Polyoxometalate, Cationic Cluster and γ-Cyclodextrin. From Primary Interactions to Supramolecular Hybrid Materials

Mhamad Aly Moussawi, [†] Nathalie Leclerc-Laronze,[†] Sébastien Floquet,[†] Pavel A. Abramov,^{‡, [£]} [£]Maxim, N. Sokolov, ^{‡, [£]} Stéphane Cordier,[§] Anne Ponchel,[‡] Eric Monflier,[‡] Hervé Bricout,[‡]David Landy,[∫] Mohamed Haouas,[†] Jérôme Marrot, [†] and Emmanuel Cadot[†]

- † Institut Lavoisier de Versailles UMR 8180, UVSQ, Université Paris-Saclay, 78035 Versailles, France.
- § Institut des Sciences Chimiques de Rennes UMR 6226, Université de Rennes 1,
- ‡ Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et Chimie du Solide, 62300 Lens, France
- ∫ Unité de Chimie Environnementale et Interactions sur le Vivant EA 4492, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, 59140 Dunkerque, France.
- f Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, Russia.
- £ Novosibirsk State University, Novosibirsk, 630090, Russia.

Supporting information

Table of Content:

1.	Ge	neral methods	3				
2.		ntheses	5				
3.	FT-IR Spectra						
4.		gle crystal X-ray diffraction					
4.1		Material & Methods					
	1.2.	Selected crystallographic parameters of the single-crystal X-ray diffraction structural					
-		11	ununyolo				
4.3		Structural views of POM@nCD arrangements	12				
	4.3.						
	4.3.						
	4.3.						
	4.3.	 Structural views of {Ta₆}@2CD arrangement 	13				
5.	N٨	IR data	14				
5	5.1.	³¹ P NMR	14				
5	5.2.	¹⁸³ W NMR	15				
5	5.3.	¹ H NMR titration					
5	5.4.	³¹ P DOSY NMR					
5	5.5.	¹ H NMR DOSY	17				
5	5.6.	EXSY ¹ H NMR	18				
5	5.7.	VT ¹ H NMR					
5	5.8.	COSY ¹ H NMR	20				
6.	ESI	-Mass spectrum of the {Ta $_6$ }@2CD complex in aqueous solution	21				
7.	ιτс	measurements and analysis	22				
7	7.1.	Experimental conditions	22				
7	7.2.	Thermograms treatment	23				
-	7.2.						
	7.2.						
7	7.3.	Results for γ -CD/[P ₂ W ₁₈ O ₆₂] ⁶⁻ and γ -CD/[Ta ₆ Br ₁₂ (H ₂ O) ₆] ²⁺ binary systems	26				
7	7.4.	Results for γ -CD/[P ₂ W ₁₈ O ₆₂] ⁶⁻ /[Ta ₆ Br ₁₂ (H ₂ O) ₆] ²⁺ ternary system	27				
8.	υv	'-vis spectroscopy of the {Ta ₆ } / γ-CD system	32				

1. General methods

Fourier Transformed Infrared (FT-IR) spectra were recorded on a 6700 FT-IR Nicolet spectrophotometer, using diamond ATR technique. The spectra were recorded on non-diluted compounds and ATR correction was applied.

UV-vis spectra were recorded on a Perkin-Elmer Lambda-750 using calibrated 0.1 cm Quartz-cell.

Elemental analyses (C, H, N, S) were carried out by the analytical service of the CNRS at Gif sur Yvette, France. **Quantitative analyses** of metals were carried out by ICP analysis and Fluo-X analysis and were performed in UCCS laboratory in Lille, France. These elemental analyses were performed by inductively coupled plasma-optic emission spectroscopy 720-ES ICP-OES (Agilent) with axially viewing and simultaneous CCD detection.

Energy-dispersive X-ray spectroscopy. EDX measurements were performed using a SEM-FEG (Scanning Electron Microscope enhanced by a Field Emission Gun) equipment (JSM 7001-F, Jeol). The measures were acquired with a SDD XMax 50 mm² detector and the Aztec (Oxford) system working at 15 kV and 10 mm working distance. The quantification is realized with the standard library provided by the constructor using L α lines.

Water and cyclodextrin contents were determined by thermal gravimetric (TGA) analysis with a Mettler Toledo TGA/DSC 1, STAR^e System apparatus under oxygen flow (50 mL min⁻¹) at a heating rate of 5°C min⁻¹ up to 700°C.

NMR studies. All solution NMR spectra were measured in D₂O at 25 °C when it is not specified. ¹H and ³¹P NMR spectra were obtained on a Bruker Avance 400 spectrometer at Larmor frequencies 400.1 and 162.0 MHz respectively, using 5 mm standard NMR tubes. The 1D ¹H spectra were recorded with one pulse sequence at 30° flip angle (pulse duration 2.4 μ s), using 1 s recycle delay, 1.6 s acquisition time, and 16 number of scans. Variable temperature ¹H NMR experiments were performed in the temperature range 20-80 °C after at least 30 min of sample temperature stabilization delay. The ³¹P NMR spectra were run with 7.7 μ s pulse duration (45° flip angle), 15 s recycle delay, 1 s acquisition time, and an accumulation of 32 transients. 2D ¹H-¹H COSY and EXSY spectra were carried out on some selected samples using standard phase sensitive pulse sequences in States mode and 1 s mixing time in EXSY experiment. Translational diffusion measurements were performed using Bruker's "ledbpgs2s" stimulated echo DOSY pulse sequence including bipolar and spoil gradients. Apparent diffusion coefficients were obtained using an adapted algorithm based on the inverse Laplace transform stabilized by maximum entropy (M.A. Delsuc, T.E. Malliavin, Anal. Chem. 1998, 70, 2146–2148). The ¹⁸³W

20.8 MHz equipped with a specific low-gamma nuclei 10 mm probehead. Chemical shifts are reported relative to TMS (¹H), 85% H₃PO₄ (³¹P), and 1 M aq. Na₂WO₄ (¹⁸³W), using secondary references in case of ¹⁸³W (D₂O/H₂O solution of H₄SiW₁₂O₄₀ observed at -103.8 ppm).

Electrospray Ionization Mass Spectrometry. Electrospray ionization (ESI) mass spectra were collected using a Q-TOF instrument supplied by WATERS. Samples were solubilized in water at a concentration of 10⁻⁴ M and were introduced into the MS via an ACQUITY UPLC WATERS system whilst a Leucine Enkephalin solution was co-injected via a micro pump as internal standard.

Isothermal Titration Calorimetry (ITC). Formation constants and inclusion enthalpies were simultaneously determined for each γ -CD/[P₂W₁₈O₆₂]⁶⁻, γ -CD/[Ta₆Br₁₂(H₂O)₆]²⁺ and γ -CD/[P₂W₁₈O₆₂]⁶⁻/[Ta₆Br₁₂(H₂O)₆]²⁺ systems by the use of an isothermal calorimeter (ITC₂₀₀, MicroCal Inc., USA). See paragraph §5 for further details.

Electrochemistry. Purified water was used throughout. It was obtained by passing water through a RiOs 8 unit followed by a Millipore-Q Academic purification set. All reagents were of high-purity grade and were used as purchased without further purification. Cyclic voltammetric (CV) experiments were carried out with an Methrohm Autolab PGSTAT12 potentiostat/galvanostat associated with a GPES electrochemical analysis system (EcoChemie). Measurements were performed at room temperature in a conventional single compartment cell. A glassy carbon (GC) electrode with a diameter of 3 mm was used as the working electrode. The auxiliary electrode was a Pt plate placed within a fritted-glass isolation chamber and potentials are quoted against a saturated calomel electrode (SCE). The solutions were deaerated thoroughly for at least 30 minutes with pure argon and kept under a positive pressure of this gas during the experiments.

Single-Crystal X-ray diffraction analysis. Intensity data collections were carried out at T = 200(2) K with a Bruker D8 VENTURE diffractometer equipped with a PHOTON 100 CMOS bidimensional detector using a high brilliance IµS microfocus X-ray Mo Ka monochromatized radiation ($\lambda = 0.71073$ Å) or at 100(2) K using X-Ray synchrotron beam line ($\lambda = 0.72925$ Å) at PROXIMA2 source in SOLEIL Laboratory (see Table S1). Crystals were glued in paratone oil to prevent any loss of crystallization water. An empirical absorption correction was applied using the SADABS program¹ based on the method of Blessing.² The structures were solved by direct methods and refined by full-matrix least squares using the SHELX-TL package.³ Heavier atoms (W or Ta) for each structure were initially located by direct methods. The remaining non-hydrogen atoms were located from Fourier differences and were refined with anisotropic thermal parameters. Positions of the hydrogen atoms belonging to the γ -cyclodextrins were calculated

and refined isotropically using the gliding mode. Further details about of the crystal structure determinations may be obtained free of charge via the Internet at http://pubs.acs.org. Crystallographic data for single-crystal X-ray diffraction studies are summarized in Table S1.

- (1) G. M. Sheldrick, SADABS, program for scaling and correction of area detector data, University of Göttingen, Germany, **1997**.
- (2) R.Blessing, Acta Cryst. **1995**, A51, 33.
- (3) G. M. Sheldrick, *Acta Cryst.* **1990**, *A46*, 467 ; Sheldrick, G. M. SHELX-TL version 5.03, Software Package for the Crystal Structure Determination, Siemens Analytical X-ray Instrument Division : Madison, WI USA, **1994**.

Powder X-ray diffraction analysis. Powder X-ray diffraction data was obtained on a Brüker D5000 diffractometer using Cu radiation ($\lambda = 1.54059$ Å).

2. Syntheses

All reagents were purchased from commercial sources and used without further purification. $K_6[P_2W_{18}O_{62}] \cdot 19H_2O$ was prepared according to the procedure published by Mbomekalle at al. (Mbomekalle, I. M.; Lu, Y. W.; Keita, B.; Nadjo, L. *Inorg. Chem. Commun.* 2004, 7, 86). Cesium and rubidium salts of $[P_2W_{18}O_{62}]^{6-}$ were prepared by addition of an excess of CsCl or of RbCl to an aqueous solution of $K_6[P_2W_{18}O_{62}] \cdot 19H_2O$. Their compositions were checked by FT-IR, TGA and EDX.

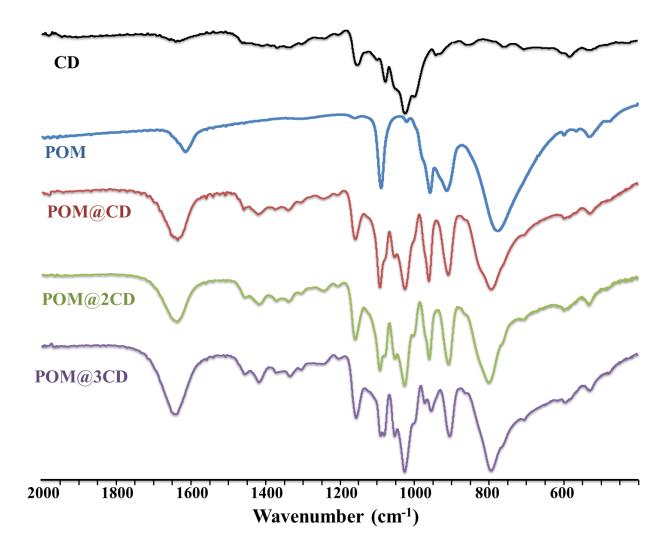
 $KNa_{5}\{[P_{2}W_{18}O_{62}](C_{48}H_{80}O_{40})\}$ •3.5NaCl (POM@CD). $\cdot 23H_2O$ А mixture of K₆[P₂W₁₈O₆₂]•19H₂O (1.2 g; 0.24 mmol) and γ-cyclodextrin (γ-CD, 0.34 g; 0.24 mmol) in aqueous solution of NaCl (0.5 mol.L⁻¹; 25 mL) was stirred at 35°C for 15 min resulting in a clear solution. The clear solution was then stirred at room temperature for 15 min and was allowed to stand for crystallization in air. Needle-like colorless crystals of **POM@CD** suitable for single crystal X-ray diffraction appeared within 5 days. They were isolated by filtration and washed with cold water. Yield 1.22 g, 78 %. FT-IR spectrum is given in Figure S1. Elemental analysis for $C_{48}H_{126}Cl_{3.50}KNa_{8.5}O_{120}P_2W_{18}$ (FW = 6352,1 g.mol⁻¹) Calc. (found): H 1.98 (2.08); C 9.03 (9.25); Na 3.06 (2.95); K 0,61 (0.66); P 0.97 (1.00); W 52.1 (51.92). TGA showed a weight loss of 6.5% in the 20-220°C temperature range corresponding to the hydration water (calculated 6.7%) and a weight loss of 22.5 % in the 220-700°C range assigned to the loss of 1 CD and the 3.5 Cl (calculated 21.5 %).

 $CsNa_{5}\{P_{2}W_{18}O_{62}|(C_{48}H_{80}O_{40})_{2}\}\bullet1.2NaCl\bullet23H_{2}O \quad (POM@2CD). \quad A \quad \text{solution of} \\ Cs_{6}[P_{2}W_{18}O_{62}]\bullet19H_{2}O \quad (0.55 \text{ g}; \ 0.1 \text{ mmol}) \text{ in aqueous solution of } NaCl \quad (0.5 \text{ mol}.L^{-1}; \ 18 \text{ mL}) \text{ was} \\ \end{array}$

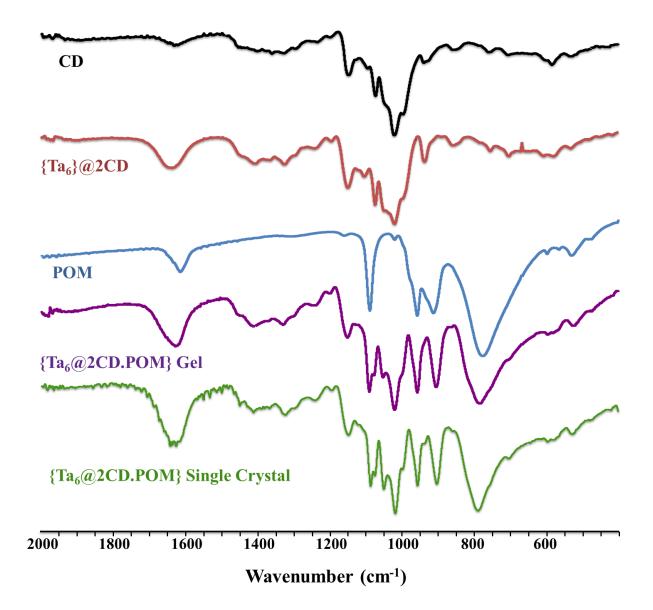
stirred at 30°C until the total dissolution of the solid. γ -CD (0.26 g; 0.2 mmol) was added to the resulting limpid solution that was stirred at room temperature for 20 min. The obtained mixture was allowed to stand for crystallization in air where needle-like colorless crystals of **POM@2CD** suitable for single crystal X-ray diffraction appeared within 8 days. They were isolated by filtration and washed with cold water. Yield 0.42 g, 55 %. FT-IR spectrum is given in Figure S1. Elemental analysis for C₉₆H₂₀₆Cl_{1.2}CsNa_{6.2}O₁₆₅P₂W₁₈ (FW = 7689.8 g/mol) Calc. (found): C 14.99 (14.43); Cs 1.73 (1.82); H 2.70 (2.78); Na 1.85 (2.08); P 0.81 (0.94); W 43.03 (44.45). TGA showed a weight loss of 5.63% in the 20-220°C temperature range corresponding to the hydration water (calculated 5.38%) and a weight loss of 32.7 % in the 220-700°C range assigned to the loss of 2 CD (calculated 33.7 %).

 $Rb_4K_{1.5}Na_{0.5}{[P_2W_{18}O_{62}](C_{48}H_{80}O_{40})_3} \cdot 35H_2O$ (POM@3CD). Α solution of Rb₆[P₂W₁₈O₆₂]•19H₂O (1.5 g; 0.29 mmol) in 25 mL distilled water was stirred at 30°C until the total dissolution of the solid. γ -CD (1.125 g; 0.86 mmol) were added to the resulting limpid solution that was stirred at room temperature for 20 min. The obtained mixture was allowed to stand for crystallization in air where hexagonal colorless crystals of POM@3CD suitable for single crystal X-ray diffraction appeared within 7 days. They were isolated by filtration and washed with ethanol and ether. Yield 1.32 g md, 48 %. FT-IR spectrum is given in Figure S1. Elemental analysis for $C_{144}H_{310}K_{1.5}Na_{0.5}O_{217}P_2Rb_4W_{18}$ (FW = 9293,3 g.mol⁻¹) Calc. (found): C 18.6 (17.97); H 3.33 (3.19); K 0.63 (0.57); Na 0.12 (0.01); P 0.66 (0.85); Rb 3.67 (3.60); W 35.60 (34.83). TGA showed a weight loss of 7.12% in the 20-220°C temperature range corresponding to the hydration water (calculated 7.66%) and a weight loss of 40.34 % in the 220-700°C range assigned to the loss of 3 CD (calculated 41.45 %).

 ${[Ta_6Br_{12}(H_2O)_6](C_{48}H_{80}O_{40})_2}Br_2 \cdot 14H_2O,$ $({Ta_6}@2CD).$ (250)mg; 0.108 mmol) [Ta₆Br₁₂(H₂O)₆]Br₂ were dissolved in 10 mL distilled water resulting in a dark green solution. In a separate beaker, (312 mg; 0.22 mmol) γ -CD were dissolved in 5 mL of distilled water resulting in a clear limpid solution. The latter was added in one shot to the former, the obtained solution was stirred gently for 10 min and then allowed to stand for crystallization. Two days later, abundant quantity of square-like dark green crystals of ${Ta_6}@2CD$ suitable for single crystal Xray diffraction was obtained. Yield 405 mg, 73 %. FT-IR spectrum is given in Figure S2. Elemental analysis for $Br_{14}C_{96}H_{200}Ta_6$ (FW = 5156.2 g/mol) Calc. (found): C 22,34 (22.20); Br 21,69 (21,51); H 3.87 (3.9); Ta 21.05 (20.95). TGA showed a loss of 6.99% assigned to coordinated and hydration water molecules in the 20-120 °C temperature range (calculated 6.97%) and a loss of 66.9 % in the 120-500°C range corresponding to the loss of 2 CD and the 14 Br with the formation of Ta_2O_5 (calculated 67.3%).


Preparation of {Ta₆@2CD•POM}-based hydrogel Gel. [Ta₆Br₁₂(H₂O)₆]Br₂ (100 mg; 0.0432 mmol) were dissolved in 2 mL distilled water. Another solution of $K_6[P_2W_{18}O_{62}] \cdot 19H_2O$ (212) mg; 0.0432 mmol) and $C_{48}H_{80}O_{40}$ •6.6H₂O (121 mg; 0.0865 mmol) were dissolved in 5 mL distilled water. The former (green solution) was added dropwise to the latter (clear solution) while gently stirring. Each drop introduced into the solution coagulates and form a micelle-like green droplet. With the continuous addition of the tantalum solution, the viscosity of the solution increases gradually and the magnetic bar struggles to rotate. After the addition of the whole quantity of the green solution, the viscous mixture was stirred gently for five minutes. The resulting green mixture was allowed to stand for one hour in open air where a green gel is obtained. The gel maintains its viscosity and texture if left covered afterwards while it dries up if left in open air. Composition of the hydrogel was determined by elemental EDX after thoroughly washing the gel through successive centrifugation in excess water to removed mother liquor and then drying in air at room temperature. FT-IR spectrum of the gel after drying is given in Figure S2. Elemental analysis for K₄[Ta₆Br₁₂(H₂O)₆][γ -CD]₂[P₂W₁₈O₆₂] ~60 H₂O : Calc.(found) Br 9.26 (10,04); C 11.13(11,93); H 2.82 (3,04); K 1.51 (1,43); P 0,59 (0,65); Ta 10.49 (11,82); W 31,99 (30, 52).

Synthesis of Single crystals of $K_2H_2[Ta_6Br_{12}(H_2O)_6][\gamma-CD]_2[P_2W_{18}O_{62}].32.5H_2O$. Solutions similar to those used in the preparation of the gel were utilized in the crystallization process. Around 0.5 mL of each solution was introduced on opposite sides of a 0.5 cm diameter H-tube. Two drops of CF_3SO_3H 2 M were added to each side. Then distilled water was layered above both solutions until the H-tube was filled allowing slow diffusion on both sides. After one week needle-like green crystals are formed at the center of the tube. Crystals were isolated and characterized by XRD, FT-IR, TGA and EDX. Yield 50 mg, 47 %. FT-IR spectrum is given in Figure S2. TGA showed a weight loss of 6.50% assigned to coordinated and hydration water molecules in the 20-120 °C temperature range (calculated 6.00%) and a loss of 34.8 % in the 120-600°C range corresponding to the loss of the 2 CD and the 12 Br with the formation of K₂O, Ta₂O₅, P₂O₅ and WO₃ (calculated 34.2%).


Elemental analysis for $Br_{12}C_{96}H_{239}K_2O_{180.5}P_2Ta_6W_{18}$: calc.(found) Br 9.81(10,21); C 11.78(11,82); H 2.44(2.53); K 0.80(0,78); P 0.63(0,61); Ta 11.10(11,43); W 33.86(32,54). FW = 9772.8 g/mo

3. FT-IR Spectra

Fourier Transformed Infrared (FT-IR) spectra were recorded using diamond ATR technique. The spectra were recorded on non-diluted compounds and ATR correction was applied.

Figure S1. FT-IR spectra of compounds POM@CD, POM@2CD, and POM@3CD, in comparison with the FT-IR spectra of the precursor $K_6[P_2W_{18}O_{62}]$.19H₂O (POM) and of the γ -cyclodextrin (CD). From POM@CD to POM@3CD, the ratio of the bands of CD compared to that of the POM clearly increases (see in the 950-1150 cm⁻¹ range).

Figure S2. FT-IR spectra of compounds {Ta₆@2CD} and {Ta₆@2CD.POM}, as gel and single crystals, in comparison with the FT-IR spectra of the precursor $K_6[P_2W_{18}O_{62}]$.19H₂O (POM) and of the γ -cyclodextrin (CD). The FT-IR spectrum of the cluster $[Ta_6Br_{12}(H_2O)_6]^{2+}$ is silent. Therefore, the FT-IR spectrum of {Ta₆@2CD} almost corresponds to that of the CD alone. The FT-IR spectrum of the gel {Ta₆@2CD.POM} was performed after drying and corresponds well to that obtained with single crystals of {Ta₆@2CD.POM}.

4. Single crystal X-ray diffraction.

4.1. Material & Methods.

Intensity data collections were carried out at T = 200(2) K with a Bruker X8 APEX2 CCD, using the MoK α wavelength ($\lambda = 0.71073$ Å) or at 100(2) K using X-Ray synchrotron beam line ($\lambda = 0.72925$ Å) at PROXIMA2 source in SOLEIL Laboratory (see table S1). Crystals were glued in paratone to prevent any loss of crystallization water. An empirical absorption correction was applied using the SADABS program¹ based on the method of Blessing.² The structures were solved by direct methods and refined by full-matrix least squares using the SHELX-TL package.³ Heavier atoms (W or Ta) for each structure were initially located by direct methods. The remaining non-hydrogen atoms were located from Fourier differences and were refined with anisotropic thermal parameters. Positions of the hydrogen atoms belonging to the coordinated acetate were calculated and refined isotropically using the gliding mode. Selected Crystallographic data for single-crystal X-ray diffraction studies are summarized in Table S1. CCDC 1561363, 1561364, 1561365, 1561366 and 1561367 also contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data request/cif. Further details about of the crystal structure determinations may be obtained free of charge via the Internet at http://pubs.acs.org.

- (1) G. M. Sheldrick, SADABS, program for scaling and correction of area detector data, University of Göttingen, Germany, **1997**.
- (2) R.Blessing, Acta Cryst. **1995**, A51, 33.
- (3) G. M. Sheldrick, Acta Cryst. 1990, A46, 467; Sheldrick, G. M. SHELX-TL version 5.03, Software Package for the Crystal Structure Determination, Siemens Analytical X-ray Instrument Division : Madison, WI USA, 1994

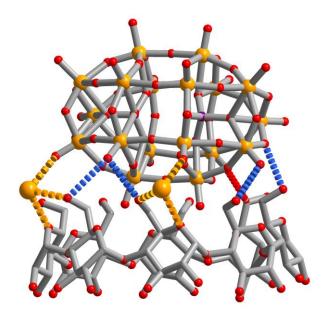
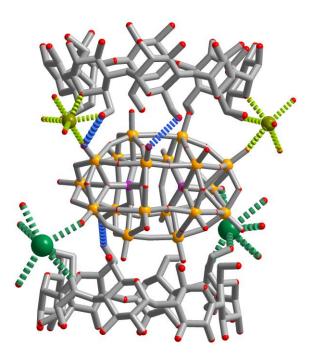
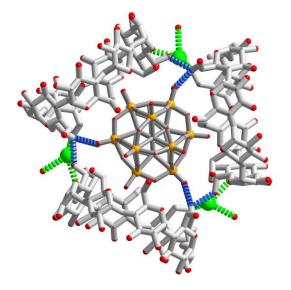

4.2. Selected crystallographic parameters of the single-crystal X-ray diffraction structural analysis.

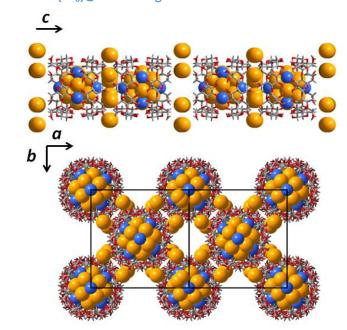
Table S1.


Compound	POM@CD	POM@2CD	POM@3CD	Ta ₆ @2CD	Ta ₆ @2CD@POM
Formula C48H116Cl3.50KNa8.50O120P2W18		C96H206CI1.20CsNa6.20O165P2W18	C144H310K1.50Na0.50O217P2Rb4W18	C96H200Br14O100Ta6	C96H239Br12K2O180.50P2Ta6W18
<i>FW</i> , g.mol ⁻¹ 6343.23		7689.82	9297.17	5158.99	9775.92
Т, К	100	200	200	200	100
crystal size (mm)	0.08 × 0.06 × 0.04	$0.30 \times 0.04 \times 0.02$	0.30 × 0.28 × 0.03	0.20 × 0.12 × 0.06	0.01 × 0.01 × 0.01
crystal system	Orthorhombic,	Orthorhombic	Trigonal	Tetragonal	Tetragonal
space group	P212121	P212121	<i>P</i> 321	<i>I</i> 422	<i>P</i> 41212
<i>a</i> , Å	17.671 (4)	17.2589 (16)	21.1963 (4)	23.8984 (11)	23.985 (3)
b, Å	24.533 (5)	31.374 (3)	21.1963 (4)	23.8984 (11)	23.985 (3)
<i>c</i> , Å	40.756 (8)	41.297 (3)	35.5050 (17)	34.8186 (19)	89.175 (18)
$V, Å^3$	17669 (6)	22362 (3)	13814.7 (8)	19886 (2)	51301 (18)
Ζ	4	4	2	4	8
$ ho_{ m calc}$, g.cm ⁻³	2.385	2.284	2.235	1.723	2.531
μ (Mo K α), cm ⁻¹	1.224	0.953	0.832	0.619	1.303
λ(Μο Κα), Å	0.72925	0.71073 Å	0.71073 Å	0.71073	0.72931
θ range, deg	$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 1.0^{\circ}$	$\theta_{\text{max}} = 25.1^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$	$\theta_{\text{max}} = 30.0^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$	$\theta_{max} = 25.1^\circ, \ \theta_{min} = 2.1^\circ$	$\theta_{\text{max}} = 25.6^{\circ}, \ \theta_{\text{min}} = 0.9^{\circ}$
data collected	184384	249509	168660	129482	532679
unique data	29038	38493	26908	8872	44271
unique data I> $2\sigma(I)$	21536	32586	20542	7074	22525
no. Parameters	855	2330	1142	521	1718
restraints	452	2915	3	10	878
$R_w(F^2)$	0.293	0.318	0.146	0.212	0.280
R(F)	0.097	0.130	0,049	0.072	0.103
GOF	1.03	1.11	1.02	1.14	1.01

4.3. Structural views of POM@nCD arrangements

4.3.1. POM@1CD

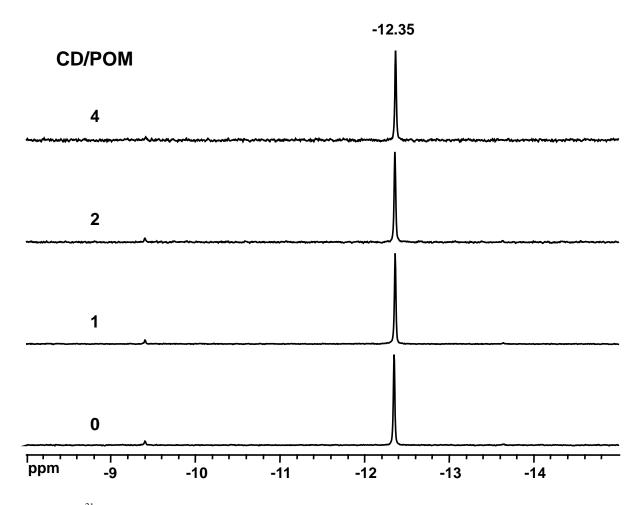

Figure S3. Structural representation of the POM@1CD arrangement showing the involvement of the potassium cations (yellow spheres) within the POM••• γ -CD interactions in addition to the hydrogen bonds (dotted blue sticks) and C-H•••O (red dotted stick).

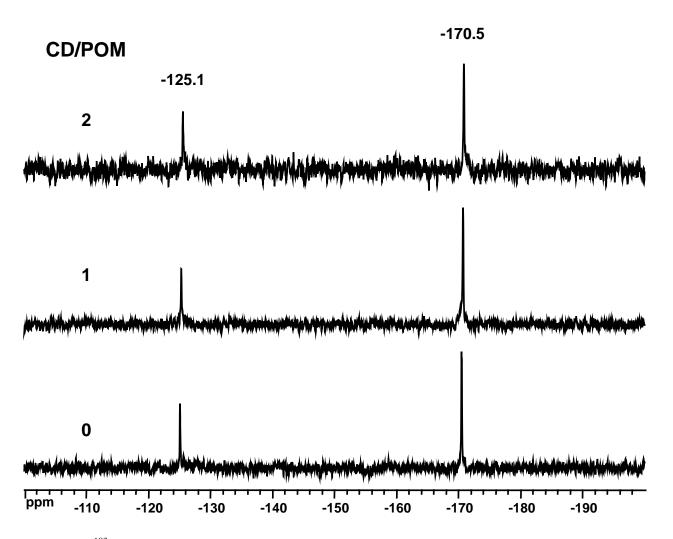

Figure S4. Structural representation of the POM@2CD arrangement showing the involvement of the cesium (dark-green spheres) and sodium cations (light-green spheres) within the POM••• γ -CD interactions in addition to the hydrogen bonds (dotted blue sticks).

4.3.2.POM@2CD

4.3.3.POM@3CD

Figure S5. Structural representation of the POM@3CD arrangement along the C₃ axis showing the involvement of the rubidium cations (light-green spheres) within the POM••• γ -CD interactions in addition to the hydrogen bonds (dotted blue sticks).




Figure S6. Representation of the {Ta₆}@2CD structure showing the tubular bamboo-like chains running along the c axis. The supramolecular host-guest assembly are alternately stacked through short (O•••O = 2.83Å) and long (O•••O = 6.78Å) intermolecular interaction involving the primary face of the γ -CD. These "bamboo-like" chains are mutually connected through the bromide counter ions to give the tetragonal cells. Color code : yellow sphere = Br; blue sphere = aqua ligand of the {Ta₆}²⁺ cluster; the cyclodextrin are represented by grey sticks.

5. NMR data.

5.1. ³¹P NMR

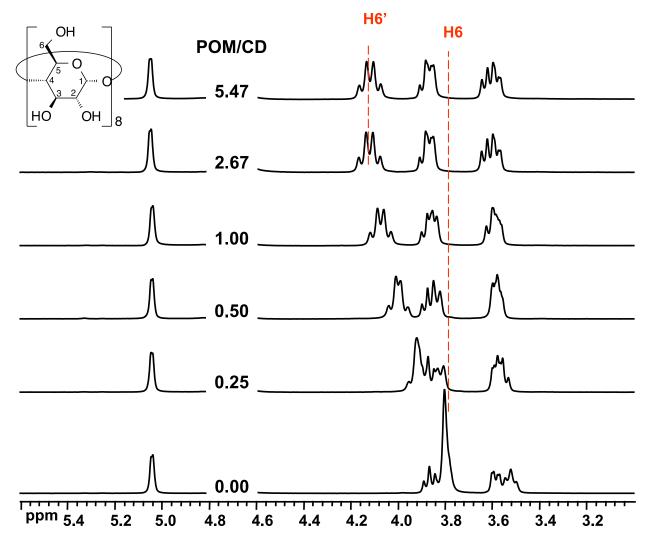
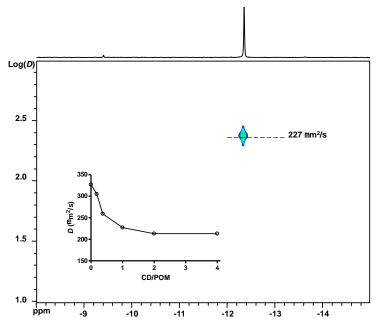
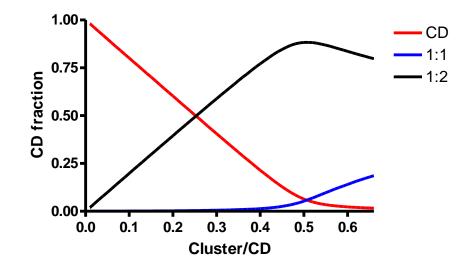


Figure S7. ³¹P NMR spectra of $K_6[P_2W_{18}O_{62}]$ solution containing variable amounts of γ -CD showing little effect on the POM signal.


Figure S8. ¹⁸³W NMR spectra of $K_6[P_2W_{18}O_{62}]$ solution containing variable amounts of γ -CD showing little effect on the POM signals.

5.3. ¹H NMR titration


Figure S9. ¹H NMR spectra of γ -CD solution (3 mM) containing variable amounts of K₆[P₂W₁₈O₆₂], showing effect on signal H₆ as a result of inclusion complex formation.

5.4. ³¹P DOSY NMR

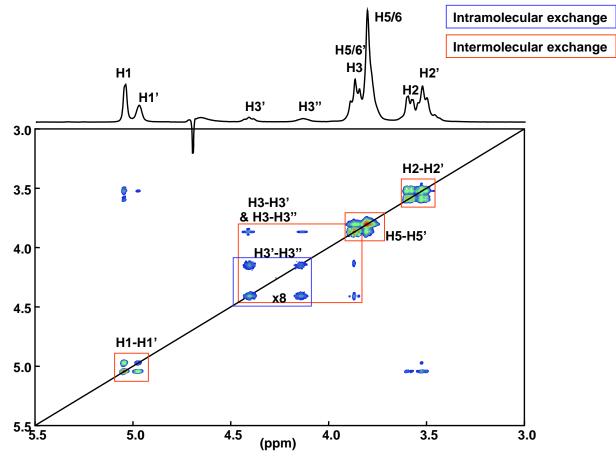


Figure S10. ³¹P DOSY NMR spectrum of $K_6[P_2W_{18}O_{62}]$ solution (3 mM) containing equimolar amount of γ -CD. Inset: Evolution of diffusion coefficients measured as a function of CD/ $[P_2W_{18}O_{62}]^{6-}$ molar ratio.

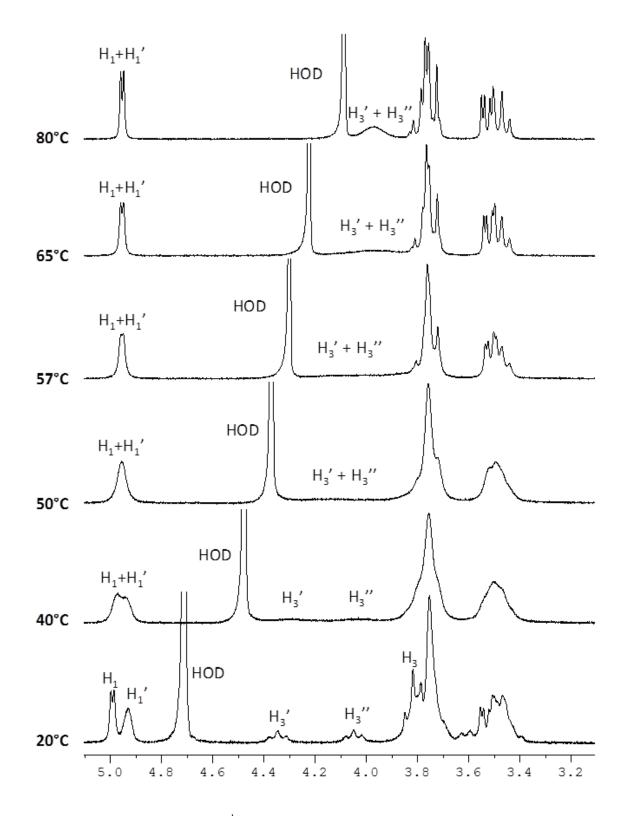

5.5. ¹H NMR DOSY

Figure S11. CD species distribution in NMR study conditions of Figure 5 (fixed [CD] = 1 mM) calculated with ITC binding constants for 1:1 and 1:2 inclusion complexes $K_{11} = 1.5 \ 10^5 \ M^{-1}$ and $K_{12} = 1.3 \ 10^5 \ M^{-1}$ (Table 1), showing the predominance of 1:2 complex with respect to 1:1 complex.

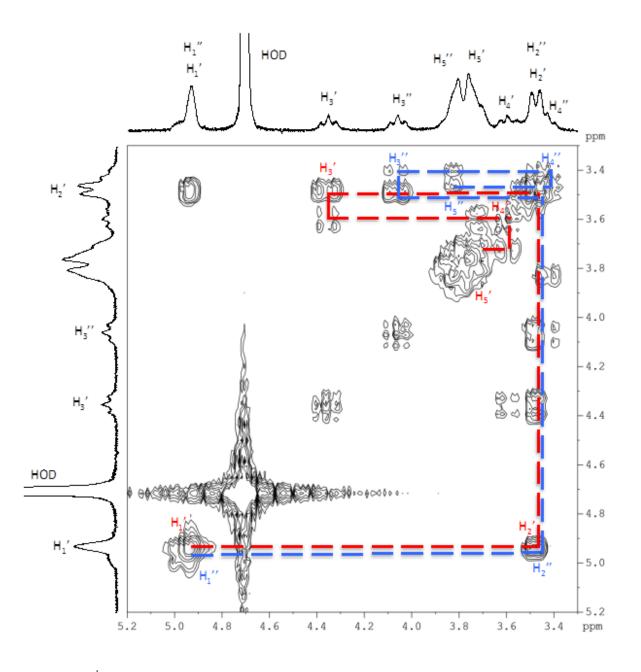
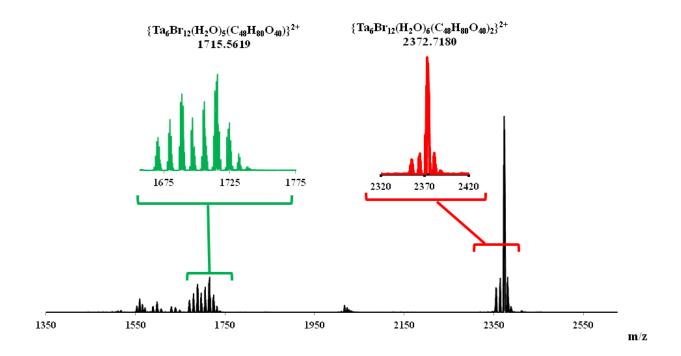


Figure S12. ¹H EXSY NMR spectrum of γ -CD solution (3 mM) containing $[Ta_6Br_{12}(H_2O)_6]Br_2$ in the molar ratio $[Ta_6Br_{12}(H_2O)_6]^{2+}/CD = 0.25$, showing exchange correlations between protons of free (H_n) and complexed (H_n') CDs, and protons of the two types of glucopyranose units (H_n' & H_n'') present in the complexed CD.


Figure S13. Variable temperature ¹H NMR spectra of γ -CD solution (3 mM) containing [Ta₆Br₁₂(H₂O)₆]Br₂ in the molar ratio [Ta₆Br₁₂(H₂O)₆]²⁺/CD = 0.25, showing magnetization exchange between protons of free (H_n) and complexed (H_n') CDs, and protons of the two types of glucopyranose units (H_n' & H_n'') present in the complexed CD.

5.8. COSY¹H NMR

Figure S14. ¹H COSY NMR spectrum of γ -CD solution (3 mM) containing $[Ta_6Br_{12}(H_2O)_6]Br_2$ in the molar ratio $[Ta_6Br_{12}(H_2O)_6]^{2^+}$ /CD = 2.3, showing correlations between resonances of the two distinguished glucopyranose units $(H_n^{'} \& H_n^{''})$ present in the complexed CD.

6. ESI-Mass spectrum of the ${Ta_6}@2CD$ complex in aqueous solution .

Figure S15. ESI-MS spectrum of the inclusion compound in aqueous solution{ Ta_6 }@2CD containing the m/z peak related to the 1:2 (red trace) and 1:1 (green trace) adducts. The side peaks separated from each other by m/z = 9 are unambiguously attributed to either hydrated or dehydrated complexes.

7. ITC measurements and analysis.

Formation constants and inclusion enthalpies were simultaneously determined for each γ -CD/[P₂W₁₈O₆₂]⁶⁻, γ -CD/[Ta₆Br₁₂(H₂O)₆]²⁺ and γ -CD/[P₂W₁₈O₆₂]⁶⁻/[Ta₆Br₁₂(H₂O)₆]²⁺ systems by the use of an isothermal calorimeter (ITC₂₀₀, MicroCal Inc., USA).

7.1. Experimental conditions

Degassed deionised water solutions were used in both cell ($V_0 = 202.8 \mu$ L) and syringe (40 μ L). After addition of an initial aliquot of 0.2 μ L, 10 aliquots of 3.7 μ L of the syringe solution were delivered over 7 s for each injection. This number of ten injections was chosen according to Tellinghuisen's recommendation (J. Tellinghuisen, J. Phys. Chem. B 2005, 109 (42), 20027-20035). The time interval between two consecutive injections was 90 s, which proved to be sufficient for a systematic and complete return to baseline (when no gelation phenomenon was observed in the cell). The agitation speed was set to 1000 rpm. The resulting heat flow was recorded as a function of time.

Experiments involving γ -CD/ $[P_2W_{18}O_{62}]^{6-}$ and γ -CD/ $[Ta_6Br_{12}(H_2O)_6]^{2+}$ binary systems :

Since mixtures of 1:1 and 1:2 complexes were expected, two distinct ITC titrations were realized at three temperatures (283, 298 and 313 K), in order to merge experimental information on both complexes. Titration 1 was implemented by using a cell filled with a guest solution and a syringe filled with a γ -CD solution. Titration 2 involved a cell filled with an equimolar solution of host and guest, and a syringe filled with a γ -CD solution. The following concentrations were used for the different systems :

Guest		Cell	Syringe
$[P_2W_{18}O_{62}]^{6}$	Titration 1	$[P_2W_{18}O_{62}]^{6}0.125 \text{ mM}$	γ-CD 2.5 mM
	Titration 2	$[P_2W_{18}O_{62}]^{6}0.25 \text{ mM} + \gamma\text{-CD } 0.25 \text{ mM}$	γ-CD 2.5 mM
$\left[Ta_{6}Br_{12}(H_{2}O)_{6}\right]^{2+}$	Titration 1	$\left[Ta_6Br_{12}(H_2O)_6\right]^{2+}0.33 \text{ mM}$	γ-CD 3.33 mM
	Titration 2	$\left[Ta_6Br_{12}(H_2O)_6\right]^{2+}0.67 \text{ mM} + \gamma \text{CD } 0.67 \text{ mM}$	γ-CD 3.33 mM

Experiments involving γ -CD/[$P_2W_{18}O_{62}$]⁶⁻/[$Ta_6Br_{12}(H_2O_{63})^{2+}$ ternary system :

Titrations were realized at 298 K by injecting a 200 μ M [P₂W₁₈O₆₂]⁶⁻ solution on a solution containing [Ta₆Br₁₂(H₂O)₆]²⁺ (90 μ M) and γ -CD (respectively 22.5, 90 and 360 μ M for titration 1, 2 and 3).

7.2. Thermograms treatment

The heat of dilution of each partner was eliminated from each titration by subtracting the raw signal obtained for the corresponding blank titrations (i.e. only one partner in cell or syringe, the other compartment being filled with water). The peak area following each addition was obtained by integration of the resulting signal and was expressed as the heat effect per injection.

7.2.1. Isotherms treatment for γ -CD/[P₂W₁₈O₆₂]⁶⁻ and γ -CD/[Ta₆Br₁₂(H₂O)₆]²⁺ binary systems Binding constants and inclusion enthalpies were determined by nonlinear regression analysis of the binding isotherms, using a dedicated homemade program (E. Bertaut, D. Landy, Beilstein J. Org. Chem. 2014, 10, 2630-2641).

Briefly, considering host and guest concentrations in syringe and in cell (before and after each injection), concentrations of each inclusion compound may be calculated by solving the binding polynomial corresponding to a mixture of 1:1 and 1:2 complexes.

These concentrations may then be used to calculate the variation, in the cell, of the number of moles, Δn_i , of any Cyclodextrin_m-Guest complex (CD_m-G), for each injection, according to equation (1):

$$\Delta n_{i} = \left[\left[CD_{m} - G \right]_{i} * V_{o} - \left[CD_{m} - G \right]_{i-1} * \left(V_{o} - v_{i} \right) + \frac{\left[CD_{m} - G \right]_{i} * v_{i} - \left[CD_{m} - G \right]_{i-1} * v_{i}}{2} \right]$$
(1)

With v_i being the injected volume of the i^{th} injection.

Finally, the heat consecutive to each injection may be calculated by means of relation (2) :

$$Q_{i} = \Delta n_{i}^{CD-G} * \Delta H^{CD-G} + \Delta n_{i}^{CD_{2}-G} * \left(\Delta H^{CD-G} + \Delta H^{CD_{2}-G} \right)$$

$$\tag{2}$$

It has to be stressed that ΔH^{CD_2-G} correspond to the formation of the 1:2 complex starting from the 1:1 complex (and not from the free species).

Relation (2) corresponds to the regression function for the least square fitting of the binding isotherms. This fitting is realized by means of Newton-Raphson algorithm, which minimizes the residual sum of squared deviations between experimental and theoretical data, by varying the thermodynamic parameters.

In order to ensure that data treatment is not over-parameterized, a global analysis of the 6 distinct experiments (two titrations at three temperatures) was realized for each host-guest system. The

least square fitting was simultaneously applied to all isotherms with one set of thermodynamic parameters (i.e. with a unique formation constant K, inclusion enthalpy ΔH and heat capacity variation ΔCp , for each complex), by means of van't Hoff law. T₀ being an arbitrary reference temperature, $\Delta G(T)$, $\Delta H(T)$, $\Delta S(T)$ and ΔC_p are linked by equations (3) to (5) :

$$K(T) = K(T_0) * e^{\left\{\frac{\Delta H(T_0)}{R}\left(\frac{1}{T_0} - \frac{1}{T}\right) + \frac{\Delta C_p}{R}\left(\ln\left\{\frac{T}{T_0}\right\} + \frac{T_0}{T} - 1\right)\right\}}$$
(3)

$$\Delta H(T) = \Delta H(T_0) + \Delta C_p * (T - T_0)$$
⁽⁴⁾

$$\Delta G(T) = \Delta H(T) - T * \Delta S(T)$$
⁽⁵⁾

Such a global analysis of 6 distinct experiments not only allow a better discrimination between the equilibriums models, but it also increases the accuracy on each thermodynamic parameters, even in the case of weak formation constants.

Finally, uncertainties on each thermodynamic parameters were determined by a priori variance– covariance matrix². Calculations of accuracy have been undertaken considering all isotherms, after global analysis of each system.

7.2.2. Isotherms treatment for γ -CD/[P₂W₁₈O₆₂]⁶⁻/[Ta₆Br₁₂(H₂O)₆]²⁺ ternary system

Thermodynamic parameters was obtained with the same scheme than for binary systems, but for only one temperature, and with binding polynomials and heat as described below. In order to shorten equations, γ -CD, $[P_2W_{18}O_{62}]^{6-}$ and $[Ta_6Br_{12}(H_2O)_6]^{2+}$ are respectively abbreviated by CD, POM and $\{Ta_6\}$.

7.2.2.1. Hypothesis 1 : absence of hetero-ternary complexes

Considering only a competition between the previously described 1:1 and 1:2 γ -CD complexes of POM and {Ta6}, the total concentration of each partner are described by equations (6) to (8) :

$$[CD]_{T} = [CD] + [CD - \{Ta_{6}\}] + 2*[CD_{2} - \{Ta_{6}\}] + [CD - POM] + 2*[CD_{2} - POM]$$
(6)

$$[\{Ta_6\}]_T = [\{Ta_6\}] + [CD_{-}\{Ta_6\}] + [CD_{2}_{-}\{Ta_6\}]$$
(7)

$$[POM]_{T} = [POM] + [CD-POM] + [CD_{2}-POM]$$
(8)

Each of these three equations may then be developed by using the formations constants linked to each complex :

$$[POM] = \frac{[POM]_{T}}{1 + K_{CD-POM} * [CD] + K_{CD_{2}-POM} * K_{CD-POM} * [CD]^{2}}$$
(9)

$$[\{Ta_{6}\}] = \frac{[\{Ta_{6}\}]_{T}}{1 + K_{CD-\{Ta_{6}\}} * [CD] + K_{CD_{2}-\{Ta_{6}\}} * K_{CD-\{Ta_{6}\}} * [CD]^{2}}$$
(10)

$$[CD]_{T} - [CD] - K_{CD-\{Ta_{6}\}} * [CD] * [\{Ta_{6}\}] - 2 * K_{CD_{2}-\{Ta_{6}\}} * K_{CD-\{Ta_{6}\}} * [CD]^{2} * [\{Ta_{6}\}] - K_{CD-POM} * [CD] * [POM] - 2 * K_{CD_{2}-POM} * K_{CD-POM} * [CD]^{2} * [POM] = 0$$
(11)

Equation (11) was solved numerically by the use of Newton's method, considering [CD] as the only variable (which enables the calculation of [POM] and $[{Ta_6}]$ by the use of equation (9) and (10), respectively). Once the correct value of [CD] is known, the concentration of all species can be calculated directly.

Finally, the heat consecutive to each injection may be calculated by means of relation (12) :

$$Q_{i} = \Delta n_{i}^{CD-POM} * \Delta H^{CD-POM} + \Delta n_{i}^{CD_{2}-POM} * (\Delta H^{CD-POM} + \Delta H^{CD_{2}-POM}) + \Delta n_{i}^{CD-\{Ta_{6}\}} * \Delta H^{CD-\{Ta_{6}\}} + \Delta n_{i}^{CD_{2}-\{Ta_{6}\}} * (\Delta H^{CD-\{Ta_{6}\}} + \Delta H^{CD_{2}-\{Ta_{6}\}})$$
(12)

7.2.2.2. Hypothesis 2 : presence of hetero-ternary complexes

Considering that one POM molecule may possess three independent bindings sites for CD-{Ta₆} and/or CD₂-{Ta₆} complexes, and also considering negligible concentrations for CD-POM and CD₂-POM complexes, the total concentration of each partner are described by equations (13) to (15):

$$[POM]_{T} = [POM] + \left[POM - \left[CD - \{Ta_{6}\} \right] \right] + \left[POM - \left[CD_{2} - \{Ta_{6}\} \right] \right]$$
(13)

$$[\{Ta_6\}]_T = [\{Ta_6\}] + [CD - \{Ta_6\}] + [CD_2 - \{Ta_6\}] + [POM - [CD - \{Ta_6\}]] + [POM - [CD_2 - \{Ta_6\}]]$$
(14)

$$[CD]_{T} = [CD] + [CD - {Ta_{6}}] + 2*[CD_{2} - {Ta_{6}}] + [POM - [CD - {Ta_{6}}]] + 2*[POM - [CD_{2} - {Ta_{6}}]]$$
(15)

In order to account for the effective number of POM binding sites, $[POM]_T$ correspond to the total concentration of POM multiplied by 3.

In addition, the heteroternary complexes are characterized by their formation constant :

$$K_{\text{POM-[CD-{Ta_6}]}} = \frac{[POM - [CD - {Ta6}]]}{[POM] * [CD - {Ta6}]]}$$
(16)

$$K_{\text{POM-}[CD_2^{-}\{\text{Ta}_6\}]} = \frac{[POM - [CD_2^{-}\{\text{Ta}_6\}]]}{[POM] * [CD_2^{-}\{\text{Ta}_6\}]]}$$
(17)

Equations (13) to (15) may then be developed by using the formations constants linked to each complex :

$$[POM]_{T} = \frac{[POM]_{T}}{1 + K_{POM-[CD-\{Ta_{6}\}]} * K_{CD-T} * [CD]^{*}[\{Ta_{6}\}] + K_{POM-[CD_{2}-\{Ta_{6}\}]} * K_{CD_{2}-\{Ta_{6}\}} * K_{CD-\{Ta_{6}\}} * [CD]^{2} * [\{Ta_{6}\}]}$$
(18)

$$[\{Ta_6\}]_T - [\{Ta_6\}] - K_{CD-\{Ta_6\}} * [CD] * [\{Ta_6\}] - K_{CD_2-\{Ta_6\}} * K_{CD-\{Ta_6\}} * [CD]^2 * [\{Ta_6\}] - K_{POM-[CD-\{Ta_6\}]} * K_{CD-\{Ta_6\}} * [CD] * [\{Ta_6\}] * [POM] - K_{POM-[CD-\{Ta_6\}]} * K_{CD_2-\{Ta_6\}} * K_{CD-\{Ta_6\}} * [CD]^2 * [\{Ta_6\}] * [POM] = 0$$

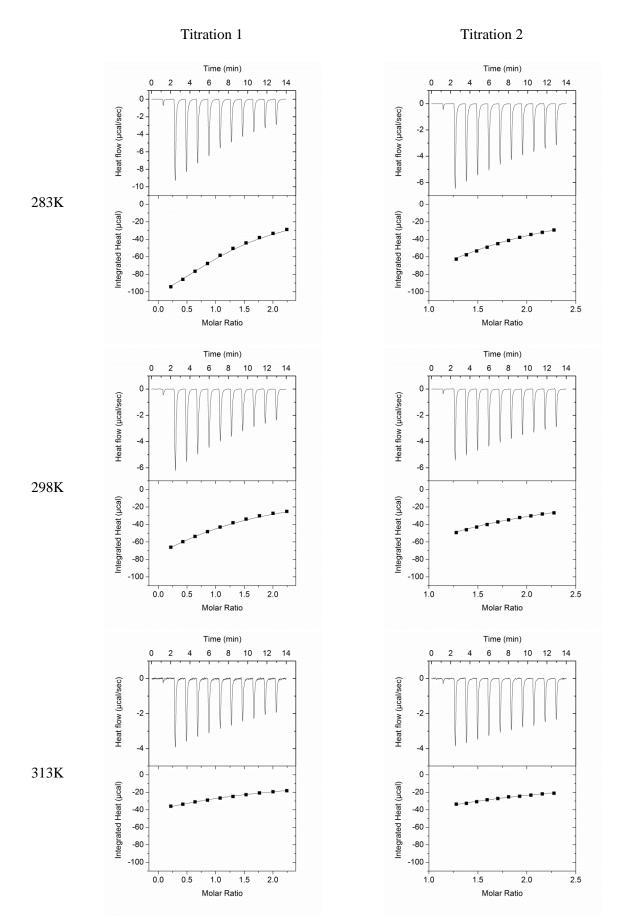
$$(19)$$

$$\begin{split} [CD]_{T} &- [CD] - K_{CD-\{Ta_{6}\}} * [CD] * [\{Ta_{6}\}] - 2 * K_{CD_{2}-\{Ta_{6}\}} * K_{CD-\{Ta_{6}\}} * [CD]^{2} * [\{Ta_{6}\}] - \\ K_{POM-[CD-\{Ta_{6}\}]} * K_{CD-\{Ta_{6}\}} * [CD] * [\{Ta_{6}\}] * [POM] - 2 * K_{POM-[CD-\{Ta_{6}\}]} * K_{CD_{2}-\{Ta_{6}\}} * K_{CD-\{Ta_{6}\}} * \\ [CD]^{2} * [\{Ta_{6}\}] = 0 \end{split}$$
(20)

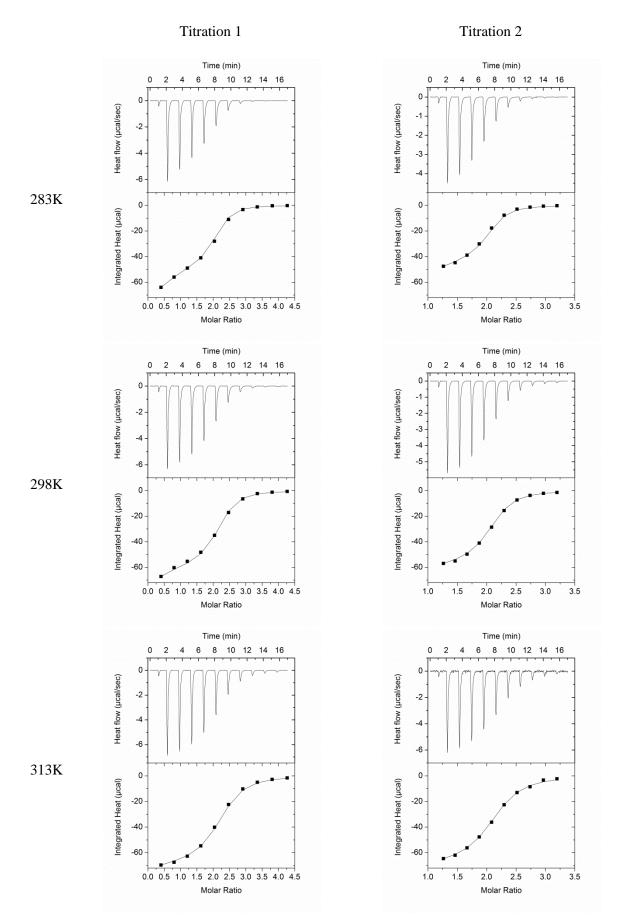
The system formed by equations (19) and (20) is solved numerically by the use of Newton's method, considering [CD] and $[{Ta_6}]$ as variables (which enable the calculation of [POM] by the use of equation (18)). Once the correct values of [CD] and $[{Ta_6}]$ are known, the concentration of all species can be calculated directly.

Finally, the heat consecutive to each injection may be calculated by means of relation (21) :

7.3. Results for γ -CD/[P₂W₁₈O₆₂]⁶⁻ and γ -CD/[Ta₆Br₁₂(H₂O)₆]²⁺ binary systems


ITC thermograms and isotherms for the γ -CD/[P₂W₁₈O₆₂]⁶⁻ and the γ -CD/[Ta₆Br₁₂(H₂O)₆]²⁺ binary systems are presented in Figure S15 and S16, respectively. Simulations of mixture of 1:1 and 1:2 complexes were required to obtain satisfying fits for both systems. Thermodynamic parameters are summarized in Table S2.

7.4. Results for γ -CD/[P₂W₁₈O₆₂]⁶⁻/[Ta₆Br₁₂(H₂O)₆]²⁺ ternary system


The thermograms obtained for titrations 1, 2 and 3 are presented in Figure S17.

Concerning titration 1, if one try to simulate the corresponding theoretical heats according to hypothesis 1 (i.e. competition between 1:1 and 1:2 γ -CD complexes of POM and {Ta₆}, without hetero-ternary complexes), negligible values are obtained (inferior to 0.1 µcal per injection). Indeed, the cluster complexes are far stronger than the POM complexes (cf Table S2), in such a way that no significant amount of CD-POM complex is formed. This means either that hetero-ternary complexes are present and that 1:1 and 1:2 complexes between γ -CD and POM may be neglected under these experimental conditions. As a result, we tried to simulate the binding isotherm according to hypothesis 2 (each POM molecule possess three independent bindings sites for CD-{Ta₆} and/or CD₂-{Ta₆} complexes). Under these experimental conditions, the concentration of CD₂-{Ta₆} was rather low when compared to CD-{Ta₆} ; thus, the formation constant and inclusion enthalpy of the POM-[CD₂-{Ta₆}] complex, during the fitting process. The corresponding fit is presented in Figure 11 (main text).

In the case of titrations 2 and 3, evident increases of viscosity inside the cell resulted in deformed peaks. As a consequence, no simulation of the binding isotherms has been investigated.

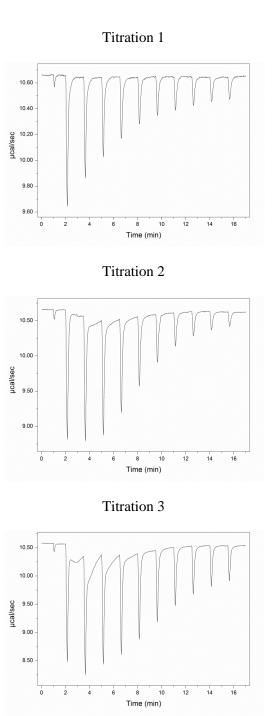

Figure S16. ITC thermograms (upper part) and isotherms (lower part) for the system γ -CD/[P₂W₁₈O₆₂]⁶⁻. Dots and lines correspond to experimental and theoretical heats, respectively.

Figure S17. ITC thermograms (upper part) and isotherms (lower part) for the system γ -CD/[Ta₆Br₁₂(H₂O)₆]²⁺. Dots and lines correspond to experimental and theoretical heats, respectively.

Table S2. Formation constant, enthalpy, entropy and free energy of inclusion, for the 1:1 and 1:2 complexes formed with γ -CD/[P₂W₁₈O₆₂]⁶⁻ and γ -CD/[Ta₆Br₁₂(H₂O)₆]²⁺ systems, obtained from ITC data, at 283, 298 and 313 K. Uncertainty rounded to the superior unit.

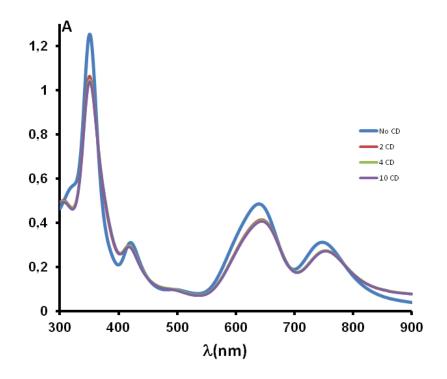

		<i>T</i> (K)	$K (10^3 \mathrm{M}^{-1})$			$\Delta_{\rm r} H^*$ (Kcal.mol ⁻¹)	$T\Delta_r S^*$ (Kcal.mol ⁻¹)	$\Delta_{\rm r}G^*$ (Kcal.mol ⁻¹)
POM	1:1	283	9,6	±	0,5	$-11,5 \pm 0,2$	$-6,4 \pm 0,3$	$-5,1 \pm 0,1$
	1:1	298	3,3	±	0,2	$-12,6 \pm 0,5$	$-7,8 \pm 0,6$	$-4,8 \pm 0,1$
	1:1	313	1,2	±	0,1	$-13,7 \pm 0,8$	$-9,3 \pm 0,8$	$-4,4 \pm 0,1$
	1:2	283	1,1	±	0,2	$-10,6 \pm 0,8$	$-6,7 \pm 0,9$	$-3,9 \pm 0,1$
	1:2	298	0,4	±	0,1	-11,9 ± 1,6	$-8,4 \pm 1,7$	$-3,5 \pm 0,2$
	1:2	313	0,2	±	0,1	-13,2 ± 6,9	-10,1 ± 7,0	$-3,1 \pm 0,2$
{Ta6}	1:1	283	184,1	±	4,8	$-3,3 \pm 0,2$	3,6 ± 0,2	$-6,8 \pm 0,1$
	1:1	298	127,2	±	3,3	$-5,1 \pm 0,2$	1,9 ± 0,2	$-7,0 \pm 0,1$
	1:1	313	78,4	±	2,1	$-6,9 \pm 0,2$	$0,1 \pm 0,2$	$-7,0 \pm 0,1$
	1:2	283	315,7	±	37,4	$-7,9 \pm 0,2$	$-0,8 \pm 0,2$	$-7,1 \pm 0,1$
	1:2	298	153,3	±	18,2	$-8,2 \pm 0,2$	$-1,2 \pm 0,3$	$-7,1 \pm 0,1$
	1:2	313	77,6	±	9,2	$-8,6 \pm 0,2$	-1,6 ± 0,3	$-7,0 \pm 0,1$

Figure S18. ITC thermograms obtained for γ -CD/[P₂W₁₈O₆₂]⁶⁻/[Ta₆Br₁₂(H₂O)₆]²⁺ ternary system. Injections, at 298 K, of 200 μ M [P₂W₁₈O₆₂]⁶⁻ on [Ta₆Br₁₂(H₂O)₆]²⁺ (90 μ M) and γ -CD (respectively 22.5, 90 and 360 μ M for titration 1, 2 and 3).

8. UV-vis spectroscopy of the $\{Ta_6\} / \gamma$ -CD system

In the visible region, the electronic spectra of $[Ta_6Br_{12}(H_2O)_6]^{2+}$ cluster in aqueous solution is dominated by charge-transfer Ta \rightarrow Ta transitions and Ta \rightarrow Br (see Figure S18). The main UV-vis data are collected in Table S3. In the presence of various amount of γ -CD, the UV-vis spectrum of the of $[Ta_6Br_{12}(H_2O)_6]^{2+}$ cluster undergoes tiny changes mainly characterized by a "red" shift of the two band initially located at $\lambda_{max} = 743$ nm and $\lambda_{max} = 648$ nm.

Figure S19. UV-vis spectra of $[Ta_6Br_{12}(H_2O)_6]^{2+}$ aqueous solution in presence solution in presence 0, 2, 4 and 10 γ -CD equivalents. For amount of γ -CD upper than 2 equivalents, the UV-vis features of the $\{Ta_6\}^{2+}$ cluster remain almost unchanged.

Table S3 : UV-vis data of the $[Ta_6Br_{12}(H_2O)_6]^{2+}$ cluster and the host-guest $\{[Ta_6Br_{12}(H_2O)_6]@2CD\}^{2+}$ assembly in aqueous solution with concentration ranging between 10⁻⁴ and 8 10⁻⁴ mol.L⁻¹.

Compound	λ_{max} (nm) / ϵ (mol ⁻¹ Lcm ⁻¹)
[Ta ₆ Br ₁₂ (H ₂ O) ₆]Br ₂	354 / 15 125; 420 / 3 875 ; 640 / 6 000 ; 745 / 3 875
${[Ta_6Br_{12}(H_2O)_6]@2CD}Br_2•8H_2O$	354 / 13 250 ; 418 / 3 625 ; 648 / 5 125 ; 751 / 3 375