Supporting Information

Characterization and Control of Nanoparticle Emission during 3D Printing

Ohhun Kwon, †,‡ Chungsik Yoon, *,†,‡ Seunghon Ham, ‡ Jihoon Park, † Jinho Lee, † Danbi Yoo, † and Yoojin Kim †

[†]Department of Environmental Health and [‡]Institute of Health and Environment, School of Public Health, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea

Number of Pages: 12

Number of Figures: 5

Number of Tables: 4

This supporting information document contains the following information:

Figure S1. Schematic diagram of the test chamber S3
Figure S2. Cylindrical objects fabricated by 3D printing with multiple filament types S4
Figure S3. Various filters attached to the back of both the extruder suction fan and the
enclosure ventilation fan S5
Figure S4. Field emission scanning electron microscope with energy dispersive X-ray spectroscopy
(FE-SEM/EDX) images of particles emitted during 3D printing under the manufacturer-
recommended and consistent-temperature conditions S6
Figure S5. Variation in the number concentration of nanoparticles over time during 3D printing for all
control methodsS7
Table S1 . Specification of the filters attached to the extruder suction fan and enclosure ventilation
fans S8
Table S2. Average geometric mean diameters (GMD) measured by SMPS (10–420 nm) during 3D
printing under manufacturer-recommended and consistent-temperature conditionsS9
Table S3. Emission rates of various filament materials under the manufacturer-recommended and
consistent-temperature conditions during 3D printingS10
Table S4. Summary of experimental conditions and nanoparticle emission rates from other 3D
printing studiesS11-S12

Figure S1. Schematic diagram of the test chamber.

Figure S2. Cylindrical objects fabricated by 3D printing with multiple filament types.

Figure S3. Various filters attached to the back of both the extruder suction fan and the enclosure ventilation fan.

Figure S4. Field emission scanning electron microscope with energy dispersive X-ray spectroscopy (FE-SEM/EDX) images of particles emitted during 3D printing under (A) the manufacturer-recommended and (B) consistent-temperature conditions.

Figure S5. Variation in the number concentration of nanoparticles over time during 3D printing for all control methods.

Table S1. Specification of the filters attached to the extruder suction and enclosure ventilation fans

Filter	Manufacturer	Filter media material	Thickness (mm)	Nominal target size	*Removal efficiency (Criteria)	Usage
Activated carbon filter (ACF)	Geoyoungentech, Korea	Activated carbon powder	2.5	-	72% (0.25 µm)*	VOC adsorption, deodorization
Electret and antibacterial filter	Oclaire, Korea	Polyester	5.3	1—10 μm	60-80% (10 μm)	Medium filter of indoor air purifier, antibacterial effect
Membrane coated polyethylene filter	Daejin filter, Korea	Polyethylene	0.5	1—5 μm	99% (5 μm)	Industrial fine-dust filter
Nano membrane filter	Daejin filter, Korea	Polypropylene	1.5	0.2-0.3 µm	96% (0.2 μm)	Industrial fine-dust filter, industrial water purification
High-efficiency particulate arrestance (HEPA) filter ¹⁾	Oclaire, Korea	Glass fiber	Frame: 35 (Filter: 0.9)	0.3 µm	99.97% (0.3 μm)	High-efficiency particulate air filter

^{*}Notes: Removal efficiency (Criteria) was provided by each manufacturer ¹⁾ HEPA filter contains twenty-five folded glass fiber filters in a frame

Table S2. Average geometric mean diameters (GMD) measured by SMPS (10–420 nm) during 3D printing under manufacturer-recommended and consistent-temperature conditions.

Conditions	Conditions Filament		RSD (%)*
	HIPS	31.5	5.3
	Nylon	21.8	4.5
N/L C /	ABS 1	45.6	18.8
Manufacturer recommended	ABS 2	58.0	21.9
	PLA	57.2	5.8
	PVA	68.0	4.5
	Laywood	59.4	4.8
Operating without	Glue spread	52.1	3.5
filament material	No glue spread	50.4	3.1
	ABS 1	43.0	17.9
a .	ABS 2	45.2	18.4
Consistent temperature	PLA	27.2	15.8
temperature	PVA	85.2	14.8
	Laywood	30.0	14.6

^{*}RSD: relative standard deviation.

Table S3. Emission rates of various filament materials under the manufacturer-recommended and

consistent-temperature conditions during 3D printing.

Can ditions	E:1	Nanoparticle	es (<100 nm)	SMPS (10-420 nm)		
Conditions	Filament	#/min	#/g	#/min	#/g	
	ABS 1	3.00×10^{10}	1.57×10^{11}	3.28×10^{10}	1.71×10^{11}	
	ABS 2	1.83×10^{10}	9.54×10^{10}	2.14×10^{10}	1.11×10^{11}	
3.6	PLA	3.18×10^8	1.32×10^{9}	3.61×10^{8}	1.49×10^9	
Manufacturer recommended	PVA	5.10×10^{8}	2.28×10^{9}	8.12×10^8	3.62×10^{9}	
recommended	Laywood	3.53×10^8	1.57×10^9	4.65×10^8	2.07×10^9	
	HIPS	3.26×10^{11}	3.18×10^{12}	3.37×10^{11}	1.78×10^{12}	
	Nylon	3.13×10^{11}	1.56×10^{12}	3.27×10^{11}	1.63×10^{12}	
	ABS 1	1.86×10^{11}	9.61×10^{11}	1.98×10^{11}	1.02×10^{12}	
	ABS 2	1.77×10^{11}	9.02×10^{11}	1.89×10^{11}	9.65×10^{11}	
Consistent temperature	PLA	6.67×10^{10}	2.80×10^{11}	6.82×10^{10}	2.86×10^{11}	
temperature	PVA	8.48×10^{10}	3.72×10^{11}	1.42×10^{11}	6.22×10^{11}	
	Laywood	6.73×10^{11}	2.93×10^{12}	6.93×10^{11}	3.01×10^{12}	

Table S4. Summary of experimental conditions and nanoparticle emission rates from other 3D printing studies.

Authors	Model	Filament material	Extruder temp (°C)	Heating bed temp (°C)	Bed prep	Enclosure	Emission rate (#/min)
Stephens et al. (2013)	-	PLA	200	18	-	-	2.0×10^{10}
	-	ABS	220	118	-	-	1.9×10^{11}
Kim et al. (2015)	0.1 25	PLA	210-220	-	-	no	4.89×10^8
	Cube, 3D systems	ABS	250	-	-	no	1.61×10^{10}
	3DISON plus, Rokit	PLA	210-220	-	-	no	4.27×10^8
	FlashForge	PLA	200	110	Glue	no	~ 108
	Creator	ABS	200	110	Glue	no	$\sim 2 \times 10^{10} - \sim 9 \times 10^{10}$
	Dermel 3D Idea Builder	PLA	230	Room temperature	Alcohol wipe	yes	~ 109
	XYZprinting da Vinci 1.0	ABS	230	100	Glue	yes	$\sim 2 \times 10^{10} - \sim 9 \times 10^{10}$
		PLA	190	45	Alcohol wipe	no	~ 108
		ABS	240	110	Alcohol wipe	no	$\sim 2 \times 10^{10} - \sim 9 \times 10^{10}$
	Lulzbot Mini	ABS (CUBE)	240	110	Alcohol wipe	no	$\sim 2 \times 10^{10} - \sim 9 \times 10^{10}$
Azimi et al.		HIPS	240	100	Alcohol wipe	no	$\sim 4 \times 10^9$
(2016)		Nylon	230	65	Glue	no	$\sim 2 \times 10^8$
		Laywood	200	65	Alcohol wipe	no	$\sim 8 \times 10^7$
		Laybrick	200	65	Alcohol wipe	no	$\sim 6 \times 10^7$
		Polycarbo nate	270	110	Glue	no	$\sim 4 \times 10^{10}$
		PCTPE	235	65	Glue	no	$\sim 2 \times 10^{10}$
		T-glase	240	60	Alcohol wipe	no	~5 × 10 ⁹
	Replicator 2X, MakerBot	ABS	230	110	Glue	no	$\sim 2 \times 10^{10} - \sim 9 \times 10^{10}$
		ABS with enclosure	230	110	Glue	yes	$\sim 2 \times 10^{10} - \sim 9 \times 10^{10}$
Patrick	Cube 2nd generation, 3D systems	PLA	-	-	-	no	2.1 × 10 ⁹
Steinle (2016)		ABS	-	-	-	no	2.4×10^8
Yi et al. (2016)	Replicator 2X, MakerBot	PLA	215	Room temperature	-	no	$1.56 \times 10^{11} - 2.18 \times 10^{11} *$
		ABS	230	110	-	no	$1.04 \times 10^{11} - 2.27 \times 10^{11} *$
Stabile et al (2017).		PLA	180 - 240	-	-	no	Negligible – 9.98 × 10
	Prusa i3, Prusa Research s.r.o.	Wood 1	220 - 240	-	-	no	$5.77 \times 10^{10} - 2.64 \times 10^{10}$
		Wood 2	230 - 240	-	-	no	$1.91 \times 10^{12} - 2.78 \times 10^{12}$
		Copper	220 - 240	-	-	no	$1.98 \times 10^{12} - 1.96 \times 10^{12}$
		Bamboo	210 - 240	-	-	no	$1.65 \times 10^{10} - 2.65 \times 10^{10}$

		Flex PLA	240	-	-	no	4.18×10^{10}
		Styrene- free copolymer	220 - 240	-	-	no	$1.68 \times 10^{11} - 1.58 \times 10^{12}$
		Carbon fiber-filled styrene- free copolymer	220 - 240	-	-	no	$2.31 \times 10^{11} - 1.20 \times 10^{12}$
		Nylon	230 - 240	-	-	no	$Negligible-1.55\times 10^{11}$
		NINJA- FLEX	220 - 240	-	-	no	$Negligible-1.39\times10^{11}$
		PLA	210	70	-	no	0.1×10^8
		ABS	210	70	-	no	2.7×10^8
		PVA	210	70	-	no	1.2×10^{10}
Floyd et al.	Aworldnet A600	HIPS	210	70	-	no	0.5×10^8
(2017)		PCABS	210	70	-	no	6.0×10^8
		Nylon	210	70	-	no	1.2×10^8
		Bronze- PLA	210	70	-	no	3.9×10^9
		PET	210	70	-	no	2.6×10^8
		PLA	200	70	-	no	6.0×10^8
	miniFactory 3 Education Edition Single Extruder, miniFactory Oy	PLA	230	70	-	no	$3.6\times 10^9 - 3.1\times 10^{11}$
Mendes et al. (2017)		ABS	230	90	-	no	$2.2\times 10^{10}\!-3.7\times 10^{11}$
		ABS	238	90	-	no	2.3×10^{12}
		ABS	250	90	-	no	1.3×10^{12}
		ABS	230	110	-	no	$2.4\times10^{11}\!-7.2\times10^{11}$
		ABS	238	110	-	no	4.8×10^{11}
		ABS	250	110	-	no	4.8×10^{11}

^{*}In the Azimi et al. study (2016), the emission rates across all ABS printers with or without enclosure were expressed as a range.

**Total particle emission with various color filaments measured by SMPS