Supporting Information to

# Selective binders of the tandem SH2 domains in Syk and ZAP-70 kinases by DNA-programmed spatial screening

Michaela Marczynke, Katharina Gröger, Oliver Seitz

Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, D-12489 Berlin, Germany

### **1** Synthesized Conjugates

#### 1.1 Oligonucleotides

5'-GGC TGC XCA CTA-3' **ON1** X = 5-(Fmoc-Cys(StBu)-NH-C<sub>3</sub>H<sub>2</sub>)-U

 $C_{125}H_{162}N_{45}O_{72}P_{11}S_2$ 

 $OD_{260} = 34.2 \text{ (313 nmol, 31\%); } \epsilon_{260} = 109300 \text{ L} \cdot \text{M}^{-1} \cdot \text{cm}^{-1}$ HPLC:  $t_R = 1.23 \text{ min (5-50\% ACN in 0.1 M TEAA in 2 min, 260 nm)}$ 

MALDI-TOF (m/z): calc.: 3850.70 [M+H]<sup>+</sup>; found: 3850.3



5'-CCA AGX TCG TGT-3' ON2 X = 5-(Fmoc-Cys(StBu)-NH-C<sub>3</sub>H<sub>2</sub>)-U

 $C_{126}H_{163}N_{44}O_{753}P_{11}S_2$ 

 $OD_{260}$  = 31.4 (280 nmol, 28%);  $\epsilon_{260}$  = 112000 L ·M<sup>-1</sup>·cm<sup>-1</sup> HPLC: t<sub>R</sub> = 1.25 min (5-50% ACN in 0.1 M TEAA in 2 min, 260 nm)

MALDI-TOF (m/z): calc.: 3865.70 [M+H]<sup>+</sup>; found: 3864.5



5'-GGC TGC TCA CTA Y-3' ON3

 $Y = -PO_2 - OC_3H_6 - S - S - C_3H_6 - OH$ 

 $C_{122}H_{161}N_{43}O_{75}P_{12}S_2$ 

$$\begin{split} & \text{OD}_{260} = 43.5 \text{ (398 nmol, 40\%); } \epsilon_{260} = 109300 \text{ L} \cdot \text{M}^{\text{-1}} \cdot \text{cm}^{\text{-1}} \\ & \text{HPLC: } t_{\text{R}} = 12.76 \text{ min (5-50\% ACN in 0.1 M TEAA in 20 min, 260 nm)} \\ & \text{MALDI-TOF (m/z): calc.: 3864.64 [M+H]}^{\text{+}} \text{ found: 3868.8} \end{split}$$



5'-ZGG CTG CTC ACT A-3' ON5

 $Z = HO-C_6H_{12}-S-S-C_6H_{12}-O-PO_2-$ 

 $C_{128}H_{173}N_{43}O_{75}P_{12}S_2$ 

 $OD_{260} = 49.4$  (452 nmol, 58%);  $\epsilon_{260} = 109300 \text{ L} \cdot \text{M}^{-1} \cdot \text{cm}^{-1}$ HPLC:  $t_R = 11.34$  min (5-50% ACN in 0.1 M TEAA in 20 min, 260 nm) MALDI-TOF (m/z): calc.: 3948.74 [M+H]<sup>+</sup>; found: 3948.9



#### 1.2 Peptides

 $\label{eq:FAM-Lys-pTyr-Thr-Gly-Leu-Asn-Thr-Arg-Ser-Gln-Glu-Thr-pTy-Glu-Thr-Leu-Gly-OH \ \textbf{1} \\ C_{105}H_{145}N_{23}O_{43}P_2$ 

```
\begin{split} & OD_{267} = 259.0 \text{ (3.32 } \mu\text{mol, 31\%); } \epsilon_{267} = 78000 \text{ L} \cdot \text{M}^{-1} \cdot \text{cm}^{-1} \\ & \text{HPLC: } t_{\text{R}} = 2.05 \text{ min (5-50\% ACN in } \text{H}_2\text{O}, 0.01\% \text{ TFA}, 4 \text{ min, 210 nm}) \\ & \text{ESI-MS (m/z): } \text{calc.: } 2480.36 \text{ [M+H]}^+; \text{ found.: } 827.2 \text{ [M+3H]}^{3+} \end{split}
```



Ac-Lys-pTyr-Asn-Glu-Leu-Asn-Leu-Gly-Arg-Arg-Glu-Glu-pTyr-Asp-Val-Leu-Gly-NH $_2$  2 C $_{92}$ H $_{147}$ N $_{27}$ O $_{36}$ P $_2$ 

 $OD_{267} = 5.7$  (4.39 µmol, 44%);  $\epsilon_{267} = 1304 \text{ L} \cdot \text{M}^{-1} \cdot \text{cm}^{-1}$ 

HPLC: t<sub>R</sub> = 1.19 min (5-50% ACN in H<sub>2</sub>O, 0.01% TFA, 2 min, 210 nm)

ESI-MS (m/z): calc.: 2270.06 [M+H]<sup>+</sup>; found: 1136.3 [M+2H]<sup>2+</sup>, 757.6 [M+3H]<sup>3+</sup>, 568.7 [M+4H]<sup>4+</sup>



Ac-Lys-pTyr-Thr-Gly-Leu-Asn-Thr-Arg-Ser-Gln-Glu-Thr-pTyr-Glu-Thr-Leu-Gly 4

$$\begin{split} & C_{86}H_{138}N_{24}O_{37}P_2 \\ & OD_{267} = 3.9 \text{ (300 nmol, 30\%); } \epsilon_{267} = 1304 \text{ L} \cdot \text{M}^{-1} \cdot \text{cm}^{-1} \\ & \text{HPLC: } t_R = 1.57 \text{ min (5-50\% ACN in } H_2O, 0.01\% \text{ TFA, 4 min, 210 nm)} \\ & \text{MALDI-TOF (m/z): calc.: 2162.10 [M+H]}^*; \text{ found: 2160.5} \end{split}$$



Ac-Lys-pTyr-Asn-Glu-Leu-*aeea*-pTyr-Asp-Val-Leu-Gly-Lys-NH<sub>2</sub> 7<sub>1</sub>a  $OD_{267} = 0.81$  (624 nmol, 31%);  $\epsilon_{267} = 1304 \text{ L} \cdot \text{M}^{-1} \cdot \text{cm}^{-1}$ HPLC:  $t_R = 1.13 \text{ min} (5-50\% \text{ ACN in } H_2O, 0.01\% \text{ TFA}, 2 \text{ min}, 210 \text{ nm})$ ESI-MS (m/z): calc.: 1687.73  $[M+H]^+$ ; found: 1688.6 $[M+1H]^{1+}$ , 844.5  $[M+2H]^{2+}$ , 563.5  $[M+3H]^{3+}$ 



Ac-Lys-pTyr-Asn-Glu-Leu-(aeea)<sub>2</sub>-pTyr-Asp-Val-Leu-Gly-Lys-NH<sub>2</sub> 7<sub>2</sub>a

C<sub>76</sub>H<sub>123</sub>N1<sub>27</sub>O<sub>31</sub>P<sub>2</sub>

 $OD_{267}$  = 1.36 (1046 nmol, 52%);  $\epsilon_{267}$  = 1304 L ·M<sup>-1</sup>·cm<sup>-1</sup> HPLC: t<sub>R</sub> = 1.14 min (5-50% ACN in H<sub>2</sub>O, 0.01% TFA, 2 min, 210 nm)  $\mathsf{ESI}\mathsf{-}\mathsf{MS}\ (\mathsf{m/z}): \mathsf{calc.}: 1832.80\ [\mathsf{M}\mathsf{+}\mathsf{H}]^{+}; \mathsf{found}: 1833.5[\mathsf{M}\mathsf{+}\mathsf{1}\mathsf{H}]^{1+}, 917.0\ [\mathsf{M}\mathsf{+}2\mathsf{H}]^{2+}, 611.1\ [\mathsf{M}\mathsf{+}3\mathsf{H}]^{3+}$ 



Ac-Lys-pTyr-Asn-Glu-Leu-(aeea)<sub>3</sub>-pTyr-Asp-Val-Leu-Gly-Lys-NH<sub>2</sub> 7<sub>3</sub>a  $C_{82}H_{134}N_{18}O_{34}P_2$  $OD_{267} = 0.65$  (496 nmol, 25%);  $\epsilon_{267} = 1304 \text{ L} \cdot \text{M}^{-1} \cdot \text{cm}^{-1}$ HPLC: t<sub>R</sub> = 1.15 min (5-50% ACN in H<sub>2</sub>O, 0.01% TFA, 2 min, 210 nm)

ESI-MS (m/z): calc.: 1977.6788 [M+H]<sup>+</sup>; found: 989.5 [M+2H]<sup>2+</sup>, 660.2 [M+3H]<sup>3+</sup>



Ac-Lys-pTyr-Glu-Thr-Leu-aeea-pTy-Glu-Thr-Leu-Gly-OH 71b  $C_{64}H_{101}N_{13}O_{28}P_2$  $OD_{267} = 0.71$  (546 nmol, 55%);  $\epsilon_{267} = 1304 \text{ L} \cdot \text{M}^{-1} \cdot \text{cm}^{-1}$ HPLC: t<sub>R</sub> = 2.03 min (5-50% ACN in H<sub>2</sub>O, 0.01% TFA, 4 min, 210 nm) ESI-MS (m/z): calc.: 1562.64 [M+H]<sup>+</sup>; found.: 782.5 [M+2H]<sup>2+</sup> 100 728.5 2.03 Intensity % 0 400 600 1200 800 2 3 1000 1 time (min) m/z Ac-Lys-pTyr-Glu-Thr-Leu-(aeea)2-pTy-Glu-Thr-Leu-Gly-OH 72b  $C_{70}H_{112}N_{14}O_{31}P_2$  $OD_{267} = 0.56$  (430 nmol, 43%);  $\epsilon_{267} = 1304 \text{ L} \cdot \text{M}^{-1} \cdot \text{cm}^{-1}$ HPLC:  $t_R = 2.11 \text{ min} (5-50\% \text{ ACN in } H_2O, 0.01\% \text{ TFA}, 4 \text{ min}, 210 \text{ nm})$ ESI-MS (m/z): calcr.: 1706.71  $[M+H]^{+}$ ; found: 855.3  $[M+2H]^{2+}$ , 570.4  $[M+3H]^{3+}$ 100 -2.11 855.3 Intensity % 570.3 0 400 600 800 1000 1200 2 3 time (min) m/z Ac-Lys-pTyr-Glu-Thr-Leu-(aeea)<sub>3</sub>-pTy-Glu-Thr-Leu-Gly-OH 7<sub>3</sub>b  $C_{76}H_{123}N_{15}O_{34}P_2$ OD<sub>267</sub> = 0.37 (283 nmol, 28%);  $\epsilon_{267}$  = 1304 L  $\cdot M^{-1} \cdot cm^{-1}$ HPLC:  $t_R = 2.12 \text{ min} (5-50\% \text{ ACN in } H_2O, 0.01\% \text{ TFA}, 4 \text{ min}, 210 \text{ nm})$ ESI-MS (m/z): calc.: 1852.56 [M+H]<sup>+</sup>; found: 927.8 [M+2H]<sup>2+</sup>, 619.0 [M+3H]<sup>3+</sup> 100 -2.12 927.8 Intensity % 619.0 2 3 2000 600 1000 1400

time (min)

m/z

 $\begin{array}{l} \label{eq:c40} \text{Ac-Lys-pTyr-Asp-Val-Leu-Gly-Lys-NH}_2 \ \textbf{8} \\ \text{C}_{40}\text{H}_{66}\text{N}_{10}\text{O}_{14}\text{P} \\ \text{OD}_{267} = 0.60 \ (918 \ \text{nmol}, \ 46\%); \ \epsilon_{267} = 652 \ \text{L} \cdot \text{M}^{-1} \cdot \text{cm}^{-1} \\ \text{HPLC: } t_{\text{R}} = 0.93 \ \text{min} \ (5\text{-}50\% \ \text{ACN} \ \text{in} \ \text{H}_2\text{O}, \ 0.01\% \ \text{TFA}, \ 4 \ \text{min}, \ 210 \ \text{nm}) \\ \text{MALDI-TOF} \ (\text{m/z}): \ \text{calc.: } 944.47 \ [\text{M+H}]^{+}; \ \text{found: } 945.8 \ [\text{M+H}]^{+}, \ 473.6 \ [\text{M+2H}]^{2+} \\ \end{array}$ 



#### 1.3 PNA-peptide-conjugates

Ac-Lys-pTyr-Glu-Thr-Leu-attctacgca-pTyr-Glu-Thr-Leu-Gly-NH<sub>2</sub>5b

 $C_{171}H_{234}N_{72}O_{55}P_2$ 

OD<sub>267</sub> = 62.7 (640 nmol, 6%);  $\epsilon_{267}$  = 98000 L  $\cdot$ M<sup>-1</sup> $\cdot$ cm<sup>-1</sup>

HPLC:  $t_R$  = 1.82 min (5-50% ACN in H<sub>2</sub>O, 0.01% TFA, 4 min, 210 nm)

 $\text{ESI-MS} \ (\text{m/z}): \text{calc.: } 4240.08 \ [\text{M}+\text{H}]^{+}; \ \text{found: } 1061.1 \ [\text{M}+\text{4H}]^{4+}, \\ 849.0 \ [\text{M}+\text{5H}]^{5+}, \ 708.0 \ [\text{M}+\text{6H}]^{6+}$ 



Ac-Lys-pTyr-Asn-Glu-Leu-attctacgca-pTyr-Asp-Val-Leu-Gly-NH<sub>2</sub> 5a

 $C_{171}H_{233}N_{73}O_{54}P_2$ 

 $DD_{267} = 43.6 (439 \text{ nmol}, 4\%); \epsilon_{267} = 99304 \text{ L} \cdot \text{M}^{-1} \cdot \text{cm}^{-1}$   $HPLC: t_{R} = 1.89 \text{min} (5-50\% \text{ ACN in } H_{2}\text{O}, 0.01\% \text{ TFA}, 4 \text{ min}, 210 \text{ nm})$   $ESI-MS (m/z): \text{ calc.: } 4237.08 [M+H]^{+}; \text{ found.: } 1060.4 [M+4H]^{4+}, 848.9 [M+5H]^{5+}, 707.3 [M+6H]^{6+}$ 



#### 1.4 Maleimido Peptides



Figure S1: Examplary solid phase synthesis of a maleimido peptide. (a) Fmoc-Deprotection: Piperidine/DMF (1:4 [v/v]), 2 x 5 min; (b) amino acid coupling: 4 eq. Fmoc-amino acid [(b1) Fmoc-Lys(Mmt)-OH, (b2) Fmoc-Gly-OH, (b3) Fmoc-Leu-OH, (b<sub>4</sub>) Fmoc-Thr(*tBu*)-OH, (b<sub>5</sub>) Fmoc-Glu(*tBu*)-OH, (b<sub>6</sub>) Fmoc-pTyr((*NMe*<sub>2</sub>)<sub>2</sub>)-OH, (b<sub>7</sub>) Fmoc-Lys(*Boc*)-OH], 3.6 eq HCTU, 3.6 eq. HOBT und 8 eq. NMM in DMF, 30 min; (c) Capping:  $Ac_2O/2$ ,6-Lutidine/DMF (5:6:89 [v/v/v]), 2 x 3 min; (d) Mmt-Deprotection: 5% TFA und 2% TIS in DCM, 5 x 1 min; (e) Maleimide coupling: 4 eq. 6-Maleimidocaproic acid, 3.6 eq HCTU und 8 eq. NMM in DMF, 2 x 2h min; (f) final cleavage: 1. TFA/TIS/H<sub>2</sub>0 (95:2.5:2.5 [v/v/v]), 90 min; 2. addition of 10% H<sub>2</sub>0, 18 h at RT.

Ac- Lys(MIC)-pTyr-Glu-Thr-Leu-Asn-Leu-Gly-Arg-Glu-Glu-Gly-pTyr-Asp-Val-Leu-Lys-Gly-NH<sub>2</sub> 9  $C_{104}H_{162}N_{26}O_{40}P_2$  $\epsilon_{267} = 1304 \text{ L} \cdot \text{M}^{-1} \cdot \text{cm}^{-1}$ HPLC:  $t_{R} = 1.27 \text{ min} (5-50\% \text{ ACN in } H_{2}O, 0.01\% \text{ TFA}, 2 \text{ min}, 210 \text{ nm})$ MALDI-TOF (m/z): calc: 2478.10 [M+H]<sup>+</sup>; found: 2478.6 [M+H]<sup>+</sup> 1.27 100 2478.6 % ntensity 0 2 0.5 i 1.5 2000 3000

Ac- Lys-pTyr-Glu-Thr-Leu-Asn-Leu-Gly-Arg-Glu-Glu-Gly-pTyr-Asp-Val-Leu-Lys(MIC)-Gly-NH<sub>2</sub>10

time (min)

1000

m/z



Ac-Lys(MIC)-pTyr-Asn-Gln-Leu-Lys-NH<sub>2</sub>13



Ac-Lys-pTyr-Glu-Thr-Leu-Gly-Lys(MIC)-NH<sub>2</sub> **14**   $C_{50}H_{78}N_{11}O_{18}P$   $OD_{267} = 2.7 (4.13 \ \mu mol, 41\%); \epsilon_{267} = 652 \ L \cdot M^{-1} \cdot cm^{-1}$ HPLC:  $t_R = 0.97 \ min (5-50\% \ ACN \ in H_2O, 0.01\% \ TFA, 2 \ min, 210 \ nm)$ ESI-MS (m/z): calc: 1152.53 [M+1H]<sup>1+</sup>; found: 1152.5 [M+1H]<sup>1+</sup>



Ac- Lys-pTyr-Glu-Thr-Leu-Asn-Leu-Gly-Arg-Glu-Glu-Gly-Lys(MIC)-NH $_2$  15  $C_{78}H_{124}N_{21}O_{29}P$ 

$$\begin{split} & OD_{267} = 2.2 \ (3.44 \mu mol, 34\%); \ \epsilon_{267} = 652 \ L \cdot M^{-1} \cdot cm^{-1} \\ & HPLC: \ t_R = 1.06 \ min \ (mobile \ Phase \ 3, \ 5-50\% \ ACN \ in \ 2 \ min, \ 210 \ nm) \\ & ESI-MS \ (m/z): \ ber.: \ 1850.86 \ [M+H]^+; \ gef.: \ 1850.8 \ [M+H]^+ \end{split}$$





Ac-Lys-pTyr-Asn-Glu-Leu-Lys(MIC)-NH<sub>2</sub> **17**   $C_{48}H_{74}N_{11}O_{17}P$   $OD_{267} = 3.2 (4.92 \ \mu mol, 49\%); \epsilon_{267} = 652 \ L \cdot M^{-1} \cdot cm^{-1}$ HPLC:  $t_R = 2.20 \ min (5-50\% \ ACN \ in H_2O, 0.01\% \ TFA, 4 \ min, 210 \ nm)$ ESI-MS (m/z): calc.: 1107.50 [M+1H]<sup>1+</sup>; found: 1108.7 [M+1H]<sup>1+</sup>, 555.0 [M+2H]<sup>2+</sup>



1.5 DNA-peptide-conjugates



**Figure S2:** Synthesis of DNA-peptide conjugates **18-30** via maleimide-thiol coupling of thiol-modified oligonucleotides **ON1-ON5** and maleimide-containing peptides **9-17**. (a) 0.5 mM **ON1-5** in TCEP-buffer (5 mM TCEP, 10 mM NaCl, 10 mM NaH<sub>2</sub>PO<sub>4</sub>, pH 6.5), rt, 1-4h for **ON3-5** and up to 48 h for **ON1-2**, (b) Precipitation: 20% volume of a 3M NH<sub>3</sub>OAc solution (pH 5.2) and isopropanol (c) 1 mM **ON1-5**, 2 eq. **9-17** in ligation buffer (10 mM NaCl, 10 mM NaH<sub>2</sub>PO<sub>4</sub>, pH 6.5), rt, 1-2h.



Figure S3: Chemical structure of the DNA-peptide linkage in the DNA-peptide conjugates **18-21**, which have been used for the construction of the monofunctionalized ternary DNA-peptide complexes **TC9** and **TC10**.







Ac- Lys-Gly-Arg-Glu-Glu-Gly-pTyr-Glu-Thr-Leu-Gly-Lys(**ON2**)-NH<sub>2</sub> **20**   $C_{192}H_{265}N_{63}O_{100}P_{12}S$ OD<sub>260</sub> = 41.0 (366 nmol, 37%);  $\epsilon_{260}$  = 112000 HPLC:  $t_{R}$  = 1.01 min (mobile Phase 2, 5-50% ACN in 2 min, 260 nm) MALDI-TOF (m/z): calc.: 5458.42 [M+H]<sup>+</sup>; found 5456.4 [M+H]<sup>+</sup> 1.01 5456.4

Ac-Lys-pTyr-Glu-Thr-Leu-Asn-Leu-Gly-Arg-Glu-Glu-Gly-pTyr-Asp-Val-Leu-Lys(**ON2**)-Gly-NH<sub>2</sub> **21** C<sub>226</sub>H<sub>317</sub>N<sub>70</sub>O<sub>113</sub>P<sub>13</sub>S

0

4000

6000

m/z

10000

8000

OD<sub>260</sub> = 10.5 (94 nmol, 9%);  $ε_{260}$  = 112000 HPLC:  $t_R$  = 1.13 min (5-50% ACN in 0.1 M TEAA in 20 min, 260 nm) MALDI-TOF (m/z): calc.: 6256.76 [M+H]<sup>+</sup>; found: 6255.0 [M+H]<sup>+</sup>

1.5

5

0.5

1 time (min)



Ac-Lys(**ON3**)-pTyr-Asp-Val-Leu-Lys-NH<sub>2</sub> **22**   $C_{167}H_{230}N_{53}O_{90}P_{13}S$ OD<sub>260</sub> = 63.7 (583 nmol, 58%);  $\epsilon_{260}$  = 109300 HPLC:  $t_R$  = 13.17 min ( 5-50% ACN in 0.1 M TEAA in 20 min, 260 nm)



Ac-Lys(**ON3**)-pTyr-Glu-Thr-Leu-Gly-NH<sub>2</sub> **23**   $C_{163}H_{220}N_{51}O_{92}P_{13}S$   $OD_{260} = 63.6 (582 nmol, 58%); \epsilon_{260} = 109300$ HPLC:  $t_R = 10.80 min (5-50\% ACN in 0.1 M TEAA in 20 min, 260 nm)$ MALDI-TOF (m/z): calc.: 4799.04 [M+H]<sup>+</sup>; found: 4798.1



Ac-pTyr-Glu-Thr-Leu-Gly-Lys(**ON3**)-NH<sub>2</sub> **24** 

$$\begin{split} &C_{163}H_{220}N_{51}O_{92}P_{13}S\\ &OD_{260} = 80.1 \text{ (733 nmol, 73\%); } \epsilon_{260} = 109300\\ &HPLC: t_{R} = 9.86 \text{ min (5-50\% ACN in 0.1 M TEAA in 20 min, 260 nm)}\\ &MALDI-TOF (m/z): calc.: 4799.04 [M+H]^{+}; \text{ found: 4799.5} \end{split}$$



Ac-Gly-pTyr-Asp-Val-Leu-Lys(ON3)-NH<sub>2</sub> 25

 $C_{163}H_{221}N_{52}O_{90}P_{13}S$ 

$$\begin{split} & \text{OD}_{260} = 59.1 \text{ (541 nmol, 54%); } \epsilon_{260} = 109300 \\ & \text{HPLC: } t_{\text{R}} = 9.87 \text{ min (5-50\% ACN in 0.1 M TEAA in 20 min, 260 nm)} \\ & \text{MALDI-TOF (m/z): calc.: 4781.07 [M+H]}^{+}; \text{ found: 4780.6} \end{split}$$





Ac-Lys(**ON4**)-pTyr-Asn-Glu-Leu-Lys-NH<sub>2</sub> **26**   $C_{171}H_{236}N_{53}O_{92}P_{13}S$ OD<sub>260</sub> = 83.2 (743 nmol, 74%);  $\epsilon_{260}$  = 112000 HPLC:  $t_{R}$  = 10.46 min (5-50% ACN in 0.1 M TEAA in 20 min, 260 nm) MALDI-TOF (m/z): calc.: 4940.18 [M+H]<sup>+</sup>; found: 4940.3 [M+H]<sup>+</sup>





## 2 Binding studies

| Table S1. List of olic | conucleotide complex | es used in binding | studies with tSH2 | domains from S | vk and ZAP-70 kinases. |
|------------------------|----------------------|--------------------|-------------------|----------------|------------------------|
|                        |                      |                    |                   |                | <b>J</b>               |

| Code               |                             | Oligonucleotide sequence                                                                                                      | Peptide sequence                                                                      |
|--------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| TC1 <sub>n</sub> b | 27·23                       | 3' – TGT GCT TGA ACC $\mathbf{Z}$ (L1) · (L2) $\mathbf{Y}$ ATC ACT CGT CGG – 5'                                               | L1: Ac-Lys(MIC-ON4)-pTyr-Glu-Thr-Leu-Gly-NH <sub>2</sub>                              |
|                    | T1 <sub>0-9</sub>           | 5' – ACA CGA ACT TGG (A) <sub>0-3</sub> TAG TGA GCA GCC – 3'                                                                  | L2: Ac-Lys(MIC-ON3)-pTyr-Glu-Thr-Leu-Gly-NH <sub>2</sub>                              |
| TC1 <sub>n</sub> a | 26·22                       | 3' – TGT GCT TGA ACC <b>Z</b> (L1) · (L2) <b>Y</b> ATC ACT CGT CGG – 5'                                                       | L1: Ac-Lys(MIC-ON4)-pTyr-Asn-Glu-Leu-Lys-NH <sub>2</sub>                              |
|                    | T1 <sub>0-9</sub>           | 5' – ACA CGA ACT TGG (A) <sub>0-10</sub> TAG TGA GCA GCC – 3'                                                                 | L2: Ac-Lys(MIC-ON3)-pTyr-Asp-Val-Leu-Lys-NH2                                          |
| TC2 <sub>n</sub> a | 26·22                       | 3' – TGT GCT TGA ACC <b>Z</b> (L1) · ATC ACT CGT CGG <b>Z</b> (L2) – 5'                                                       | L1: Ac-Lys(MIC-ON4)-pTyr-Asn-Glu-Leu-Lys-NH₂                                          |
|                    | T1 <sub>0-9</sub>           | 5' – ACA CGA ACT TGG (A) <sub>1-10</sub> TAG TGA GCA GCC – 3'                                                                 | L2: Ac-Lys(MIC-ON3)-pTyr-Asp-Val-Leu-Lys-NH₂                                          |
| TC3 <sub>n</sub> b | 28∙24                       | 3' – TGT GCT TGA ACC $Z(L1) \cdot (L2)Y$ ATC ACT CGT CGG – 5'                                                                 | L1: Ac-Lys-pTyr-Glu-Thr-Leu-Gly-Lys(MIC-ON4)-NH2                                      |
|                    | T1 <sub>0-9</sub>           | 5' – ACA CGA ACT TGG (A) <sub>0-3</sub> TAG TGA GCA GCC – 3'                                                                  | L2: Ac-Lys-pTyr-Glu-Thr-Leu-Gly-Lys(MIC-ON3)-NH2                                      |
| TC3 <sub>n</sub> a | 29∙25                       | 3' – TGT GCT TGA ACC $Z(L1) \cdot (L2)Y$ ATC ACT CGT CGG – 5'                                                                 | L1: Ac-Lys-pTyr-Asn-Glu-Leu-Lys(MIC-ON4)-NH <sub>2</sub>                              |
|                    | T1 <sub>0-9</sub>           | 5' – ACA CGA ACT TGG (A) <sub>0-10</sub> TAG TGA GCA GCC – 3'                                                                 | L2: Ac-Gly-pTyr-Asp-Val-Leu-Lys(MIC-ON3)-NH <sub>2</sub>                              |
| TC4 <sub>n</sub> b | 28·23                       | 3' – TGT GCT TGA ACC <b>Z</b> (L1) · (L2) <b>Y</b> ATC ACT CGT CGG – 5'                                                       | L1: Ac-Lys-pTyr-Glu-Thr-Leu-Gly-Lys(MIC-ON4)-NH <sub>2</sub>                          |
|                    | T1 <sub>0-9</sub>           | 5' – ACA CGA ACT TGG (A)₀.₃ TAG TGA GCA GCC – 3'                                                                              | L2: Ac-Lys(MIC-ON3)-pTyr-Glu-Thr-Leu-Gly-NH <sub>2</sub>                              |
| TC4 <sub>n</sub> a | 29·24                       | 3' – TGT GCT TGA ACC <b>Z</b> (L1) · (L2) <b>Y</b> ATC ACT CGT CGG – 5'                                                       | L1: Ac-Lys-pTyr-Asn-Glu-Leu-Lys(MIC-ON4)-NH <sub>2</sub>                              |
|                    | T1 <sub>0-9</sub>           | 5' – ACA CGA ACT TGG (A) <sub>0-10</sub> TAG TGA GCA GCC – 3'                                                                 | L2: Ac-Lys(MIC-ON3)-pTyr-Asp-Val-Leu-Lys-NH <sub>2</sub>                              |
| TC5 <sub>n</sub> a | 29·30                       | 3' – TGT GCT TGA ACC <b>Z</b> (L1) · ATC ACT CGT CGG <b>Z</b> (L2) – 5'                                                       | L1: Ac-Lys-pTyr-Asn-Glu-Leu-Lys(MIC-ON4)-NH₂                                          |
|                    | T1 <sub>0-9</sub>           | 5' – ACA CGA ACT TGG (A) <sub>1-10</sub> TAG TGA GCA GCC – 3'                                                                 | L2: Ac-Lys(MIC-ON5)-pTyr-Asp-Val-Leu-Lys-NH₂                                          |
| TC6 <sub>n</sub> b | 27·24                       | 3' – TGT GCT TGA ACC $Z(L1) \cdot (L2)Y$ ATC ACT CGT CGG – 5'                                                                 | L1: Ac-Lys(MIC-ON4)-pTyr-Glu-Thr-Leu-Gly -NH₂                                         |
|                    | T1 <sub>0-9</sub>           | 5' – ACA CGA ACT TGG (A) <sub>0-10</sub> TAG TGA GCA GCC – 3'                                                                 | L2: Ac-Lys-pTyr-Glu-Thr-Leu-Gly-Lys(MIC-ON3)-NH₂                                      |
| TC6 <sub>n</sub> a | 26·25                       | 3' – TGT GCT TGA ACC $Z(L1) \cdot (L2)Y$ ATC ACT CGT CGG – 5'                                                                 | L1: Ac-Lys(MIC-ON4)-pTyr-Asn-Gln-Leu-Lys-NH₂                                          |
|                    | T1 <sub>0-9</sub>           | 5' – ACA CGA ACT TGG (A) <sub>0-10</sub> TAG TGA GCA GCC – 3'                                                                 | L2: Ac-Gly-pTyr-Asp-Val-Leu-Lys(MIC-ON3)-NH₂                                          |
| TC 9 c             | 20·ON6                      | 3' – TGT GCT <b>X</b> (L1)GA ACC · ATC ACT CGT CGG – 5'                                                                       | L1: Ac-Lys(MIC-ON1)pTyr-Glu-Thr-Leu-Asn-Leu-Gly-Arg-Arg-Glu-Glu-Gly-pTyr-Asp-Val-Leu- |
|                    | T1 <sub>0-9</sub>           | 5' – ACA CGA ACT TGG (A) 0.9 TAG TGA GCA GCC – 3'                                                                             | Lys-Gly-NH <sub>2</sub>                                                               |
| TC 10              | ON7·21                      | 3' – TGT GCT TGA ACC · ATC AC <b>X</b> (L1) CGT CGG – 5'                                                                      | L1: Ac-Lys-pTyr-Glu-Thr-Leu-Asn-Leu-Gly-Arg-Arg-Glu-Glu-Gly-pTyr-Asp-Val-Leu-Lys(MIC- |
| d                  | T1 <sub>0-9</sub>           | 5' – ACA CGA ACT TGG (A) <sub>09</sub> TAG TGA GCA GCC – 3'                                                                   | ON2)-Gly-NH <sub>2</sub>                                                              |
| TC 9 b             | 18·ON6<br>T1 <sub>0-9</sub> | 3' – TGT GCT <b>X</b> (L1)GA ACC $\cdot$ ATC ACT CGT CGG – 5'<br>5' – ACA CGA ACT TGG (A) <sub>0.9</sub> TAG TGA GCA GCC – 3' | L1: Ac-Lys(MIC-ON1)-pTyr-Glu-Thr-Leu-Gly-NH <sub>2</sub>                              |
| TC 10              | ON7·19                      | 3' – TGT GCT TGA ACC $\cdot$ ATC AC <b>X</b> (L1) CGT CGG – 5'                                                                | L1: Ac-Lys-pTyr-Glu-Thr-Leu-Asn-Leu-Gly-Arg-Glu-Glu-Gly-Lys(MIC-ON2)-NH <sub>2</sub>  |
| c                  | T1 <sub>0-9</sub>           | 5' – ACA CGA ACT TGG (A) 0.9 TAG TGA GCA GCC – 3' '                                                                           |                                                                                       |



Figure S4: Competitive binding curves of the mono- and bivalent peptides 2 and 8 and the control measurements with the monovalent DNA-Peptide conjugate TC9b and the ITAM-DNA duplex conjugate TC9c.



Figure S5: Competitive binding curves of the DNA-peptide conjugates TC<sub>1</sub>1b and TC<sub>1</sub>4b with ZAP-70 (blue, green) and Syk (red, orange).



Figure S6: Competitive binding curves of peptides containing 1-3 aminoethylethoxyethyloxy acetic acid (*aeea*) spacer units to (A) ZAP-70 and (B) Syk.

| Distance n | IC₅₀ [µM] – ZAP-70 |  |  |
|------------|--------------------|--|--|
| 1 nt       | 2.15               |  |  |
| 2 nt       | 3.42               |  |  |
| 4 nt       | 5.85               |  |  |
| 6 nt       | 16.60              |  |  |
| 9 nt       | 18.43              |  |  |
| 11 nt      | > 20.0             |  |  |
| 13 nt      | > 20.0             |  |  |
| 14 nt      | > 20.0             |  |  |
| 16 nt      | > 20.0             |  |  |
| 21 nt      | > 20.0             |  |  |

Table S2. Distance-dependent  $IC_{50}$ -values for the interaction of the ternary peptide-DNA complexes **TC**<sub>n</sub>**4a** and **TC**<sub>n</sub>**5** with Zap-70 tSH2.

Table S3. Orientation-dependent  $IC_{50}$ -values between bivalent pYETL displays in ternary complexes  $TC_11b$ ,  $TC_13b$ ,  $TC_14b$  and  $TC_16b$  and tSH2 domains of Syk tSH2 and Zap-70.

|        | IC₅₀-values in [µM] |                    |                    |                    |
|--------|---------------------|--------------------|--------------------|--------------------|
|        | TC₁1b               | TC <sub>1</sub> 3b | TC <sub>1</sub> 6b | TC <sub>1</sub> 4b |
| ZAP-70 | > 20                | 7.15               | 0.99               | 0.71               |
| Syk    | 0.48                | 1.18               | 0.12               | 0.14               |

Table S4.  $IC_{50}$ -values for the interaction of peptide-oligoethylene glycol and peptide-PNA conjugates with the tSH2 domains of Syk and ZAP-70 kinases

| conj             | Sequence                                   | IC₅₀ [µM] ZAP-70 | IC₅₀ [µM] Syk |
|------------------|--------------------------------------------|------------------|---------------|
| 7₁a              | K <u>pYNEL(aeea)pYDVL</u> GK               | >10.000          | >10.000       |
| 7 <sub>2</sub> a | K <u>pYNEL(aeea)₂pYDVL</u> GK              | 0.057            | 0.890         |
| 7₃a              | K <u>pYNEL(aeea)₃pYDVL</u> GK              | 0.11             | 0.11          |
| 7₁b              | K <u>pYETL(aeea)pYETL</u> G                | 4.63             | 2.96          |
| 72b              | K <u>pYETL(aeea)₂pYETL</u> G               | 0.11             | 0.27          |
| 73b              | K <u>pYETL(</u> aeea)₃ <u>pYETL</u> G      | 0.142            | 0.115         |
| 5b               | K <u>pYETL(attctacg</u> ca) <u>pYETL</u> G | 0.31             | 3.00          |
| 6b               | K <u>pYETL(attctacgca)pYETL</u> G          | 0.91             | 8.12          |
| 5a               | K <u>pYNEL(attctacgca) pYDVL</u> G         | 3.10             | 4.15          |
| 6a               | K <u>pYNEL(attctacg</u> ca) <u>pYDVL</u> G | 6.60             | 7.67          |

Table S5. Interaction of the TCR $\zeta$  TAM1-derived peptide Ac-NQLpYNELNLGREEpYDVLD with the tSH2 domains of Syk and Zap-70 kinases. Comparing K<sub>d</sub> values obtained by means of a surface plasmon resonance assay (Ottinger, E. A., Botfield, M. C., and Shoelson, S. E. (1998) Tandem SH2 domains confer high specificity in tyrosine kinase signaling. *J. Biol. Chem.* 273, 729-735.) with IC<sub>50</sub> values determined by means of the fluorescence polarization assay in solution.

| K <sub>d</sub> [nM] ZAP-70 | K <sub>d</sub> [nM] Syk | IC₅₀ [nM] ZAP-70 | IC₅₀ [nM] Syk |
|----------------------------|-------------------------|------------------|---------------|
| (SPR assay)                | (SPR assay)             | (FP assay)       | (FP assay)    |
| 8.3                        | 120                     | 1.6              | 6.7           |