W_{ad} interfaces identified in the contour plot of panel (a).

Figure S₃. Optimization of the translation state within the interfacial plane and the interfacial distance for the Li-Li₂CO₃ interface. a) contour plot of the total energy as a function of translation state for the Li slab relative to Li₂CO₃ slab with a constant interfacial distance of 3 Å. Due to the symmetry of Li atoms in the Li slab, the translation state was restricted to the red box using a 4x4 grid. b) W_{ad} as a function of interfacial distance fit to the UBER for the lowest total energy interface (translation Li slab to x=0 and y=0.25) identified in panel (a).

Figure S4. Calculated W_{ad} as a function of interfacial distance for the Li-LiOH interface.