Supporting Information

Elucidating Substrate Promiscuity within the FabI Enzyme Family.

Gabriel S. Freund ${ }^{1,2}$, Terrence E. O'Brien ${ }^{1,3}$, Logan Vinson ${ }^{1}$, Dylan Alexander Carlin ${ }^{1,6}$, Andrew Yao ${ }^{1}$, Wai Shun Mak ${ }^{1,3}$, Ilias Tagkopoulos ${ }^{1,7}$, Marc T. Facciotti ${ }^{1,5}$, Dean J. Tantillo ${ }^{3}$, Justin B. Siegel ${ }^{* 1,3,4}$
${ }^{1}$ Genome Center, University of California Davis, One Shields Avenue, Davis, California 95616, United States
${ }^{2}$ Department of Mathematics, University of California Davis, Davis, California, United States of America
${ }^{3}$ Department of Chemistry, University of California, Davis, California, United States
${ }^{4}$ Department of Biochemistry \& Molecular Medicine, University of California, Davis, California, United States
${ }^{5}$ Department of Biomedical Engineering, University of California, Davis, California, United States
${ }^{6}$ Biophysics Graduate Group, University of California Davis, California, United States of America
${ }^{7}$ Department of Computer Science, University of California Davis, Davis, California, United States of America
*Corresponding author: jbsiegel@ucdavis.edu

Figure S1: Substrates and enzyme selection.

$$
\begin{aligned}
& \mathbf{R}_{1}=\mathrm{OH},=\mathrm{O} \\
& \mathbf{R}_{2}=\mathbf{H}, \mathrm{OCH}_{3}, \mathrm{OH}, \mathrm{SCH}_{3}, \mathrm{CH}_{3} \\
& \mathbf{R}_{3}=\mathbf{H}, \text { Ethyl }
\end{aligned}
$$

R4 = Ethyl, Butyl, Hexyl, Butenyl, Phenyl

For the substrate there are four key regions that were explored. R1 is the carbonyl in the native substrate. For the majority of the substrates examined the carbonyl was maintained, but in order to test catalytic promiscuity we also examined the α, β unsaturated alcohol. R2 is the position that tests the different +3 oxidation and +2 oxidation states. At R3 we examined how much steric demand the enzyme can accommodate. R4 tested the effect of conjugation, steric demand and chain length on activity.

Fabl Ortholog	ecFabl	pfFabl	hiFabl	ptFabl	apFabl
ecFabl		19.2	73.5	23.8	27
pfFabl	19.2		20.5	45.9	41.8
hiFabl	73.5	20.5		26.5	27.7
ptFabl	23.8	45.9	26.5		60.1
apFabl	27	41.8	27.7	60.1	

Pairwise percent sequence identities from the amino acid sequences for each of the FabI orthologs. The identity varies from 19.2 to 73.5%, with an average value of 36.6% identity.

Figure S2: Substrate versus velocity plots

Figure S2: Substrate versus velocity plots

Table S3: Kinetic constants for each enzyme on each substrate

Fabi Ortholog	Substrate	$\mathrm{k}_{\text {cat }} / \mathrm{K}_{\mathrm{M}}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$
ecFabl	trans-2-pentenal	$2.48 \mathrm{E}+03 \pm 138$
	trans-2-heptenal	$2.38 \mathrm{E}+04 \pm 1.46 \mathrm{E}+03$
	trans-2-nonenal	$1.29 \mathrm{E}+04 \pm 393$
	2-ethyl-2-butenal	N.D
	2,4-heptadienal	N.D
	3-pentene-2-one	$4.74 \mathrm{E}+04 \pm 1.73 \mathrm{E}+03$
	Crotonyl CoA	$1.38 \mathrm{E}+06 \pm 7.90 \mathrm{E}+04$
hiFabl	trans-2-pentenal	$2.52 \mathrm{E}+03 \pm 60.2$
	trans-2-heptenal	$1.59 \mathrm{E}+04 \pm 654$
	trans-2-nonenal	$7.23 \mathrm{E}+03 \pm 377$
	2-ethyl-2-butenal	N.D
	2,4-heptadienal	$1.29 \mathrm{E}+02 \pm 9.20$
	3-pentene-2-one	$6.39 \mathrm{E}+04 \pm 3.76 \mathrm{E}+03$
	Crotonyl CoA	$3.54 \mathrm{E}+06 \pm 1.17 \mathrm{E}+05$
pfFabl	trans-2-pentenal	$2.65 \mathrm{E}+03 \pm 134$
	trans-2-heptenal	$1.66 \mathrm{E}+04 \pm 491$
	trans-2-nonenal	$1.30 \mathrm{E}+04 \pm 370$
	2-ethyl-2-butenal	$2.53 \mathrm{E}+02 \pm 12.0$
	2,4-heptadienal	$7.94 \mathrm{E}+02 \pm 28.2$
	3-pentene-2-one	$3.79 \mathrm{E}+04 \pm 2.82 \mathrm{E}+03$
	Crotonyl CoA	$4.94 \mathrm{E}+07 \pm 4.56 \mathrm{E}+06$
apFabl	trans-2-pentenal	$1.63 \mathrm{E}+03 \pm 118$
	trans-2-heptenal	$1.73 \mathrm{E}+04 \pm 7.00 \mathrm{E}+02$
	trans-2-nonenal	$2.75 \mathrm{E}+04 \pm 1204$
	2-ethyl-2-butenal	N.D
	2,4-heptadienal	2.70E $+02 \pm 13.4$
	3-pentene-2-one	$2.74 \mathrm{E}+04 \pm 1.52 \mathrm{E}+03$
	Crotonyl CoA	$2.32 \mathrm{E}+07 \pm 9.47 \mathrm{E}+05$
ptFabl	trans-2-pentenal	$1.13 \mathrm{E}+04 \pm 519$
	trans-2-heptenal	$4.75 \mathrm{E}+04 \pm 3.45 \mathrm{E}+03$
	trans-2-nonenal	$1.67 \mathrm{E}+04 \pm 1.80 \mathrm{E}+03$
	2-ethyl-2-butenal	$3.33 \mathrm{E}+02 \pm 6.80$
	2,4-heptadienal	$9.33 \mathrm{E}+02 \pm 30.4$
	3-pentene-2-one	$2.58 \mathrm{E}+04 \pm 1.86 \mathrm{E}+03$
	Crotonyl CoA	$9.44 \mathrm{E}+07 \pm 6.03 \mathrm{E}+06$

Figure S3: Gas Chromatography Mass Spectrometry results

Figure S3: Gas Chromatography Mass Spectrometry results
Trans-2-pentenal and trans-2-heptenal substrates loaded onto column by direct injection, and trans-2-nonenal from an ethyl acetate extraction. Reactions were allowed to run overnight. For trans-2-nonenal, equal volume of ethyl acetate was added, and the organic phase was removed and loaded on the column. Figures correspond to the saturated aldehyde products.

Direct injection parameters

(trans-2-pentenal and trans-2-heptenal)

ALS
Syringe size $10.0 \mu \mathrm{~L}$
Injection Volume $1.0 \mu \mathrm{~L}$

Inlet
Heater $250^{\circ} \mathrm{C}$
Pressure: 4.6 psi
Total Flow: \{He\} 13.9 mL/min
Mode: Splitless
Purge Flow to Split Vent: $10.0 \mathrm{~mL} / \mathrm{min}$ at 2.00 min

Column
VF-5MS CP-8944 30 m X 0.25 mm X $0.25 \mu \mathrm{M}$
Constant flow of $1 \mathrm{~mL} / \mathrm{min}$
Oven
$30^{\circ} \mathrm{C}$ from $0-4$ minutes then ramp at $10 \mathrm{C} / \mathrm{min}$ to $300^{\circ} \mathrm{C}$ then hold for 5 minutes at $300^{\circ} \mathrm{C}$

MS scan parameters
Start scanning at 20-300 (amu)
Solvent delay: 0 min

Ethyl acetate extraction parameters (trans-2-nonenal)

ALS
Syringe size $10.0 \mu \mathrm{~L}$
Injection Volume: $2.0 \mu \mathrm{~L}$

Inlet
Heater: $250^{\circ} \mathrm{C}$
Pressure: 4.6 psi
Total Flow:\{He\} 13.9 mL/min
Mode: Split
Split Ratio: 10.0:1 $10.0 \mathrm{~mL} / \mathrm{min}$

Column
VF-5MS CP-8944 30 m X 0.25 mm X $0.25 \mu \mathrm{M}$
Constant flow of $1 \mathrm{~mL} / \mathrm{min}$

Oven
$30^{\circ} \mathrm{C}$ from $0-4$ minutes then ramp at $10^{\circ} \mathrm{C} / \mathrm{min}$ to $300^{\circ} \mathrm{C}$ then hold for 5 minutes at $300^{\circ} \mathrm{C}$

MS scan parameters
Used Single Ion Mode (SIM) searching for m / z of 29.00, 41.00, 43.00, 44.00, 57.00, 58.00, 71.00, 85.00, and 86.00

Solvent delay: 0 min

Figures S5 \& S6 Docking Results Additional Information

TRANS						
Substrate	relative affinity	constraint	ligand score	hb sidechain	total score	
tCoA	0.00	1.91	-1.19	0	-524	
Carboxylate	23.92	0.09	-1.39	0	-531.24	
Aldehyde	-5.43	0.22	-1.19	0	-535.7	
Keto	-0.16	0.13	-2.17	0	-535.73	
Ester	6.07	2.88	-0.51	0	-529.8	
Branched Aldehyde	-2.95	0.09	-1.86	0	-529.98	
Cyclopentenone	-4.70	0.04	-1.85	0	-535.23	
Cinnamaldehyde	-4.15	0.13	-3.03	0	-528.79	
Alcohol	36.84	0.04	-2.06	0	-557.83	
Heptadienal	0.60	0.07	-2.14	0	-518.99	

Figure S5. Relative hydride affinity ($\mathrm{kcal} / \mathrm{mol}$), constraint, ligand and hydrogen bond to sidechain scores and total (protein) score (Rosetta energy units) for the substrates in the strans conformation.

CIS								
Substrate	relative affinity	constraint	ligand score hb sidechain					total score
cCoA	0.00	0.04	-3.5	-0.52	-569.45			
Carboxylate	23.92	0.04	-2.82	-0.7	-557.97			
Aldehyde	-5.43	0.02	-3.14	-0.66	-565.57			
Keto	-0.16	0.02	-3.98	-0.74	-558.73			
Ester	6.07	0.02	-3.23	-0.57	-567.33			
Branched Aldehyde	-2.95	0.02	-3.81	-0.79	-567.1			
Cyclopentenone	-4.70	0.03	-3.54	-0.6	-555.31			
Cinnamaldehyde	-4.15	0.07	-3.22	0	-538.38			
Alcohol	36.84	0.05	-3.54	-1.23	-565.75			
Heptadienal	0.60	0.04	-2.87	-0.44	-540.14			

Figure S6. Relative hydride affinity ($\mathrm{kcal} / \mathrm{mol}$), constraint, ligand and hydrogen bond to sidechain scores and total (protein) score (Rosetta energy units) for the substrates in the scis conformation.

Amongst the s-trans conformer the ligand score (Figure S5) differ from each other by only ~ 2 units difference. This difference is within the noise of force-field based scoring and consequently we didn't feel that we could conclude that one substrate was better or worse than another. This same problem exists in the s-cis conformation as well (Figure S6), but the scores vary by an even smaller degree of ~ 0.5 energy units. Comparing the ligand scores for the s-trans conformers to the s-cis, the s-trans were generally not as good as the s-cis conformation. Again, the difference is quite small (~ 1 energy unit). Ligand Score (docking score) clearly doesn't discriminate between substrates in the same conformation or between the two possible conformations.

Figure S7.

Figure S7. Key catalytic tyrosine shown in purple. Tyrosine potentially clashing with the substrate shown in magenta (TYR267). The NAD cofactor is shown in green. (A) Crystal structure of FabI (1NNU) drawn in teal with cinnamaldehyde placed in the active site. The substrate appears to be clashing with TYR267, with distances of 1.4 between nearest carbons. (B) Low energy output from docking the substrate cinnamaldehyde into the pocket, drawn in taupe. Not the rearrangement of the two tyrosines required to accommodate the substrate. (C) Overlap of both the crystal structure and low energy docking run.

While cinnamaldehyde would be predicted to be active by the QM calculations, no activity is observed in the assay conducted. The docking study conducted provides a rationale for the observed experimental result - that there is a rearrangement of the active site residues, including the catalytically required tyrosine, in order to accommodate cinnamaldehyde.

Table S8. Additional details of the quantum mechanics calculations.

Name				
	S-Trans			

Table S8. (A) Equation used to calculate the hydride affinity for all substrates in the manuscript. (B) The absolute energies of the substrates in both conformations. Calculations were run at the $\operatorname{SMD}\left(\mathrm{H}_{2} \mathrm{O}\right)-\mathrm{B} 3 \mathrm{LYP} / 6-31+\mathrm{G}(\mathrm{d}, \mathrm{p})$ level of theory. Energies listed are sum of electronic and thermal free energy.

Table of the energies used in the determination of hydride affinity for the various substrates and conformations examined in the main text. All structures are also provided as a *.mol2 file which is attached separately.

Figure S9. Protein purity assessed by SDS-PAGE. Ladder is in the left lane. Each ortholog is in the labeled lane. For purification conditions please see the main text.

Figure S10: Effect of solvents on enzymatic activity

Fabi Ortholog	Substrate	Solvent Condition	$\mathrm{k}_{\text {cat }} / \mathrm{K}_{\mathrm{M}}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$
ptFabl	trans-2-pentenal	1.25% DMSO 1.25% triton	$8.36 \mathrm{E}+03 \pm 430$
ptFabl	trans-2-pentenal	1.25% DMSO	$7.66 \mathrm{E}+03 \pm 251$
ptFabl	trans-2-pentenal	1.25% Triton	$1.28 \mathrm{E}+04 \pm 421$
ptFabl	trans-2-pentenal	No DMSO No Triton	$1.29 \mathrm{E}+04 \pm 370$

Figure S11: Triclosan inhibition assay

Figure S11: Triclosan inhibition assay using pfFabI and trans-2-pentenal as an alternative substrate to crotonyl-CoA. Triclosan was spiked in to buffer at $10 \mu \mathrm{M}, 50 \mathrm{nM}$, and 1 nM

Figure S12: fabI DNA sequences

>ecfabI

ATGGGGTTCCTTAGCGGAAAACGGATATTAGTTACAGGTGTAGCCAGCAAGTTATCAAT AGCCTATGGGATTGCACAGGCTATGCATCGCGAAGGGGCGGAACTTGCTTTTACGTATCA GAATGATAAACTGAAAGGCCGTGTCGAAGAGTTTGCAGCTCAATTGGGTAGCGACATTG TACTGCAATGCGACGTCGCTGAGGATGCTTCAATAGACACTATGTTCGCTGAACTGGGAA AAGTATGGCCAAAATTTGACGGTTTTGTCCATTCGATCGGATTTGCCCCCGGTGACCAAC TTGATGGCGATTATGTAAACGCTGTAACGCGCGAGGGGTTCAAGATTGCCCATGACATT AGCAGTTACAGCTTCGTGGCAATGGCAAAAGCATGCCGCTCAATGCTCAACCCGGGGAGC GCCCTGCTTACATTGTCGTATTTGGGTGCGGAACGCGCAATCCCTAACTACAATGTGATG GGACTTGCTAAAGCAAGCCTGGAAGCTAACGTGAGATACATGGCGAATGCGATGGGTCC TGAAGGTGTGCGTGTGAATGCTATATCAGCGGGTCCCATCCGCACCCTGGCCGCCTCAGG CATTAAAGACTTTCGTAAAATGCTGGCACACTGTGAAGCCGTTACACCGATCCGTCGGAC CGTTACCATTGAAGACGTGGGTAATAGCGCCGCGTTTTTATGTTCGGATTTGAGTGCTGG AATAAGTGGAGAGGTTGTGCATGTAGATGGCGGCTTCTCTATTGCCGCCATGAACGAAC TCGAATTGAAAAATTCGAGCTCCGTCGACAAGCTTGCGGCCGCACTCGAGCACCACCACC ACCACCACTGA
>hifabI
ATGGGCTTTCTGACGGGAAAACGCATTCTTGTGACCGGTCTGGCATCCAATAGATCAATT GCGTATGGCATCGCCAAATCTATGAAAGAACAGGGGGCCGAACTTGCATTTACCTACCTG AACGACAAATTACAGCCACGGGTCGAAGAATTTGCCAAAGAGTTCGGGTCTGATATCGT ATTACCTTTAGACGTTGCTACTGATGAGAGCATTCAGAATTGTTTCGCCGAATTAAGTA AACGCTGGGATAAATTTGATGGTTTTATACACGCTATCGCGTTTGCACCGGGGGATCAGC TGGATGGGGACTATGTCAATGCGGCCACTAGAGAAGGCTATAGAATTGCCCATGATATC AGTGCTTATTCGTTTGTGGCGATGGCCCAGGCTGCACGCCCGTATCTGAACCCCAATGCG GCTCTCCTTACCTTGTCTTATTTAGGAGCCGAACGTGCGATTCCAAACTACAATGTTATG TGCTTAGCGAAGGCCTCTCTGGAGGCGGCTACCCGCGTAATGGCGGCGGATCTGGGTAAA GAAGGAATACGCGTTAACGCTATATCCGCCGGACCGATCCGGACCCTGGCTGCCTCGGGT ATCAAGAATTTTAAAAAAATGTTGTCCACCTTTGAAAAGACTGCGGCATTGAGAAGAAC TGTTACTATCGAAGATGTGGGCAATTCAGCGGCGTTCCTGTGCAGTGACCTCGCATCAGG GATCACAGGGGAAATCGTCCACGTCGATGCAGGTTTTTCCATCACAGCCATGGGCGAACT TGGCGAGGAGAATTCGAGCTCCGTCGACAAGCTTGCGGCCGCACTCGAGCACCACCACCA CCACCACTGA
>pffabI
ATGGAAGATATTTGCTTTATTGCCGGTATTGGTGATACCAATGGTTATGGTTGGGGTAT TGCAAAAGAACTGAGCAAACGCAACGTGAAAATTATCTTTGGTATTTGGCCTCCGGTGT ATAACATTTTTATGAAAAACTATAAAAACGGCAAATTTGATAATGATATGATTATTGAT AAAGACAAAAAAATGAATATTCTGGATATGCTGCCGTTCGATGCAAGCTTTGATACCGC AAACGATATCGATGAGGAAACCAAAAACAACAAACGCTACAACATGCTGCAGAACTATA CCATTGAAGATGTGGCCAACCTGATCCACCAGAAATATGGTAAAATCAATATGCTGGTTC ATAGCCTGGCAAACGCCAAAGAAGTTCAGAAAGATCTGCTGAATACCAGCCGTAAAGGT TATCTGGATGCACTGAGTAAAAGCAGCTATAGCCTGATTAGCCTGTGCAAGTATTTTGT GAATATTATGAAACCGCAGAGCAGCATCATTAGTCTGACCTATCATGCAAGCCAGAAAG TTGTTCCGGGTTATGGCGGTGGTATGAGCAGCGCAAAAGCCGCACTGGAAAGCGATACCC GTGTTCTGGCATATCATCTGGGTCGTAACTATAACATCCGCATTAATACCATTAGCGCAG GTCCGCTGAAAAGCCGTGCAGCAACCGCAATTAACAAACTGAATAATACCTACGAAAAT AACACCAATCAGAACAAAAACCGCAACAGCCATGATGTGCATAACATTATGAACAACAG CGGTGAAAAAGAAGAGAAAAAAAACAGCGCCAGCCAGAACTACACCTTTATCGATTATG CCATCGAGTATAGCGAAAAATATGCACCGCTGCGTCAGAAACTGCTGAGCACCGATATTG GTAGCGTTGCCAGCTTTCTGCTGAGTCGTGAAAGTCGTGCAATTACCGGTCAGACCATTT ATGTGGATAATGGCCTGAATATCATGTTCCTGCCGGATGATCTCGAGCACCACCACCACC ACCACTGA
>apfabI
ATGAACGTCGTTGCTGCCTCAGGTAATGGAGCTACAGCACCTTCGGCAGGTTTACCAATA GATTTACGCGGTAAAAAAGCGTTTATCGCGGGCGTGGCAGACGATCAGGGATTCGGTTG GGCAATAGCGAAACAGCTTGCGGAGGCGGGCGCTGAAATCTCTCTGGGTGTTTGGGTGCC TGCCTTGAACATTTTTGAGAGCTCATACCGCCGCGGTAAATTTGATGCTAACCGTAAGCT CGCCAATGGCAGTCTGCTTGAGTTCGCACATATATACCCAATGGATGCGGTATTCGATAC CCCGGAGGATGTCCCGCCCGAAATCGCCGAAAATAAACGCTATGCCGGGAACGAAGGCTA TACGGTAAGCGAAGCTGCTGAAAAATTAGCGCGGGATGTAGGCAAAATTGATATTCTCG TGCATTCCTTAGCCAACGGACCCGAGGTCCAAAAACCGTTGTTGGAGACGAGTCGTCGCG GGTATCTTGCCGCCCTGTCGGCAAGCTCGTACAGTCTGATAAGCATGTTACAACGTTTCG GCCCGCTGCTGAATCCAGGTGGCGCGGTGATAAGCCTGACTTACTTGGCTGGTGCACGTG TGATACCAGGGTATGGGGGCGGTATGTCCAGTGCCAAAGCTGCACTGGAAAGTGACACA AAAGTCCTGGCGTTTGAGGCAGGGCGTAAATGGAACGTCAGAGTAAATACAATCTCAGC AGGTCCCTTGGGTTCAAGAGCTGCCAAGGCGATTGGTTTCATCGATGATATGATCAAAT ACTCATACGAAAATGCCCCGATTCAAAAAGAACTGAGCGCCTACGAAATCGGGTCAGTCG CGGCCTTTTTATGTTCTCCGCTGGCGTCTGCTGTGACCGGCCATGTTATGTATGTAGACA ATGGCTTAAATACGATGGGTCTGGCATTAGATTCGAAAGTACTTGAGCGCGAACCCGTG GATGCTTCTGCGAATTCGAGCTCCGTCGACAAGCTTGCGGCCGCACTCGAGCACCACCAC CACCACCACTGA
>ptfabI
ATGGCGGCCCAGGTCGATCTTAAAGGCAAAGTAGCCTTCGTCGCCGGGGTAGCGGACAGC ACAGGTTACGGGTGGGCCATAGCCAAGGCACTTGCGGAGGCAGGAGCAACAATAATTGT TGGCACCTGGCCCCCGGTACTGAAAATCTTTCAGATGGGCCTGAAAAAAGGGCAGTTCAA TGAAGATTCAACGCTTGCGGATGGGTCACTGATGACCATAGAAAAGGTCTACCCTCTTGA CGCGGTGTTCGATGCACCAGATGATGTACCCGATGAGATCAAAGAAAATAAGCGTTACG CTGGTCTCGACGGTTACACGATTTCGGAGGTTGCGAAAGCCGTTGAAGCAGACTATGGTA AAATTGATATCCTGGTGCATAGCTTAGCAAACGGTCCAGAAGTGACTAAACCACTCTTAG AGACTACGCGTAAAGGTTATCTTGCAGCATCTTCAGCATCAGCATATTCCGCGGTATCCT TGCTTCAAAAATTTGGCCCTATAATGAACGAAGGGGGAGCTATGCTTTCTCTTACCTACA TTGCATCCGAAAAAGTTATCCCGGGGTATGGCGGCGGTATGAGTTCGGCCAAGGCGCAAT TGGAATCCGACACCCGTACACTGGCCTACGAGGCAGGGCGTAAATGGGGTATAAGAGTG AACACCATAAGCGCAGGACCTTTGAAATCACGGGCGGCAAGCGCCATAGGGAAGGAGCC GGGCCAGAAGACTTTCATTGAGTACGCGATCGACTACAGCAAAGCCAATGCTCCTCTTGA ACAGGATTTGTACTCGGATGATGTTGGTAACGCATCTCTGTTTTTAACCTCACCTATGGC CCGGACCGTCACAGGTGTTACCCTGTACGTAGATAATGGTTTGCATAGTATGGGAATGGC TCTGGATAGCAAGGCCATGGAAGGGAGTCGGGAGAATTCGAGCTCCGTCGACAAGCTTG CGGCCGCACTCGAGCACCACCACCACCACCACTGA

Figure S13: FabI amino acid sequences

Abstract

>ecFabI MGFLSGKRILVTGVASKLSIAYGIAQAMHREGAELAFTYQNDKLKGRVEEFAAQLGSDIVL QCDVAEDASIDTMFAELGKVWPKFDGFVHSIGFAPGDQLDGDYVNAVTREGFKIAHDISS YSFVAMAKACRSMLNPGSALLTLSYLGAERAIPNYNVMGLAKASLEANVRYMANAMGPE GVRVNAISAGPIRTLAASGIKDFRKMLAHCEAVTPIRRTVTIEDVGNSAAFLCSDLSAGISG EVVHVDGGFSIAAMNELELKNSSSVDKLAAALEHHHHHH >hiFabI MGFLTGKRILVTGLASNRSIAYGIAKSMKEQGAELAFTYLNDKLQPRVEEFAKEFGSDIVLP LDVATDESIQNCFAELSKRWDKFDGFIHAIAFAPGDQLDGDYVNAATREGYRIAHDISAYS FVAMAQAARPYLNPNAALLTLSYLGAERAIPNYNVMCLAKASLEAATRVMAADLGKEGIR VNAISAGPIRTLAASGIKNFKKMLSTFEKTAALRRTVTIEDVGNSAAFLCSDLASGITGEIVH VDAGFSITAMGELGEENSSSVDKLAAALEHHHHHH >pfFabI MEDICFIAGIGDTNGYGWGIAKELSKRNVKIIFGIWPPVYNIFMKNYKNGKFDNDMIIDKD KKMNILDMLPFDASFDTANDIDEETKNNKRYNMLQNYTIEDVANLIHQKYGKINMLVHS LANAKEVQKDLLNTSRKGYLDALSKSSYSLISLCKYFVNIMKPQSSIISLTYHASQKVVPGYG GGMSSAKAALESDTRVLAYHLGRNYNIRINTISAGPLKSRAATAINKLNNTYENNTNQNK NRNSHDVHNIMNNSGEKEEKKNSASQNYTFIDYAIEYSEKYAPLRQKLLSTDIGSVASFLLS RESRAITGQTIYVDNGLNIMFLPDDLEHHHHHH >apFabI MNVVAASGNGATAPSAGLPIDLRGKKAFIAGVADDQGFGWAIAKQLAEAGAEISLGVWVP ALNIFESSYRRGKFDANRKLANGSLLEFAHIYPMDAVFDTPEDVPPEIAENKRYAGNEGYT VSEAAEKLARDVGKIDILVHSLANGPEVQKPLLETSRRGYLAALSASSYSLISMLQRFGPLL NPGGAVISLTYLAGARVIPGYGGGMSSAKAALESDTKVLAFEAGRKWNVRVNTISAGPLGS RAAKAIGFIDDMIKYSYENAPIQKELSAYEIGSVAAFLCSPLASAVTGHVMYVDNGLNTMG LALDSKVLEREPVDASANSSSVDKLAAALEHHHHHH $>$ ptFabI MAAQVDLKGKVAFVAGVADSTGYGWAIAKALAEAGATIIVGTWPPVLKIFQMGLKKGQF NEDSTLADGSLMTIEKVYPLDAVFDAPDDVPDEIKENKRYAGLDGYTISEVAKAVEADYG KIDILVHSLANGPEVTKPLLETTRKGYLAASSASAYSAVSLLQKFGPIMNEGGAMLSLTYIA SEKVIPGYGGGMSSAKAQLESDTRTLAYEAGRKWGIRVNTISAGPLKSRAASAIGKEPGQK TFIEYAIDYSKANAPLEQDLYSDDVGNASLFLTSPMARTVTGVTLYVDNGLHSMGMALDS KAMEGSRENSSSVDKLAAALEHHHHHH

Supplemental Figure S17

In order to directly compare the very different scales of hydride affinity and hydrogen bond score, they were standardized using Equation 1. The \log of the relative rate was standardized similarly and then compared to the normalized hydride affinity (Figure S14A) and the normalized hydrogen bond score (Figure S14B). While we did not have a sufficiently large data set to train a function to weight each metric (hydride affinity and hydrogen bond score) without overfitting, we used a simple approach of averaging the scores while down-weighting hydrogen bonding score by 2 -fold (Eq 2). This was done as the hydride affinity alone was almost a perfect predictor for reactivity with the exception of cinnamaldehyde, while the hydrogen bonding score only predicted roughly half of the substrates correctly, which isn't a very strong predictor. Using the Combined Standardized Score (CSS) from the simple QM and docking calculations we are able to accurately categorize if FabI can utilize the compound as a substrate (Figure S14C). Ultimately, the graphs gave an impression of a quantitative analysis for which we didn't have sufficient data, but the data did allow for the prediction of active substrates. This lead to the development of the decision tree, which portrays what the combined method can predict.

$$
\begin{gathered}
\text { Standardized Value }=\frac{{\text { Value }- \text { Mean }_{\text {Values }}}_{\text {Standard Deviation }_{\text {Values }}}^{\text {CSS }}=\frac{\text { (Standardized Hydride Affinity })+\frac{1}{2}(\text { Standardized Hydrogen Bond Score })}{2}}{2}
\end{gathered}
$$

Figure S14. Predicting activity from QM and docking calculations. Yellow triangles represent inactive compounds and blue circles active compounds. The graphs are broken into four quadrants (I-IV) for illustration proposes. (A) Standardized \log of activity versus the standardized hydride affinity. The yellow triangle in quadrant IV is cinnamaldehyde. (B)
Standardized \log of activity versus standardized hydrogen bond score. Cinnamaldehyde is the yellow triangle in quadrant III with the highest hydrogen bond score (with a low value being more favorable). (C) Standardized log of activity versus the sum of the standardized hydride affinity plus half the standardized hydrogen bond score, the total was then divided by two. All active compounds cluster in quadrant I and inactive in quadrant III.

Supplemental Figure S18

Two potential substrates were examined computationally - an α, β-unsaturated nitropropene and a α, β-unsaturated nitrile. Both compounds have a relative hydride affinities that would lead us to predict them to be active, but only one of the two substrates, the nitropropene, when docked can find a pose for which it can interact with

Substrate \begin{tabular}{c}

Relative Hydride Affinity
(kcal/mol)

\hline | Hydrogen Bond Score |
| :---: |
| (Rosetta energy units) |

\hline | $\mathrm{H}_{3} \mathrm{C}$ |
| :---: |
| Nitrile |

\hline
\end{tabular}

