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EXPERIMENTAL METHODS 
 
General methods 

All chemical reagents were purchased from commercial sources (Alfa-Aesar, Sigma-Aldrich, 

and Acros) and used without further purification. Solvents were purchased from commercial 

sources (Sigma-Aldrich and J.T. Baker) and used as obtained, with the exception of 

dichloromethane (CH2Cl2), which was distilled over calcium hydride immediately prior to use. 

Water was purified using a Millipore Analyzer Feed System. 

 

Nuclear magnetic resonance (NMR) spectra were recorded in deuterated solvents on a Varian 

MercuryPlus 300 MHz spectrometer or Bruker Avance III 500 MHz spectrometer. Chemical 

shifts are reported in parts per million (ppm, δ) using corresponding solvents or tetramethylsilane 

(TMS) as a reference. Couplings are reported in hertz (Hz). Electrospray ionization mass 

spectrometry (MS) measurements were performed on a Waters LCT instrument. Samples were 

dissolved in acetonitrile and sprayed with a sample cone voltage of 20. 

 

Reversed-phase high performance liquid chromatography (RP-HPLC) was performed using a 

Shimadzu system equipped with an SCL-10Avp controller, an LC-10AT pump, an FCV-10ALvp 

solvent mixer, and an SPD-10MAvp UV/vis diode array detector. A Restek Premier C18 column 

(5 μm, 4.6 mm x 250 mm) was used for all analytical RP-HPLC work. An Agilent Zorbax 

prepHT 300SB-C18 column (7 μm, 21.2 mm x 250 mm) was used for all preparative RP-HPLC 

work. Standard RP-HPLC conditions were as follows: flow rates were 1 mL min-1 for analytical 

separations and 9 mL min-1 for preparative separations; mobile phase A = water; mobile phase B 

= acetonitrile. 

 

Compound synthesis 

AHLs 9, 11–15, 20, 22, 23, and 26 were synthesized and purified by RP-HPLC for this study 

according to our previously reported protocols (purities >95%).1-5 AHLs that have been reported 

previously (1–8, 10, 16–19, 21, 24, and 25) are listed in Table S1 with original compound names 

and original citations. AHLs 9, 11–14, and 20 are all commercially available (Cayman Chemical 

#10011200; Sigma Aldrich #61698, #68873, #53727, #51481; Chemodex #O0061), and our 
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samples synthesized in-house yielded characterization data that matched those of commercial 

samples. Compound characterization data for the new AHLs in this study (15, 22, 23, and 26) are 

provided at the end of this document. 

 

Biological reagents and strain information 

All biological reagents were purchased from Fisher Scientific and used according to enclosed 

instructions. Luria-Bertani (LB) medium was prepared as instructed with pH = 7.0. Buffers and 

solutions (Z buffer, 0.1% (m/v) aqueous SDS, and phosphate buffer) for Miller absorbance 

assays were prepared as described.6 The A. baumannii M2 abaI::lacZ (∆abaI reporter) strain was 

used for the AbaR bacteriological assay in this study.7 The E. coli DH5α [F– φ80dlacZΔM15 

Δ(lacZYA-argF)U169 deoR recA1 endA1 hsdR17(rK
– mK

+) phoA supE44 λ– thi-1 gyrA96 relA1] 

strain harbouring a LasR expression vector (pJN105L) and a plasmid-born lasI–lacZ fusion 

(pSC11) was used for the LasR bacteriological assay in this study.8 Bacterial cultures were 

grown in a standard laboratory incubator at 37 °C with shaking (200 rpm) unless noted 

otherwise. Absorbance measurements were obtained using a Biotek Synergy 2 microplate reader 

using Gen5 data analysis software. All bacteriological reporter assays were performed in 

triplicate. No AHL was found to inhibit growth over the time course of the assays in this study. 

 

Compound handling 
Stock solutions of synthetic compounds (10 mM and 1 mM) were prepared in DMSO and stored 

at 4 °C in sealed vials. The amount of DMSO used in small molecule screens did not exceed 2% 

(v/v). Solvent resistant polypropylene or polystyrene 96-well multititer plates were used when 

appropriate for small molecule screening. The concentrations of synthetic AHL ligand used in 

the primary antagonism and agonism assays and the relative ratios of synthetic ligand to 1 (10 

µM : 10 nM) and 2 (100 µM: 0.70 µM) in the LasR and AbaR antagonism assays, respectively, 

were chosen to provide the greatest dynamic range between inhibitors and activators for each 

bacterial reporter strain. The concentration of 1 was twice its EC50 value in the E. coli reporter 

strain. The concentration of 2 was equal to its EC50 value in the A. baumannii (∆abaI) reporter 

strain.9 
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AbaR reporter gene assay (β-galactosidase) 

For primary agonism assays, 2 µL of concentrated control or AHL stock solution (to give a final 

concentration of 100 µM) was added to wells in a 96-well multititer plate. An overnight culture 

of the A. baumannii (∆abaI) reporter strain (OD600 = 1.2) was diluted 1:100 with fresh LB 

medium. A 198-µL portion of the diluted culture was added to each well of the multititer plate 

containing AHLs. Plates were incubated statically at 37 °C for 18–24 h. The cultures were then 

assayed for β-galactosidase activity following the standard Miller assay method that we 

previously reported for this strain.6, 9 Briefly, the OD600 of each well of the 96-well multititer 

plate was recorded. Next, 50 µL aliquots from each well were transferred to a solvent resistant 

96-well multititer plate containing 200 µL Z buffer, 8 µL CHCl3, and 4 µL 0.1%(w/v) aqueous 

SDS. This suspension was mixed via repetitive pipetting (30x), after which the CHCl3 was 

allowed to settle. A 150-µL aliquot from each well was transferred to a fresh 96-well multititer 

plate, 20 µL of ortho-nitrophenyl-β-galactoside substrate (ONPG, 4 µg mL-1 in phosphate buffer) 

was added to each well at time zero, and the plate was incubated at 55 °C for 20 min. Thereafter, 

the enzymatic reaction was terminated by the addition of 50 µL of 1 M Na2CO3. Absorbance at 

420 and 550 nm were measured for each well using a plate reader, and Miller units were 

calculated according to standard methods.8 Primary AbaR antagonism assays were performed in 

a similar manner except that the synthetic AHL was screened at 100 µM against 0.70 µM 2. 

Dose-response assays were performed identically to primary screens, but used a range of AHL 

concentrations (200 pM – 200 µM for agonism and 10 nM – 100 µM for antagonism). 

 

LasR reporter gene assay (β-galactosidase) 

An overnight culture of the E. coli LasR reporter was diluted 1:10 with fresh LB medium 

containing 100 µg mL-1 ampicillin and 15 µg mL-1 gentamicin. The subculture was incubated 

with shaking at 37 °C until the optical density of 200 µL reached 0.27 (approximately 90 min). 

Arabinose (4 mg mL-1) was then added to the culture to induce production of LasR. A 198-µL 

portion of the diluted culture was added to each well of a multititer plate containing AHLs 

prepared in the same way outlined above. Plates were incubated statically at 37 °C until the 
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optical density of the wells reach 0.45 (approximately 2 h). The cultures were then assayed for β-

galactosidase activity according to the method described above for AbaR. 

 

Sequence alignment 
The ClustalW sequence alignment displayed in Fig. 3D and Table S2 was performed with the 

BLOSUM cost matrix in Geneious software (Biomatters Ltd, New Zealand). Species names and 

GenBank Accession numbers for the aligned sequences are as follows: AbaR, A. baumannii, 

EGJ67179.1; TraR, A. tumefaciens, AAC28121.1; LasR, P. aeruginosa, AAG04819.1; QscR, P. 

aeruginosa, NP_250589.1. 
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SUPPLEMENTARY FIGURES 
 
 
 
 

 
 
Fig. S1  Primary AbaR agonism screening data for the control compounds and non-native AHLs in the A. 

baumannii (ΔabaI) reporter strain. Ligands were screened at 100 µM. Positive control (POS) = 100 µM 

(R)-OH-dDHL (2). Negative control (NEG) = DMSO without compound. Miller units report relative 

absorbance. Error bars in each plot indicate standard error of the mean of nine values.  
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Fig. S2  Primary AbaR antagonism screening data for the control compounds and non-native AHLs in the 

A. baumannii (ΔabaI) reporter strain. Compounds were screened at 100 µM against 700 nM 2. Positive 

control (POS) = 700 nM 2. Negative control (NEG) = DMSO without compound. Miller units report 

relative absorbance. Error bars in each plot indicate standard error of the mean of nine values. 
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Fig. S3  AbaR agonism dose response curves for AHLs 1 and 13 in the A. baumannii (ΔabaI) reporter 

strain. Compounds screened over varying concentrations. Each plot labeled with compound number at top 

left. Miller units report relative absorbance. Error bars indicate standard error of the mean of triplicate 

values.  
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Fig. S4  AbaR antagonism dose response curves for AHLs 3, 4, 6, 7, 11, and 17 in the A. baumannii 

(ΔabaI) reporter strain. Compounds screened against 700 nM 2 over varying concentrations. Each plot 

labeled with compound number at top left. Miller units report relative absorbance. Error bars indicate 

standard error of the mean of triplicate values. 
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Fig. S5  AbaR antagonism dose response curves for AHLs 18, 22, 23, 25, and 26 in the A. baumannii 

(ΔabaI) reporter strain. Compounds screened against 700 nM 2 over varying concentrations. Each plot 

labeled with compound number at top left. Miller units report relative absorbance. Error bars indicate 

standard error of the mean of triplicate values.  
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Fig. S6  Primary LasR agonism screening data for the control compounds and non-native AHLs in the E. 

coli pJN105L reporter strain. Compounds screened at 10 µM. Positive control (POS) = 10 µM OdDHL 

(1). Negative control (NEG) = DMSO without compound. Miller units report relative absorbance. Error 

bars in each plot indicate standard error of the mean of nine values.  
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Fig. S7  Primary LasR antagonism screening data for the control compounds and non-native AHLs in the 

E. coli pJN105L reporter strain. Compounds tested at 10 µM against 10 nM 1. Positive control (POS) = 

10 nM 1. Negative control (NEG) = DMSO without compound. Miller units report relative absorbance. 

Error bars in each plot indicate standard error of the mean of nine values. 
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Fig. S8  LasR agonism dose response curves for AHLs 1, 8, 9, and 13–15 in the E. coli pJN105L reporter 

strain. Compounds screened over varying concentrations. Each plot labeled with compound number at top 

left. Miller units report relative absorbance. Error bars indicate standard error of the mean of triplicate 

values.   



Gerdt et al. 
Supporting Information 

	S-15	

 
 

   
 

  
 
Fig. S9  LasR agonism dose response curves for AHLs 18–20 in the E. coli pJN105L reporter strain. 

Compounds screened over varying concentrations. Each plot labeled with compound number at top left. 

Miller units report relative absorbance. Error bars indicate standard error of the mean of triplicate values.  
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Fig. S10  LasR antagonism dose response curves for AHLs 17 and 22 in the E. coli pJN105L reporter 

strain. Compounds screened against 10 nM 1 over varying concentrations. Each plot labeled with 

compound number at top left. Miller units report relative absorbance. Error bars indicate standard error of 

the mean of triplicate values.  
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Fig. S11  LasR antagonism dose response curves for AHLs 23–25 in the E. coli pJN105L reporter strain. 

Compounds screened against 10 nM 1 over varying concentrations. Each plot labeled with compound 

number at top left. Miller units report relative absorbance. Error bars indicate standard error of the mean 

of triplicate values.  
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Fig. S12  LasR antagonism dose response curves for AHLs 6, 11, and 12 in the E. coli pJN105L reporter 

strain. Full antagonism dose response curves (left) and portions of curves used to calculate IC50 values 

(right). Compounds screened against 10 nM 1 over varying concentrations. Each plot labeled with 

compound number at top left. Miller units report relative absorbance. Error bars indicate standard error of 

the mean of triplicate values.  
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Fig. S13  LasR antagonism dose response curves for AHL 26 in the E. coli pJN105L reporter strain. Full 

antagonism dose response curves (left) and portions of curves used to calculate IC50 value (right). 

Compound screened against 10 nM 1 over varying concentrations. Each plot labeled with compound 

number at top left. Miller units report relative absorbance. Error bars indicate standard error of the mean 

of triplicate values. 
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SUPPLEMENTARY TABLES 
 

Table S1  Listing of AHLs in this study with original compound names and citations. 

AHL name 
(as described here) 

AHL name 
(as previously reported) 

Original 
citation 

1 2 (OdDHL)a 1, 2 
2 (R)-OH-dDHL 3 
3 C6 1, 2 
4 C11 1, 2 
5 A2a 1, 2 
6 A3a 1, 2 
7 A4a 1, 2 
8 A5a 1, 2 
9 -a This study 

10 A6a 1, 2 
11 -a This study 
12 -a This study 
13 -a This study 
14 -a This study 
15 - This study 
16 3a 1, 2 
17 1a 1, 2 
18 A7a 1, 2 
19 A8a 1, 2 
20 -a This study 
21 6 1, 2 
22 - This study 
23 - This study 
24 5 1, 2 
25 15 10 
26 - This study 

a Commercially available AHLs. Our samples synthesized in-house yielded characterization 
data that matched those of commercial samples. 
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Table S2  Tested AHLs and a selection of their known cognate bacteria. 

Acyl Chain AHL Producing bacterial species Reference 

    
3-methylene    

C6 5 Chromobacterium violaceum, Ralstonia solanacearum, 
and Pseudomonas fluorescens 

11-13 

C8 6 Burkholderia cepacia and R. solanacearum 12, 14 
C10 7 Sinorhizobium meliloti and P. fluorescens 13, 15 
C12 8 Aeromonas hydrophila, Aeromonas salmonicida, 

Pseusomonas aeruginosa, Yersinia enterocolitica, 
P. fluorescens, and Serratia liquefaciens 

16 

C14 9 S. meliloti, A. hydrophila, A. salmonicida, 
Y. enterocolitica, and Rhodobacter capsulatus 

15-17 

C16 10 R. capsulatus, Paracoccus denitrificans, 
Agrobacterium vitis, and S. meliloti 

15, 17-19 

    
3-hydroxyl    

C8 11 Aeromonas culicicola 3249T, Burkholderia 
thailandensis, and Burkholderia mallei 

20, 21 

C10 12 Phaeobacter gallaeciensis T5 and B. thailandensis 20, 22, 23 
C12 13 Acinetobacter baumannii 7 
C14 14 Pseudomonas cedrina 24 
C16 15 None reported  

    
3-oxo    

C6 16 Vibrio fischeri, Pectobacterium carotovora, Serratia 
proteamaculans B5a, Pseudomonas putida, and 

Rahnella aquatilis 

25, 26 

C8 17 Agrobacterium tumefaciens, P. putidia, R. aquatilis, 
and Pseudonomas syringae 

24, 26, 27 

C10 18 Vibrio anguillarum, Pantoea agglomerans, 
P. fluorescens PF7, and P. putida 

24, 26, 28 

C12 1 P. aeruginosa 29 
C14 19 P. aeruginosa strain MW3A, R. aquatilis, 

P. fluorescens, and S. meliloti 

18, 24, 30 

C16 20 A. vitis, Pseudomonas sp., and S. meliloti 18, 19 31 
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Table S3  AbaR and LasR primary agonism and antagonism assay data and EC50 and IC50 values 
with confidence intervals for the aliphatic-tail AHLs (1, 2, and 5–20)a 

Acyl Chain AHL Activation (%)b EC50 value (µM)c Inhibition (%)d IC50 value (µM)e 

AbaR      
(R)-OH-dDHL 2 100 0.699   

3-methylene      
C6 5 0  67  

C8 6 0  79 9.87 (8.28–11.8) 
C10 7 0  71 9.64 (8.94–10.4) 
C12 8 0  40  
C14 9 0  32  
C16 10 1  14  

3-hydroxyl      
C8 11 0  79 3.06 (1.91–4.90) 
C10 12 29  6  
C12 13 75 10.3 (7.18–14.7)f −93  
C14 14 31  −7  
C16 15 0  23  

3-oxo      
C6 16 2  48  
C8 17 7  86 2.65 (0.892–7.90) 
C10 18 6  69 1.60 (0.826–3.09) 
C12 1 43 7.53 (5.92–9.59)f −53  
C14 19 11  5  
C16 20 0  6  

      

Acyl Chain AHL Activation (%)b EC50 value (nM)c Inhibition (%)d IC50 value (µM)e 

LasR      
OdDHL 1 100 5.79 (2.04–16.4)   

3-methylene      
C6 5 13  −14  
C8 6 0  63 1.29 (0.961–1.74)g 
C10 7 34  57  
C12 8 92 59.6 (51.4–69.0) −59  
C14 9 77 72.2 (36.7–142)f −44  
C16 10 26  −29  

3-hydroxyl      
C8 11 0  75 1.60 (0.686–3.73)g 
C10 12 38  31 0.112 (0.0748–0.168)g 
C12 13 85 248 (124–495)f −46  
C14 14 103 270 (149–487) −43  
C16 15 35 511 (294–889)f −6  

3-oxo      
C6 16 17  1  
C8 17 16  58 0.260 (0.199–0.339) 
C10 18 94 154 (73.4–323) −53  
C12 1 100 5.79 (2.04–16.4) −81  
C14 19 103 17.5 (15.4–19.8) −56  
C16 20 88 105 (40.1–275)f −44  
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a All assays performed in biological triplicate. b AHLs evaluated at 100 µM and normalized to 2 at 100 µM for 
AbaR, and evaluated at 10 µM and normalized to 1 at 10 µM for LasR. Errors displayed in Fig. 2. c EC50 values 
determined by testing AHLs over a range of concentrations. 95% confidence intervals displayed. d AHLs evaluated 
at 100 µM against 2 at 700 nM for AbaR and evaluated at 10 µM against 1 at 10 nM for LasR. Errors displayed in 
Fig. 2. Negative values indicate agonistic activity. e IC50 values determined by testing AHLs over a range of 
concentrations against 2 at 700 nM for AbaR and against 1 at 10 nM for LasR. 95% confidence intervals displayed. 
f Dose response curve reached a plateau over concentrations tested, yet the level of the maximal induction was lower 
than that for 2 for AbaR or 1 for LasR. g Dose response curve upturned at higher concentrations and did not reach 
100% inhibition over concentrations tested (prior to upturn); IC50 value calculated from partial antagonism dose 
response curve reported in Fig. S12 and Fig. S13. 
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Table S4  Full version of sequence alignment displayed in Fig. 3 in the main text. See Fig. 3 for details. Key residues are boxed. 
	
 

          1       10        20        30        40        50        60        70        80        90       100       110       120       130 
          |        |         |         |         |         |         |         |         |         |         |         |         |         | 
   AbaR   MESWQEDLLSAFLVVKNEYQLFDIVKSTASRLGFDYCAYGMQSPLSIAEPKTIMLNNYPEAWQKRYVEGQYVKIDPTVQHCMVSLQPLVWSSQSA---KTQAEKDFWEEARSYGLNVGWAQSSRDFIGTR 
   TraR   MQHWLDKLTDLAAIEGDECILKTGLADIADHFGFTGYAY-----LHIQHRHITAVTNYHRQWQSTYFDKKFEALDPVVKRARSRKHIFTWSGEHERPTLSKDERAFYDHASDFGIRSGITIPIKTANGFM 
   LasR   -MALVDGFLELE-RSSGKLEWSAILQKMASDLGFSKILFGLLPKDSQDYENAFIVGNYPAAWREHYDRAGYARVDPTVSHCTQSVLPIFWEPSIY---QTRKQHEFFEEASAAGLVYGLTMPLHGARGEL 
   QscR   MHDEREGYLEILSRITTEEEFFSLVLEICGNYGFEFFSFGARAPFPLTAPKYHFLSNYPGEWKSRYISEDYTSIDPIVRHGLLEYTPLIWNGE-----DFQENRFFWEEALHHGIRHGWSIPVRGKYGLI 
 
                 140       150       160       170       180       190       200       210       220       230       240        
                   |         |         |         |         |         |         |         |         |         |         |         
   AbaR   GMLTLARSNDQLSEK-EQKAQYTNMYWLTQTVHSSIAKIVNDVEFAKFNLYLTNREKEALRWTAEGKTSAEIAQILGVTERTVNFHLSNSMQKLNVNNKISAAIRAVMLGLL-- 
   TraR   SMFTMASDKPVIDLD-REIDAVAAAATIGQIHARIS--FLRTTPTAEDAAWLDPKEATYLRWIAVGKTMEEIADVEGVKYNSVRVKLREAMKRFDVRSKAHLTALAIRRKLI-- 
   LasR   GALSLSVEAENRAEANRFMESVLPTLWMLKDYALQSGAGLAFEHPVSKPVVLTSREKEVLQWCAIGKTSWEISVICNCSEANVNFHMGNIRRKFGVTSRRVAAIMAVNLGLITL 
   QscR   SMLSLVRSSESIAAT-EILEKESFLLWITSMLQATFGDLLAPRIVPESNVRLTARETEMLKWTAVGKTYGEIGLILSIDQRTVKFHIVNAMRKLNSSNKAEATMKAYAIGLLN- 
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SUPPLEMENTAL COMPOUND CHARACTERIZATION DATA 

3-hydroxy-hexadecanoyl-L-homoserine lactone (15). Mixture of diastereomers. 1H NMR (500 

MHz, CDCl3) δ 6.49 (apparent dd, J = 30.7, 6.0 Hz, 1H), 4.56 (ddt, J = 11.7, 8.6, 6.4 Hz, 1H), 

4.51–4.45 (m, 1H), 4.29 (ddd, J = 11.3, 9.3, 5.9 Hz, 1H), 4.02 (dtd, J = 9.6, 4.8, 2.3 Hz, 1H), 

2.87–2.79 (m, 1H), 2.45 (ddd, J = 15.4, 11.5, 2.7 Hz, 1H), 2.34 (ddd, J = 15.5, 10.7, 9.1 Hz, 1H), 

2.18 (qdd, J = 11.7, 8.8, 4.9 Hz, 1H), 1.92–1.10 (m, 27H, 3 protons high due to small grease 

contamination), 0.88 (t, J = 6.9 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 175.39, 175.38, 173.09, 

173.04, 68.80, 68.74, 66.23, 66.21, 49.40, 49.34, 42.61, 37.15, 37.04, 32.08, 30.53, 30.50, 29.84, 

29.83, 29.81, 29.73, 29.72, 29.64, 29.51, 25.62, 25.59, 22.85, 14.28; ESI-MS: expected m/z = 

356.28, observed 356.28 [M+H]+. 

 

3-hydroxy-4-(3-chloro-phenyl)butanoyl-L-homoserine lactone (22). Mixture of diastereomers. 
1H NMR (500 MHz, DMSO-d6) δ 8.38 (d, J = 7.9 Hz, 1H), 8.35 (d, J = 8.1 Hz, 1H), 7.34–7.22 

(m, 6H), 7.21–7.13 (m, 2H), 4.85 (dd, J = 5.5, 3.2 Hz, 2H), 4.59 (dt, J = 10.9, 8.6 Hz, 1H), 4.49 

(dt, J = 10.6, 8.5 Hz, 1H), 4.34 (td, J = 8.9, 1.7 Hz, 2H), 4.20 (dddd, J = 11.1, 9.1, 6.4, 2.7 Hz, 

2H), 4.05 (p, J = 5.1 Hz, 2H), 2.75 (dt, J = 13.6, 3.7 Hz, 2H), 2.62 (ddd, J = 13.5, 7.4, 3.9 Hz, 

2H), 2.42–2.33 (m, 2H), 2.28–2.07 (m, 6H); 13C NMR (126 MHz, DMSO-d6) δ 175.82, 171.02, 

142.22, 133.03, 130.26, 129.74, 128.70, 126.32, 68.71, 65.74, 48.42, 48.21, 43.37, 43.29, 42.76, 

42.74, 28.74, 28.64; ESI-MS: expected m/z = 297.08, observed 320.2 [M+Na]+. 

 

3-hydroxy-4-(3-iodo-phenyl)butanoyl-L-homoserine lactone (23). Mixture of diastereomers. 
1H NMR (500 MHz, CDCl3) δ 7.54–7.50 (m, 2H), 7.15–7.10 (m, 1H), 6.98 (t, J = 7.9 Hz, 1H), 

6.41 (apparent dd, J = 17.6, 6.1 Hz, 1H), 4.48 (ddt, J = 11.5, 8.5, 6.7 Hz, 1H), 4.41 (tt, J = 8.5, 

1.3 Hz, 1H), 4.26–4.14 (m, 2H), 2.79–2.63 (m, 3H), 2.43–2.25 (m, 2H), 2.11 (qdd, J = 11.8, 8.8, 

6.1 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 175.18, 175.17, 172.40, 172.36, 139.93, 139.92, 

138.34, 135.88, 130.34, 128.78, 128.76, 94.66, 69.25, 69.18, 66.09, 66.07, 49.24, 49.21, 42.76, 

42.59, 41.55, 41.53, 30.24, 30.21; ESI-MS: expected m/z = 389.01, observed 411.7 [M+Na]+. 

 

3-oxo-4-(3-iodo-phenyl)butanoyl-L-homoserine lactone (26).  Keto and enol tautomers 

present. 1H NMR (500 MHz, CDCl3) δ 13.29 (s, 0.14H, enol), 7.67–7.59 (m, 1H), 7.57 (d, J = 
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1.8 Hz, 1H), 7.39 (d, J = 6.4 Hz, 0.83H, keto), 7.24–7.15 (m, 1H), 7.08 (dt, J = 12.5, 7.9 Hz, 

1H), 5.65 (d, J = 5.8 Hz, 0.12H, enol), 4.77 (s, 0.14H, enol), 4.56 (ddd, J = 11.6, 8.7, 6.4 Hz, 

1H), 4.47 (td, J = 9.1, 1.4 Hz, 1H), 4.27 (ddd, J = 11.2, 9.3, 6.0 Hz, 1H), 3.76 (s, 1.67H, keto), 

3.51 (s, 1.68H, keto), 3.42 (s, 0.27H, enol), 2.84 (ddd, J = 13.5, 8.5, 6.0 Hz, 0.16H, enol), 2.76 

(dddd, J = 12.6, 8.7, 6.0, 1.3 Hz, 0.88H, keto), 2.27–2.14 (m, 1H); 13C NMR (126 MHz, CDCl3) 

δ 203.03, 174.74, 165.95, 138.58, 136.85, 134.96, 130.71, 128.99, 94.87, 66.03, 50.04, 49.30, 

47.81, 30.05; ESI-MS: expected m/z = 387.00, observed 409.7 [M+Na]+. 
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NMR spectra for compounds 15, 22, 23, and 26. 
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