Supporting information

Synthesis of Chondroitin Sulfate A Bearing Syndecan-1 Glycopeptide

Sherif Ramadan,^{1,2} Weizhun Yang,¹ Zeren Zhang,¹ Xuefei Huang^{1,3,4}*

*Email: xuefei@chemistry.msu.edu

¹Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824 USA

²Chemistry Department, Faculty of Science, Benha University, Benha, Qaliobiya 13518, Egypt

³Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824 USA

⁴The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824 USA

Table of Contents:

Experimental procedures and characterization data

S4

Compound	Procedure Page	Starting Page #	
	#	Spectra	for Spectra
1	S45	¹ H, HSQC, HPLC, HRMS	S46
2	S38	¹ H, ¹³ C, COSY	S50
3	S23	¹ H, ¹³ C, COSY, bsgHSQC, gHSQC, gHMBC	S53
4	S18	¹ H, ¹³ C, COSY, bsgHSQC, gHSQC, gHMBC	S59
6	S4	¹ H, ¹³ C, COSY, gHSQC	S65
7	S13	¹ H, ¹³ C, COSY, bsgHSQC, gHSQC, gHMBC	S69
8	S15	¹ H, ¹³ C, COSY, bsgHSQC, gHSQC, gHMBC	S75
9	S18	¹ H, ¹³ C, COSY	S81
10	S16	¹ H, ¹³ C, COSY	S84
11	S14	¹ H, ¹³ C, COSY, bsgHSQC, gHSQC, gHMBC	S87
12	S23	¹ H, ¹³ C, COSY, bsgHSQC, gHSQC, gHMBC	S93
13	S24	¹ H, ¹³ C, COSY, bsgHSQC, gHSQC, gHMBC	S99
14	S26	¹ H, ¹³ C, COSY, bsgHSQC, gHSQC, gHMBC	S105
15	S28	¹ H, ¹³ C, COSY, bsgHSQC, gHSQC, gHMBC	S111
16	S29	¹ H, ¹³ C, COSY, bsgHSQC, gHSQC, gHMBC	S117
17	S30	¹ H, ¹³ C, COSY, bsgHSQC, gHSQC, gHMBC	S123
18	S14	¹ H, ¹³ C, COSY, bsgHSQC, gHMBC	S129
19	S7	¹ H, ¹³ C, COSY, gHSQC	S134
20	S32	¹ H, ¹³ C, COSY, bsgHSQC, gHSQC, gHMBC	S138
22	S10	¹ H, ¹³ C, COSY, bsgHSQC, gHSQC	S144
23	S32	¹ H, ¹³ C, COSY, bsgHSQC, gHSQC, gHMBC	S149
24	S33	¹ H, ¹³ C, COSY	S155

S35	¹ H, ¹³ C, COSY, bsgHSQC, gHSQC, gHMBC	S158
S36	¹ H, ¹³ C, COSY, bsgHSQC, gHSQC, gHMBC	S164
S37	¹ H, ¹³ C, COSY	S170
S40	¹ H, ¹³ C, COSY, bsgHSQC, gHSQC	S173
S40	¹ H, ¹³ C, COSY, bsgHSQC	S178
S41	¹ H, ¹³ CNMR	S182
S43	¹ H, ¹³ C, COSY, HPLC	S184
S43	¹ H, ¹³ CNMR	S188
S44	¹ H, ¹³ C, COSY, HPLC	S190
S44	¹ H, COSY	S194
S9	¹ H, ¹³ C, COSY	S196
S9	¹ H, ¹³ C, COSY	S199
S13	¹ H, ¹³ C, COSY, bsgHSQC, gHSQC, gHMBC	S202
S17	¹ H, ¹³ C, COSY	S208
S19	¹ H, ¹³ C, COSY	S211
S19	¹ H, ¹³ C, COSY	S214
S21	¹ H, ¹³ C, COSY, bsgHSQC, gHSQC, gHMBC	S217
S21	¹ H, ¹³ C, COSY, gHSQC,	S223
S22	¹ H, ¹³ C, COSY	S227
S34	¹ H, ¹³ C, COSY	S230
	S36 S37 S40 S40 S41 S43 S43 S44 S44 S44 S9 S13 S17 S19 S19 S19 S21 S21 S22	S36 ¹ H, ¹³ C, COSY, bsgHSQC, gHSQC, gHMBC S37 ¹ H, ¹³ C, COSY S40 ¹ H, ¹³ C, COSY, bsgHSQC, gHSQC S40 ¹ H, ¹³ C, COSY, bsgHSQC, gHSQC S41 ¹ H, ¹³ C, COSY, bsgHSQC S43 ¹ H, ¹³ C, COSY, HPLC S43 ¹ H, ¹³ C, COSY, HPLC S44 ¹ H, ¹³ C, COSY, HPLC S44 ¹ H, ¹³ C, COSY, HPLC S44 ¹ H, ¹³ C, COSY S9 ¹ H, ¹³ C, COSY S13 ¹ H, ¹³ C, COSY, bsgHSQC, gHSQC, gHMBC S17 ¹ H, ¹³ C, COSY S19 ¹ H, ¹³ C, COSY S21 ¹ H, ¹³ C, COSY, bsgHSQC, gHSQC, gHMBC S21 ¹ H, ¹³ C, COSY, bsgHSQC, gHSQC, gHMBC S21 ¹ H, ¹³ C, COSY, gHSQC, gHMBC S21 ¹ H, ¹³ C, COSY, gHSQC, gHMBC

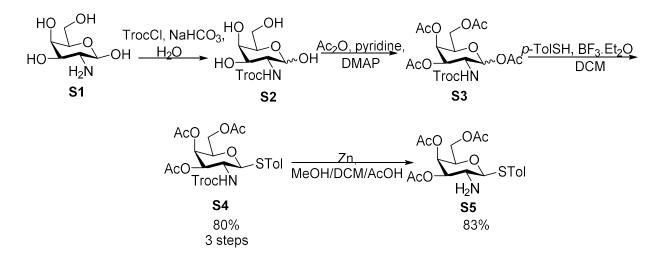
General experimental procedures:

All reactions were carried out under nitrogen with anhydrous solvents in flame-dried glassware, unless otherwise noted. Glycosylation reactions were performed in the presence of molecular sieves, which were flame-dried right before the reaction under high vacuum. Glycosylation solvents were dried using a solvent purification system and used directly without further drying. The chemicals used were reagent grade as supplied, except where noted. Analytical thin-layer chromatography (TLC) was performed using silica gel 60 F254 glass plates. Compounds spots were visualized by UV light (254 nm) and by staining with a yellow solution containing Ce(NH₄)₂(NO₃)₆ (0.5 g) and (NH₄)₆Mo₇O₂₄ 4H₂O (24.0 g) in 6% H₂SO₄ (500 mL). Flash column chromatography was performed on silica gel 60 (230-400 Mesh).

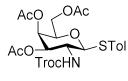
NMR spectra were referenced using residual CHCl₃ (δ ¹H-NMR 7.26 ppm) and CDCl₃ (δ ¹³C-NMR 77.0 ppm). Peak and coupling constants assignments are based on ¹H-NMR, ¹H-¹H gCOSY and (or) ¹H-¹³C gHMQC and ¹H-¹³C gHMBC experiments. Optical rotations were recorded on a Perkin Elemer 341 Polarimeter (λ = 589 nm, 1 dm cell).

Characterization of anomeric stereochemistry:

The stereochemistry of the newly formed glycosidic linkages in the oligosaccharide and intermediates are determined by ${}^{3}J_{(\text{H1,H2})}$ through ¹H-NMR and/or ${}^{1}J_{\text{C1,H1}}$ through gHMQC 2-D NMR (without ¹H decoupling). For glucosyl and galactosamine building blocks, the smaller coupling constants of ${}^{3}J_{(\text{H1,H2})}$ (around 3 Hz) indicate α linkages and larger coupling constants ${}^{3}J_{(\text{H1,H2})}$ (7.2 Hz or larger) indicate β linkages. For all glycosyl linkages, the stereochemistry can be further confirmed via ${}^{1}J_{(\text{C1,H1})}$ (around 170 Hz) suggests α linkages and ${}^{1}J_{(\text{C1,H1})}$ (around 160 Hz) for β linkages.¹

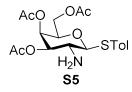

General procedure for pre-activation based single-step glycosylation:

A solution of donor (60 µmol) and freshly activated molecular sieve MS 4Å (200 mg) in CH₂Cl₂ (DCM) (2 mL) was stirred for 30 minutes at room temperature, and then cooled to -78°C. A solution of AgOTf (47 mg, 180 µmol) in anhydrous Et₂O/DCM (0.8 mL/0.2 mL) was added to reaction solution without touching the wall of the flask. After 5 min., orange colored *p*-TolSCl (9.5 µL, 60 µmol) was added to the reaction mixture through a microsyringe. *p*-TolSCl should be added directly to the reaction solution to prevent it from freezing on the flask wall. The characteristic orange color of *p*-TolSCl in the reaction solution dissipated rapidly in a few second indicating depletion of *p*-TolSCl. After the donor was completely activated according to TLC analysis (in 5 minutes), a solution of acceptor (54 µmol) with one equivalent TTBP in DCM (1.2 mL) was slowly added dropwise to the reaction completion, the reaction was stirred for 1 h at -78°C then warmed up to 0 °C under stirring in 2 h (For acceptor contains PMB protective group, the reaction should be quenched at lower temperature to prevent cyclization). Upon reaction completion, the reaction mixture was diluted with DCM (20 mL), quenched by Et₃N and filtered over Celite. The Celite was washed with DCM till no organic compounds were observed in the filtrate by TLC. All DCM solutions were combined and washed twice with saturated aqueous solution NaHCO₃ (20mL) and twice with saturated aqueous solution of NaCl (10 mL). The organic layer was collected and dried over Na₂SO₄. After removal of the solvent, the desired oligosaccharide was purified via silica gel flash chromatography.

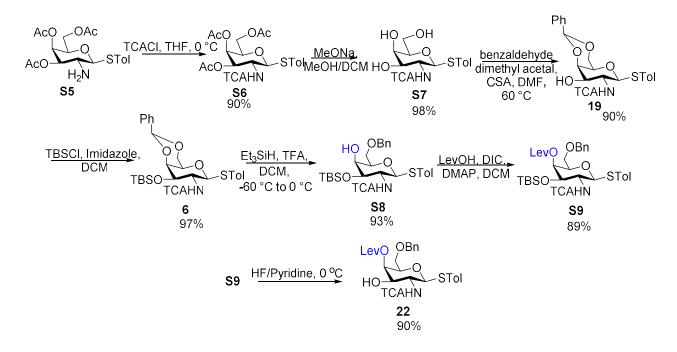

General method for the peptide synthesis:

All peptide synthesizes were synthesized according to the Fmoc-chemistry based solid phase peptide synthesis procedure.² Resin with pre-loaded amino acid was loaded into a plastic syringe fitted with a filter and swelled in DCM for at least 1h. For the coupling reactions, the Fmoc-amino acids (5 equiv) was activated by O-(benzotriazol-1-yl)-N, N, N', N'-tetramethyluronium hexafluorophosphate (HBTU, 4.9 equiv), 1-hydroxybenzotriazole (HOBt, 4.9 equiv), DIPEA (10 equiv) and anhydrous DMF (5 mL) for 30 min. Then this mixture containing activated Fmoc amino acid was transferred to the syringe containing the resin preloaded with amino acid and allowed to rotate on a rotator for 30 min. at 70 °C. After completion of coupling, the resin was washed with DCM (3×5 mL) and DMF (3×5 mL) for 1min, each time followed by cleavage of the Fmoc group by treatment of the resin with a solution of piperidine (20%) in DMF for at least 2×20 min at rt. After every coupling step, unreacted amino groups were capped by treatment with a mixture of Ac₂O (0.5 mL), and DIPEA (1 mL) in DMF (3.5 mL) (capping reagent) for 2 times 15 min each. After completion of the peptide chain, the resin was washed and the peptide was cleaved from the resin by treatment with TFA/TIPS/H₂O (95%: 2.5%: 2.5%) solution for 2.5 h. After filtration, the resins were washed with trifluoroacetic acid $(2 \times 10 \text{ mL})$, and the volume of the combined filtrates was concentrated to 1 mL, then absolute Et₂O (20 mL) at 0°C were added dropwise to the residues. The precipitates were separated from the mother liquor by centrifugation and washed with cold Et₂O (10 mL). The crude products were dissolved in H₂O and subjected to semipreparative RP-HPLC for purification.

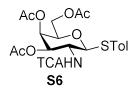
Synthesis of monosaccharide building blocks:



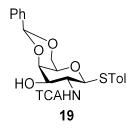
p-Tolyl 3,4,6-tri-O-acetyl-2-deoxy-2-N-trichloroethoxycarbonylamino-1-thio-β-D-galactopyranoside S4:



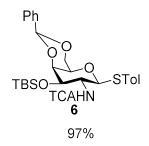
To a solution of D-galactosamine hydrochloride S1 (20 g, 92 mmol) in water (150 mL), sodium bicarbonate (NaHCO₃) (23.4 g, 278 mmol) was added. Then the reaction mixture was cooled down to 0 °C and 2,2,2-trichloroethoxycarbonyl chloride (TrocCl) (15.2 mL, 112 mmol) was added dropwise. The reaction mixture was allowed to stir at room temperature for 3 h, then the precipitate was collected via filtration and dried under reduced pressure to afford crude product S2 as white solid. Then the obtained crude solid was dissolved in pyridine (90 mL), cooled to 0 °C and acetic anhydride (Ac₂O) (75 mL) was added slowly followed by catalytic amount of 4-(dimethylamino)pyridine (DMAP) (0.01 eq.). The reaction was allowed to stir overnight at room temperature. Upon completion, excess acetic anhydride was quenched by slow addition of methanol (MeOH) at 0 °C. The mixture was concentrated under vacuum, diluted with ethyl acetate (EtOAc) and washed with 1 M HCl, saturated NaHCO₃ solution, water and brine. The organic phase was then dried over anhydrous Na₂SO₄, filtered and concentrated. Without purification, the obtained crude as thick syrup S3 (42 g, 80 mmol) and p-toluenethiol (11.98 g, 96.4 mmol) were dissolved in dry DCM (200 mL), followed by slow addition of boron trifluoride etherate (40.7 mL, 321 mmol) at 0 °C. The reaction was stirred at room temperature overnight under nitrogen. Upon completion, the reaction was quenched with a sat. solution of NaHCO₃, then diluted with DCM (100 mL) and extracted with DCM (3 \times 100 mL), washed with NaCl, dried over Na₂SO₄, concentrated and purified using silica gel column chromatography (Hexane/EtOAc, $8:1 \rightarrow 3:1$) to afford the *p*-tolyl 3,4.6-tri-O-acetyl-2-deoxy-2-N-trichloroethoxycarbonylamino-1-thio- β -D-galactopyranoside S4 as a white solid in 80% yield (43.5 g, 74.2 mmol) over three steps. Comparison with literature data³ confirms its identity.


p-Tolyl 3,4,6-tri-O-acetyl-2-amino-2-deoxy-1-thio-β-D-galactopyranoside S5:

Compound S4 (37.5 g, 63.9 mmol) was dissolved in MeOH/AcOH/DCM (2:1:1, 160 mL:80 mL), followed by careful and slow addition of zinc dust (79 g, 1.2 mol). The reaction was allowed to stir for 1h, then filtered over Celite, concentrated to dryness. The residue was diluted with DCM (30 mL), washed with saturated aqueous solution of NaHCO₃, then the organic layer was dried over Na₂SO₄, concentrated and purified with column chromatography (Hexane/EtOAc, 2:1 \rightarrow 0:1) to afford *p*-tolyl 3,4,6-tri-*O*-acetyl-2-amino-2-deoxy-1-thio- β -D-galactopyranoside S5 as a white solid in 83% yield (22.5, 54.7 mmol). Comparison with literature data³ confirms its identity.

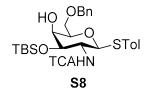


p-Tolyl 3,4,6-tri-O-acetyl- 2-deoxy-2-N-trichloroacetamido-1-thio-β-D-galactopyranoside S6:

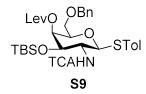

Thioglycoside **S5** (30 g, 72.9 mmol) was dissolved in THF (180 mL), the solution was cooled to 0 °C, then trichloroacetyl chloride (40.7 mL, 364 mmol) was added and triethylamine (Et₃N) (61 mL, 437 mmol) was added dropwise at 0 °C. The reaction mixture was stirred at 0 °C until completion (30 min.). The reaction was diluted with DCM (400 mL), washed with 10% HCl, saturated aqueous NaCO₃ solution. The organic layer was dried over Na₂SO₄, concentrated and the residue was purified by silica gel column chromatography (Hexane/EtOAc, $6:1 \rightarrow 2:1$) affording *p*-tolyl 3,4,6-tri-*O*-acetyl- 2-deoxy-2-*N*-trichloroacetamido-1-thio- β -D-galactopyranoside **S6** as a white solid in 90% yield (36.5 g, 65.6 mmol). [α_D^{20}] = +24 (C = 0.25, DCM). ¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, J = 8.1 Hz, 2H, 2 x aromatic CH), 7.11 (d, J = 8.1 Hz, 2H, 2 x aromatic CH), 6.91 (d, J = 9.0 Hz, 1H, TCANH), 5.38 (d, J = 3.1 Hz, 1H, H-4), 5.32 (dd, J = 10.8, 3.2 Hz, 1H, H-6), 4.91 (d, J = 10.4 Hz, 1H, H-1), 4.20 – 4.09 (m, 3H, H-2, H-5, H-6), 3.94 (t, J = 6.6 Hz, 1H, H-3), 2.33 (s, 3H, SPhCH₃), 2.12 (s, 3H, CH₃CO), 2.03 (s, 3H, CH₃CO), 1.95 (s, 3H, CH₃CO). ¹³C NMR (126 MHz, CDCl₃) δ 170.48, 170.33, 170.13, 161.75, 138.64, 133.27, 129.72, 128.30, 92.28, 86.77, 74.53, 70.58, 66.90, 61.73, 51.31, 21.18, 20.69, 20.64, 20.53. HRMS: C₂₁H₂₄C₁₃NO₈S [M+NH₄]⁺ calcd: 573.0632, obsd: 573.0643.

p-Tolyl 4,6-*O*-benzylidine-2-deoxy-2-*N*-trichloroacetamido-1-thio-β-D-galactopyranoside 19:

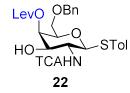
The trichloroacetamide S6 (10 g, 18 mmol) was dissolved in MeOH/DCM (3/2) (150 mL) followed by addition of sodium metal until pH \approx 14. The reaction was stirred for 2-3 h at room temperature then Amberlite resin was added to adjust pH around 7. After filtration, the filtrate was concentrated and dried under vacuo to give product as yellow solid S7 in 98% yield (7.6 g, 17.6 mmol). HRMS: C₁₅H₁₈C₁₃NO₅S [M+Na]⁺ calcd: 451.9869, obsd: 451.9872. The crude triol S7 (7.58 g, 17.6 mmol) was dissolved in in dry DMF (40 mL), and benzaldehyde dimethylacetal (3.96 mL, 26.4 mmol) was added. The pH was adjusted to 4 with a catalytic amount of camphorsulfonic acid (2.04 g, 8.8 mmol). The reaction mixture was stirred overnight at 60 °C. After the reaction completed, it was neutralized with triethylamine (4-5 drops). Then the solvent was concentrated in vacuo and diluted with EtOAc, washed with saturated aqueous NaHCO₃ solution, water, dried over Na₂SO₄. Purification of the resulting residue by flash chromatography (Hexane/EtOAc/DCM, 10:1:1 \rightarrow 5:1:1) gave p-tolyl 4,6-O-benzylidine-2-deoxy-2-N-trichloroacetamido-1-thio- β -Dgalactopyranoside **19** in 90% yield (8.2 g, 15.8 mmol) as a colorless amorphous solid. $[\alpha_D^{20}] = +12.8$ (C = 1.25, DCM). ¹H NMR (500 MHz, CDCl₃) δ 7.52 (d, J = 8.0 Hz, 2H, 2 x aromatic CH), 7.44 – 7.32 (m, 5H, 5 x aromatic CH), 7.10 (d, J = 8.0 Hz, 2H, 2 x aromatic CH), 6.96 (d, J = 8.0 Hz, 1H, TCANH), 5.46 (s, 1H, PhCH), 4.95 (d, J = 10.1 Hz, 1H, H-1), 4.33 (d, J = 12.4 Hz, 1H, H-6), 4.13 (d, J = 3.3 Hz, 1H), 4.10 - 4.03 (m, 1H, H-3), 3.96 (d, J = 12.4 Hz, 1H, H-5), 3.75 (td, J = 10.1, 8.4 Hz, 1H, H-2), 3.42 (dd, J = 8.3, 4.5 Hz, 1H, H-4), 2.82 (d, J = 10.2 Hz, 1H), 2.35 (s, 3H, SPhCH₃). ¹³C NMR (126 MHz, CDCl₃) δ 162.02, 138.63, 137.54, 134.17, 129.97, 129.81, 129.40, 128.54, 128.25, 127.14, 126.82, 126.57, 101.16, 92.53, 84.12, 77.40, 77.15, 76.89, 74.92, 70.82, 70.79, 70.58, 69.87, 62.65, 60.50, 53.91, 45.09, 30.22, 29.55, 27.08, 26.86, 26.43, 26.41, 21.31, 21.10, 14.21. ESI-MS: C₂₂H₂₂Cl₃NO₅S [M+NH₄]⁺ calcd: 535.0623, obsd: 535.0590.


p-Tolyl 4,6-*O*-benzylidine-3-*O*-*t*-butyldimethylsilyl-2-deoxy-2-*N*-trichloroacetamido-1-thio-β-D-galactopyranoside 6:

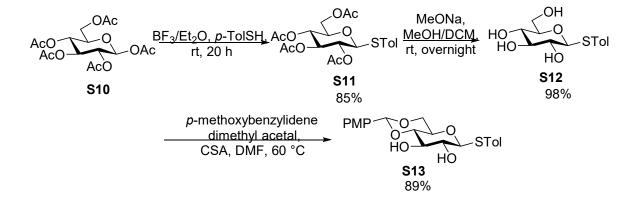
Compound **19** (10 g, 19.3 mmol) and *tert*-butyldimethylsilyl chloride (TBSCl) (4.65 g, 30.8 mmol) were dissolved DCM (50 mL), then imidazole (1.3 g, 19.3 mmol) was added and the reaction mixture was stirred at room temperature. After complete conversion of the starting material, the reaction was diluted with DCM (100 mL) and washed with

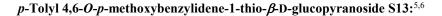

saturated aqueous NaHCO₃ solution. The organic layer was dried over Na₂SO₄, concentrated and the residue was purified by silica gel flash column chromatography (Hexane/EtOAc/DCM, 20:1:1 \rightarrow 5:1:1) to afford *p*-tolyl 4,6-*O*-benzylidine-3-*O*-*t*-butyldimethylsilyl-2-deoxy-2-*N*-trichloroacetamido-1-thio- β -D-galactopyranoside **6** as a colorless amorphous solid in 87% yield (10.6 g, 16.8 mmol). [α_D^{20}] = +32 (C = 0.125, DCM). ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, J = 8.1 Hz, 2H, 2 x aromatic CH), 7.48 (dd, J = 6.8, 2.7 Hz, 2H, 2 x aromatic CH), 7.40 – 7.36 (m, 3H, 3 x aromatic CH), 7.04 (d, J = 8.0 Hz, 2H, 2 x aromatic CH), 6.81 (d, J = 7.1 Hz, 1H, TCANH), 5.52 (s, 1H, PhCH), 5.40 (d, J = 10.1 Hz, 1H, H-1), 4.59 (dd, J = 10.2, 3.2 Hz, 1H, H-3), 4.41 (dd, J = 12.3, 1.3 Hz, 1H, H-5), 4.12 (d, J = 3.1 Hz, 1H, H-4), 4.05 (dd, J = 12.3, 1.5 Hz, 1H, H-6), 3.67 (td, J = 10.0, 7.4 Hz, 1H, H-2), 3.59 (s, 1H, H-6), 2.33 (s, 3H, SPhCH₃), 0.85 (s, 9H, C(CH₃)₃), 0.08 (s, 3H, Si(CH₃)₂), 0.06 (s, 3H, Si(CH₃)₂). ¹³C NMR (126 MHz, CDCl₃) δ 161.26, 138.32, 137.93, 133.83, 129.82, 128.87, 128.51, 128.24, 128.03, 127.61, 126.26, 100.68, 82.95, 76.14, 70.05, 69.44, 63.02, 54.32, 29.56, 26.51, 25.97, 25.71, 25.59, 21.24, 18.09, -4.37, -4.67, -5.28. HRMS: C₂₈H₃₆Cl₃NO₅SSi [M+NH₄]⁺ calcd: 649.1487, obsd: 649.1463.

p-Tolyl 6-*O*-benzyl-3-*O*-*t*-butyldimethylsilyl-2-deoxy-2-*N*-trichloroacetamido-1-thio-β-D-galactopyranoside S8:

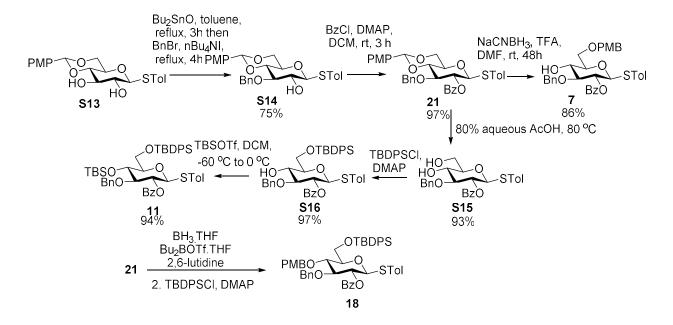

A solution of compound **6** (7.4 g, 11.7 mmol) in anhydrous DCM (100 mL) was cooled to -60 °C, followed by addition of triethylsilane (Et₃SiH)⁴ (18.7 mL, 116.9 mmol), then trifluoroacetic acid (TFA) (9 mL, 116.9 mmol) was added dropwise. The reaction mixture was stirred at -60 °C to 0 °C for 2 h. After completion, the reaction was diluted with DCM and neutralized with Et₃N till the pH around 7. The solution was washed with a saturated aqueous NaHCO₃ solution, dried over Na₂SO₄ and concentrated. Silica gel column chromatography (Hexane/EtOAc, 8:1 \rightarrow 3:1) gave *p*-tolyl 6-*O*-benzyl-3-*O*-tert-butyldimethylsilyl-2-deoxy-2-*N*-trichloroacetamido-1-thio- β -D-galactopyranoside **S8** in 93% yield as colorless oil (6.9 g, 1.9 mmol). [α_D^{20}] = +17 (C = 0.125, DCM). ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, *J* = 8.1 Hz, 2H, 2 x aromatic CH), 7.39 – 7.28 (m, 5H, 5 x aromatic CH), 7.06 (d, *J* = 8.0 Hz, 2H, 2 x aromatic CH), 6.97 (d, *J* = 8.3 Hz, 1H, TCANH), 5.11 (d, *J* = 10.4 Hz, 1H, H-1), 4.61 – 4.52 (m, 2H, PhCH₂), 4.24 (dd, *J* = 9.6, 2.8 Hz, 1H, H-3), 3.92 (d, *J* = 3.2 Hz, 1H, H-4), 3.87 – 3.75 (m, 4H, H-2, H-5, 2 x H-6), 2.56 (s, 1H), 2.31 (s, 3H, SPhCH₃), 0.91 (s, 9H, C(CH₃)₃), 0.14 (s, 3H, Si(CH₃)₂), 0.13 (s, 3H, Si(CH₃)₂). ¹³C NMR (126 MHz, CDCl₃) δ 161.55, 138.13, 138.05, 132.93, 129.76, 129.09, 128.40, 127.72, 127.68, 92.48, 85.54, 77.23, 73.59, 71.99, 69.54, 69.35, 54.58, 25.74, 21.21, 17.91, 6.69, 5.83, -4.38, -4.59. HRMS: C₂₈H₃₈Cl₃NO₅SSi [M+NH₄]⁺ calcd: 651.1644, obsd: 651.1628.

p-Tolyl 6-*O*-benzyl-3-*O*-*t*-butyldimethylsilyl-4-*O*-levulinoyl-2-deoxy-2-*N*-trichloroacetamido-1-thio-β-D-galactopyranoside S9:

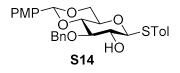



Compound S8 (8.43 g, 13.3 mmol) was dissolved in dry DCM (50 mL), followed by addition of N_N 'diisopropylcarbodiimide (DIC) (9.15 mL, 59.1 mmol), levulinic acid (LevOH) (6.8 mL, 66.4 mmol) and DMAP (4.9 g, 40.1 mmol). The reaction mixture was stirred overnight at room temperature. After the reaction was completed, it was diluted with DCM, washed with 10% aqueous HCl solution, saturated NaHCO₃, brine and dried over Na₂SO₄. The organic phase was concentrated and the residue was purified with silica gel column chromatography (Hexane/EtOAc, $8:1 \rightarrow 3:1$) to afford *p*-tolyl 6-*O*-benzyl-3-*O*-tert-butyldimethylsilyl-4-*O*-levulinoyl-2-deoxy-2-*N*trichloroacetamido-1-thio- β -D-galactopyranoside **S9** as a colorless amorphous solid in 89% yield (8.6 g, 11.8 mmol). $[\alpha_D^{20}] = +25$ (C = 0.701, DCM). ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, J = 8.1 Hz, 2H, 2 x aromatic CH), 7.36 – 7.25 (m, 5H, 5 x aromatic CH), 7.06 (d, J = 8.0 Hz, 2H, 2 x aromatic CH), 6.89 (d, J = 8.2 Hz, 1H, TCANH), 5.36 (d, J =3.0 Hz, 1H, H-6), 5.11 (m, 1H, H-1), 4.49 (m, 2H, PhCH₂), 4.20 (m, 1H, H-6), 3.82 (t, *J* = 6.0 Hz, 2H, H-2, H-5), 3.63 (dd, J = 9.9, 6.2 Hz, 1H, H-4), 3.53 (dd, J = 10.0, 6.0 Hz, 1H, H-3), 2.80 – 2.74 (m, 1H, CH₃COCH₂CH₂), 2.71 – 2.60 (m, 2H, CH₃COCH₂CH₂), 2.56 – 2.49 (m, 1H, CH₃COCH₂CH₂), 2.31 (s, 3H, SPhCH₃), 2.18 (s, 3H, CH₃COCH₂CH₂), 0.82 (s, 9H, C(CH₃)₃), 0.10 (s, 3H, Si(CH₃)₂), 0.06 (s, 3H, Si(CH₃)₂). ¹³C NMR (126 MHz, CDCl₃) δ 206.31, 171.60, 161.39, 138.14, 137.94, 132.88, 129.70, 129.11, 128.35, 127.97, 127.69, 92.45, 85.90, 76.56, 73.62, 70.48, 70.10, 68.63, 55.07, 37.87, 29.91, 27.94, 25.58, 21.18, 17.70, -4.45, -4.91. HRMS: C₃₃H₄₄Cl₃NO₇SSi [M+NH₄]⁺ calcd: 749.2012, obsd: 749.2014.

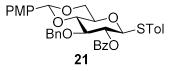
p-Tolyl 6-O-benzyl-4-O-levulinoyl-2-deoxy-2-N-trichloroacetamido-1-thio-β-D-galactopyranoside 22:



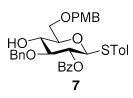
Compound **S9** (1.3 g, 1.8 mmol) was dissolved in pyridine (10 mL) in a plastic flask, followed by the addition of HFpyridine solution (5 mL) at 0 °C. The reaction mixture was stirred until the starting material was consumed as judged by TLC analysis, then it was diluted with EtOAc, washed with saturated CuSO₄ solution, saturated NaHCO₃ solution, and brine, dried over Na₂SO₄ and concentrated. The crude was purified by silica gel column chromatography (Hexane/EtOAc, $8:1 \rightarrow 2:1$) to afford compound **22** as a white solid in 90% yield (0.99 g, 1.6 mmol). [α_D^{20}] = -119.8 (C = 0.017, DCM). ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, *J* = 8.1 Hz, 2H, 2 x aromatic CH), 7.39 – 7.26 (m, 6H, 6 x aromatic CH), 7.06 (d, *J* = 8.1 Hz, 2H, TCANH), 5.40 (d, *J* = 3.1 Hz, 1H, H-6), 4.93 (d, *J* = 10.3 Hz, 1H, H-1), 4.48 (q, *J* = 11.7 Hz, 2H, PHCH₂), 4.12 – 4.06 (m, 1H, H-5), 3.85 – 3.76 (m, 2H, H-2), 3.68 (d, *J* = 7.7 Hz, 1H), 3.59 (dd, *J* = 10.0, 6.4 Hz, 1H, H-4), 3.51 (dd, *J* = 10.0, 5.8 Hz, 1H, H-3), 2.76 – 2.69 (m, 2H, CH₃COCH₂CH₂), 2.59 – 2.52 (m, 2H, CH₃COCH₂CH₂), 2.31 (s, 3H, SPhCH₃), 2.16 (s, 3H, CH₃COCH₂CH₂). ¹³C NMR (126 MHz, CDCl₃) δ 208.45, 172.57, 162.38, 138.14, 137.90, 132.86, 129.75, 129.72, 129.09, 128.43, 128.38, 127.94, 127.78, 127.74, 92.54, 86.55, 76.36, 73.50, 70.52, 70.41, 68.60, 54.38, 38.21, 29.89, 28.14, 21.19. HRMS: $C_{27}H_{30}Cl_3NO_7S$ [M+NH₄]⁺ calcd: 635.1147, obsd: 635.1139.



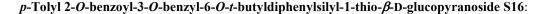
 β -D-Glucopyranosyl pentaacetate **S10** (30 g, 68.4 mmol), *p*-toluenethiol (11.05 g, 89 mmol) were dissolved in dry DCM (400 mL) and the solution was cooled to 0 °C. Then boron trifluoride etherate (34.68 mL, 273 mmol) was added dropwise at 0 °C. The mixture was stirred under N₂ at room temperature for 20 h and then diluted with DCM (500 mL). The organic phase was washed with saturated aqueous solution of NaHCO₃ until the pH is 7 and then dried over Na₂SO₄, filtered and concentrated. The crude was subjected to silica gel column chromatography (Hexane/EtOAc, $20:1 \rightarrow 4:1$) for purification and afforded thioglycoside **S11** in 85% yield (29.7 g, 65.3 mmol) as a white solid. The thioglycoside S11 (29 g, 63.8 mmol) was dissolved in MeOH/DCM (3/2) (300 mL), then Na metal was added the mixture was stirred overnight. The mixture was neutralized with Amberlite resin until the pH is around 7 was added to adjust pH around 7. After filtration, the filtrate was concentrated and dried under vacuo to give p-tolyl 1-thio- β -Dglucopyranoside S12 in 98% yield (17.9 g, 62.5 mmol) as white solid crude. The mixture of p-tolyl 1-thio- β -Dglucopyranoside S12 (29 g, 101.4 mmol), p-anisaldehyde dimethylacetal (27.6 mL, 162.2 mmol) and camphorsulfonic acid (11.8 g, 50.7 mmol) in anhydrous DMF (100 mL) was stirred overnight at 60 °C. After the reaction was completed as judged by TLC, the mixture was diluted with EtOAc (200 mL) followed by washing with saturated aqueous solution of NaHCO₃, water and then dried over Na₂SO₄, filtered and concentrated. Silica gel column chromatography (Hexane/EtOAc, $10:1 \rightarrow 3:1$) afforded p-tolyl 4,6-O-p-methoxybenzylidene-1-thio- β -D-glucopyranoside S13 in 89% yield (33.8 g, 90.2 mmol) as white solid. Comparison with literature data⁴ confirms its identity.

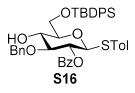


p-Tolyl 3-O-benzyl-4,6-O-p-methoxybenzylidene-1-thio-β-D-glucopyranoside S14:


The mixture of dibutyltin oxide (nBu₂SnO) (11.9 g, 47.8 mmol) and diol thioglycoside **S13** (12.9 g, 31.9 mmol) in anhydrous toluene (250 mL) was heated under reflux in a flask equipped with a Dear-Stark apparatus for 3 h. The reaction mixture was cooled down to room temperature and followed by addition of tetrabutylammonium iodide (nBu₄NI) (2.95 g, 7.97 mmol) and BnBr (6.4 mL, 54.2 mmol). The mixture was heated again under reflux for 4h followed by addition of H₂O (3 mL) to quench the reaction after the reaction was completed. Toluene was removed under reduced pressure and the residue was subjected into silica gel column chromatography (Hexane/EtOAc, 12:1 \rightarrow 5:1) to afford *p*-tolyl 3-*O*-benzyl-4,6-*O*-*p*-methoxybenzylidene-1-thio- β -D-glucopyranoside **S14** in 75% yield (12.4 g, 25.8 mmol) as white solid. Comparison with literature data⁴ confirms its identity.

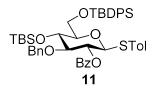
p-Tolyl 2-*O*-benzoyl-3-*O*-benzyl-4,6-*O*-*p*-methoxybenzylidene-1-thio-β-D-glucopyranoside 21:



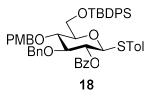

p-Tolyl 3-*O*-benzyl-4,6-*O*-*p*-methoxybenzylidene-1-thio- β -D-glucopyranoside **S14** (10 g, 20.2 mmol) was dissolved in DCM and treated with benzoyl chloride (5.1 mL, 40.4 mmol), *N*,*N*-dimethylaminopyridine (DMAP) (4.94 g, 40.4 mmol) and stirred for 3h till completion. The reaction was diluted with ethyl acetate and washed with saturated aqueous solution of NaHCO₃, water and then dried over Na₂SO₄, filtered and concentrated. *p*-Tolyl 2-*O*-benzoyl-3*O*-benzyl-4,6-*O*-*p*-methoxybenzylidene-1-thio- β -D-glucopyranoside **21** was obtained after purification with flash column chromatography (Hexane/EtOAc, 15:1 \rightarrow 6:1) in 97% yield (12.1 g, 20.3 mmol) as white solid. Comparison with literature data⁴ confirms its identity.

p-Tolyl 2-*O*-benzoyl-3-*O*-benzyl-6-*O*-*p*-methoxybenzyl-1-thio-β-D-glucopyranoside 7:

Compound 21 (15 g, 25.05 mmol) was dissolved in anhydrous DMF (200 mL) and sodium cyanoborohydride (NaCNBH₃)⁷ (15.74 g, 250.5 mmol) was added. The mixture was cooled down to 0 °C, then TFA (19.19 mL, 250.5 mmol) was added dropwise over 30 minutes. The resulting suspension solution was stirred for 24 h till the reaction was completed (the solution became clear). The solution was neutralized with Et₃N, diluted with EtOAc, followed by washing with saturated aqueous solution of NaHCO₃, water and then dried over Na₂SO₄, filtered and concentrated. The crude was purified with silica gel column chromatography (Hexane/EtOAc, $20:1 \rightarrow 6:1$) to afford p-tolyl 2-Obenzoyl-3-O-benzyl-6-O-p-methoxybenzyl-1-thio-β-D-glucopyranoside 7 in 86% yield (12.9 g, 21.5 mmol) as white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.07 (dd, J = 8.3, 1.2 Hz, 2H, 2 x aromatic CH), 7.60 (t, J = 7.4 Hz, 1H, aromatic CH), 7.48 (t, J = 7.8 Hz, 2H, 2 x aromatic CH), 7.36 (d, J = 8.1 Hz, 2H, 2 x aromatic CH), 7.27 (d, J = 8.2 Hz, 2H, 2 x aromatic CH), 7.20 – 7.13 (m, 5H, 2 x aromatic CH), 7.03 (d, J = 8.0 Hz, 2H, 2 x aromatic CH), 6.90 (d, J = 8.7 Hz, 2H, 2 x aromatic CH), 5.24 (dd, J = 9.9, 9.1 Hz, 1H, H-2), 4.71 (m, 10.7 Hz, 3H, H-1, CH₃OPhCH₂), 4.52 (q, J = 11.4 Hz, 2H, PhCH₂), 3.82 (s, 3H, CH₃OPh), 3.80 – 3.74 (m, 3H, H-4, 2 x H-6), 3.69 (t, *J* = 8.9 Hz, 1H, H-3), 3.56 (dt, *J* = 9.5, 4.8 Hz, 1H, H-5), 2.81 (s, 1H), 2.30 (s, 3H, SPhCH₃). ¹³C NMR (126 MHz, cdcl₃) δ 165.19, 159.31, 138.09, 137.84, 133.22, 133.17, 129.88, 129.86, 129.75, 129.72, 129.58, 129.45, 128.90, 128.44, 128.38, 128.25, 128.02, 127.79, 113.84, 86.62, 83.59, 78.21, 74.68, 73.43, 72.10, 72.08, 70.15, 55.30, 21.15. HRMS: C₃₅H₃₆O₇S [M+NH₄]⁺ calcd: 618.2520, obsd: 618.2529.

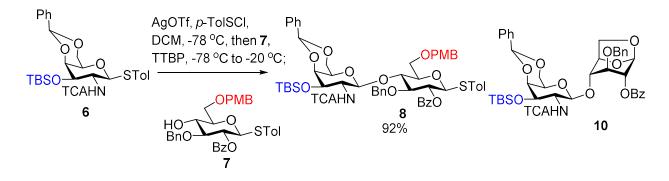


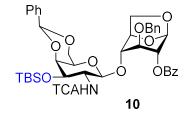
The solution of compound **21** (3.7 g, 6.2 mmol) in 80% aqueous AcOH (50 mL) was stirred at 80 °C for 3 h. Upon completion, the reaction mixture was concentrated and coevaporated with toluene (3x 10 mL), then flash column chromatography afforded the diol **S15** in 93% yield. Diol **S15** (5 g, 10.4 mmol) was dissolved in DCM (40 mL), followed by addition of TBDPSCl (2.98 mL, 11.4 mmol) and DMAP (1.27 g, 10.4 mmol). The reaction mixture was stirred at room temperature. After the reaction was completed as indicated by TLC analysis, the mixture was diluted


with DCM and washed with 10% aqueous HCl solution, saturated NaHCO₃ and brine. The organic phase was dried over Na₂SO₄, concentered and the residue was purified through silica gel column chromatography (Hexane/EtOAc, $15:1 \rightarrow 6:1$) to afford *p*-tolyl 2-*O*-benzoyl-3-*O*-benzyl-6-*O*-*t*-butyldiphenylsilyl-1-thio- β -D-glucopyranoside **S16** as white foaming solid in 97% yield (7.3 g, 10.1 mmol). $[\alpha_D^{20}] = +54.6$ (C = 0.092, DCM). ¹H NMR (500 MHz, CDCl₃) δ 8.18 (dd, J = 8.3, 1.2 Hz, 2H, 2 x aromatic CH), 7.85 (m, 4H, 4 x aromatic CH), 7.68 – 7.64 (m, 1H, aromatic CH), 7.56 – 7.47 (m, 10H, 10 x aromatic CH), 7.29 – 7.24 (m, 5H, 5 x aromatic CH), 7.09 (d, J = 7.9 Hz, 2H, 2 x aromatic CH), 5.37 – 5.33 (m, 1H, H-2), 4.87 (d, J = 10.0 Hz, 1H, H-1), 4.79 (q, J = 11.4 Hz, 2H, PhCH₂), 4.08 (m, 2H, H-4, H-6), 3.94 (t, J = 9.2 Hz, 1H, H-6), 3.81 (t, J = 9.0 Hz, 1H, H-3), 3.61 (dt, J = 9.1, 4.2 Hz, 1H, H-5), 2.80 (br, 1H, OH), 2.37 (s, 3H, SPhCH₃), 1.20 (s, 9H, C(CH₃)₃). ¹³C NMR (126 MHz, CDCl₃) δ 165.31, 138.03, 137.93, 135.80, 135.73, 133.34, 133.17, 133.00, 130.05, 129.97, 129.94, 129.69, 129.10, 128.57, 128.52, 128.16, 127.93, 127.92, 86.64, 84.02, 79.60, 74.83, 72.24, 71.23, 64.15, 26.97, 21.27, 19.38. HRMS: C₄₃H₄₆O₆SSi [M+NH₄]⁺ calcd: 736.3123, obsd: 736.3123.

p-Tolyl 2-*O*-benzoyl-3-*O*-benzyl-4-*O*-*t*-butyldimethylsilyl-6-*O*-*t*-butyldiphenylsilyl-1-thio-β-D-glucopyranoside 11:

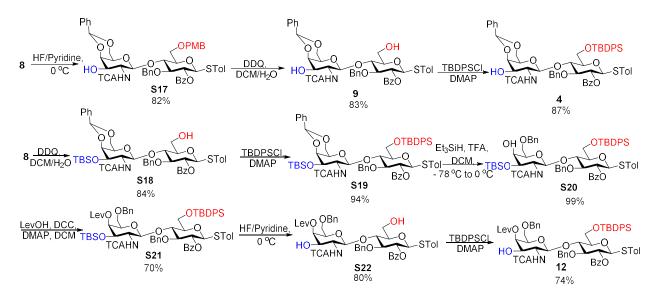
A solution of compound S16 (2.073 g, 2.9 mmol) in anhydrous DCM (25 mL) was cooled down to -40 °C followed by sequential addition of 2,6-lutidine (0.672 mL, 5.8 mmol) and TBSOTf (0.993 mL, 4.3 mmol). The resulting solution was warmed up to 0 °C slowly until no starting material was left judged by TLC analysis. The mixture was diluted with DCM (50 mL) and washed with saturated NaHCO3 solution. The organic phase was collected and dried over Na₂SO₄ followed by separation by flash column chromatography (Hexane/EtOAc, $15:1 \rightarrow 10:1$) to afford *p*-tolyl 2-O-benzoyl-3-O-benzyl-4-O-t-butyldimethylsilyl-6-O-t-butyldiphenylsilyl-1-thio- β -D-glucopyranoside 11 as a white solid in 94% yield (2.2 g, 2.6 mmol). $[\alpha_D^{20}] = +53.3$ (C = 0.075, DCM). ¹H NMR (500 MHz, CDCl₃) δ 8.02 (dd, J = 8.3, 1.2 Hz, 2H, 2 x aromatic CH), 7.78 – 7.75 (m, 4H, 4 x aromatic CH), 7.59 – 7.55 (m, 1H, aromatic CH), 7.45 -7.35 (m, 11H, 11 x aromatic CH), 7.15 - 7.12 (m, 5H, 5 x aromatic CH), 6.98 (d, J = 8.0 Hz, 2H, 2 x aromatic CH), 5.36 - 5.31 (m, 1H, H-2), 4.88 (d, J = 10.1 Hz, 1H, H-1), 4.69 - 4.64 (m, 2H, PhCH₂), 4.01 (dd, J = 11.0, 2.0 Hz, 1H, H-1), 4.69 - 4.64 (m, 2H, PhCH₂), 4.01 (dd, J = 11.0, 2.0 Hz, 1H, H-1), 4.69 - 4.64 (m, 2H, PhCH₂), 4.01 (dd, J = 11.0, 2.0 Hz, 1H, H-1), 4.69 - 4.64 (m, 2H, PhCH₂), 4.01 (dd, J = 11.0, 2.0 Hz, 1H, H-1), 4.69 - 4.64 (m, 2H, PhCH₂), 4.01 (dd, J = 10.0 Hz, 1H, H-1), 4.69 - 4.64 (m, 2H, PhCH₂), 4.01 (dd, J = 10.0 Hz, 1H, H-1), 4.69 - 4.64 (m, 2H, PhCH₂), 4.01 (dd, J = 10.0 Hz, 1H, H-1), 4.69 - 4.64 (m, 2H, PhCH₂), 4.01 (dd, J = 10.0 Hz, 1H, H-1), 4.69 - 4.64 (m, 2H, PhCH₂), 4.01 (dd, J = 10.0 Hz, 1H, H-1), 4.69 - 4.64 (m, 2H, PhCH₂), 4.01 (dd, J = 10.0 Hz, 1H, H-1), 4.69 - 4.64 (m, 2H, PhCH₂), 4.01 (dd, J = 10.0 Hz, 1H, H-1), 4.69 - 4.64 (m, 2H, PhCH₂), 4.01 (dd, J = 10.0 Hz, 1H, H-1), 4.69 - 4.64 (m, 2H, PhCH₂), 4.01 (dd, J = 10.0 Hz, 1H, H-1), 4.69 - 4.64 (m, 2H, PhCH₂), 4.01 (dd, J = 10.0 Hz, 1H, H-1), 4.69 - 4.64 (m, 2H, PhCH₂), 4.01 (dd, J = 10.0 Hz, 1H, H-1), 4.69 - 4.64 (m, 2H, PhCH₂), 4.01 (dd, J = 10.0 Hz, 1H, H-1), 4.69 - 4.64 (m, 2H, PhCH₂), 4.01 (dd, J = 10.0 Hz, 1H, H-1), 4.69 - 4.64 (m, 2H, PhCH₂), 4.01 (dd, J = 10.0 Hz, 1H, H-1), 4.01 (dd, J = 10.01 (dd, H-5), 3.79 (dd, J = 11.0, 6.8 Hz, 1H, H-6), 3.73 – 3.67 (m, 2H, H-3, H-6), 3.60 – 3.56 (m, 1H, H-4), 2.29 (s, 3H, SPhCH₃), 1.13 (s, 9H, C(CH₃)₃), 0.79 (s, 9H, C(CH₃)₃), -0.05 (s, 3H, Si(CH₃)₂), -0.17 (s, 3H, Si(CH₃)₂). ¹³C NMR (126 MHz, cdcl₃) δ 165.33, 137.76, 137.29, 135.88, 135.77, 133.53, 133.37, 133.10, 131.71, 130.81, 129.97, 129.81, 129.61, 129.60, 128.35, 128.05, 127.68, 127.65, 127.64, 127.32, 87.37, 84.71, 81.97, 75.21, 73.02, 71.02, 63.87, 31.66, 29.68, 26.97, 25.87, 25.60, 21.12, 19.30, 17.88, -3.81, -4.74. HRMS: C₄₉H₆₀O₆SSi₂ [M+NH₄]⁺ calcd: 850.3987, obsd: 850.3989.


p-Tolyl 2-*O*-benzoyl-3-*O*-benzyl-4-*O*-*p*-methoxybenzyl-6-*O*-*t*-butyldiphenylsilyl-1-thio-β-D-glucopyranoside 18:

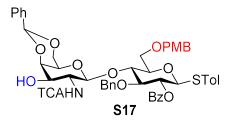

Compound 21 (12 g, 20 mmol) was dissolved in 1M BH₃ solution in THF (226.6 mL, 200 mmol), then treated with 1 M Bu₂BOTf solution in THF (18.9 mL, 24.1 mmol) at 0 °C in the presence of 2,6-lutidine (7 mL, 60 mmol). The reaction mixture was stirred at 0 °C for 10 h, then cooled to -78 °C and quenched with Et₃N, followed by slow addition of cold MeOH. The mixture was slowly warmed to room temperature, the solution was concentrated and subjected to silica gel column chromatography (Hexane/EtOAc, $10:1 \rightarrow 4:1$) to afford p-Tolyl 2-O-benzoyl-3-O-benzyl-4-O-pmethoxybenzyl-1-thio- β -D-glucopyranoside in 69% yield (8.3 g, 13.8 mmol). The resulting product (5.384 g, 9 mmol) was dissolved in DCM (25 mL), followed by addition of TBDPSCI (2.8 mL, 10.8 mmol) and imidazole (1.22 g, 17.9 mmol). The reaction mixture was stirred at room temperature. After the reaction was completed as indicated by TLC analysis, the mixture was diluted with DCM and washed with 10% aqueous HCl solution, saturated NaHCO3 and brine. The organic phase was dried over Na₂SO₄, concentered and the residue was purified through silica gel column chromatography (Hexane/EtOAc, 15:1 \rightarrow 6:1) to afford **18** as a white solid in 91% yield (6.7 g, 8 mmol), $\lceil \alpha_D^{20} \rceil = +90$ (C = 0.1, DCM). ¹H NMR (500 MHz, CDCl₃) δ 8.12 (d, J = 7.2 Hz, 2H, 2 x aromatic CH), 7.84 (m, 4H, 4 x aromatic CH), 7.64 (t, J = 7.4 Hz, 1H, aromatic CH), 7.53 – 7.43 (m, 10H, 10 x aromatic CH), 7.23 – 7.17 (m, 5H, 5 x aromatic CH), 7.11 (d, J = 8.6 Hz, 2H, 2 x aromatic CH), 7.05 (d, J = 8.0 Hz, 2H, 2 x aromatic CH), 6.84 (d, J = 8.6 Hz, 2H, 2 x aromatic CH), 5.33 (dd, J = 18.7, 9.7 Hz, 1H, H-2), 4.87 – 4.79 (m, 3H, H-1, CH₂PhOCH₃, PhCH₂), 4.72 (d, J = 11.0 Hz, 1H, PhCH₂), 4.66 (d, *J* = 10.3 Hz, 1H, CH₂PhOCH₃), 4.09 (d, *J* = 10.1 Hz, 1H, H-6), 4.01 (dd, *J* = 11.3, 3.9 Hz, 1H, H-5), 3.91 (m, 2H, H-3, H-6), 3.83 (s, 3H, PhOCH₃), 3.54 (dd, *J* = 9.3, 2.3 Hz, 1H, H-4), 2.33 (s, 3H, SPhCH₃), 1.17 (s, 9H, C(CH₃)₃). ¹³C NMR (126 MHz, CDCl₃) δ 165.25, 159.35, 137.95, 137.79, 136.00, 135.73, 133.54, 133.18, 132.97, 130.15, 130.10, 129.92, 129.76, 129.74, 129.63, 129.20, 128.46, 128.34, 128.15, 127.86, 127.76, 127.75, 113.90, 86.56, 84.54, 80.35, 77.18, 75.51, 74.91, 72.57, 62.66, 55.32, 26.92, 21.21, 19.35. HRMS: C₅₁H₅₄O₇SSi [M+NH₄]⁺ calcd: 856.3698, obsd: 856.3690.

Synthesis of disaccharides:

p-Tolyl 4,6-*O*-benzylidine-3-*O*-*t*-butyldimethylsilyl-2-deoxy-2-*N*-trichloroacetamido- β -D-galactopyranosyl-(1 \rightarrow 4)-2-*O*-benzyl-3-*O*-benzyl-6-*O*-*p*-methoxybenzyl-1-thio- β -D-glucopyranoside 8:

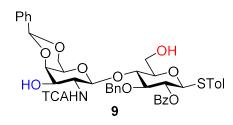


Compound **8** was synthesized from donor **6** and acceptor **7** as a white solid in 92% yield following the general procedure of single step glycosylation. $[\alpha_D^{20}] = +33.3$ (C = 0.09, DCM). ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, *J* = 7.1 Hz, 2H, 2 x aromatic CH), 7.58 (t, *J* = 7.4 Hz, 1H, aromatic CH), 7.46 – 7.42 (m, 4H, 4 x aromatic CH), 7.37 (d, *J* = 8.1 Hz, 2H, 2 x aromatic CH), 7.31 (d, *J* = 8.6 Hz, 2H, 2 x aromatic CH), 7.28 – 7.22 (m, 4H, 4 x aromatic CH), 7.06 (d, *J* = 7.2 Hz, 2H, 2 x aromatic CH), 7.01 (d, *J* = 8.0 Hz, 2H, 2 x aromatic CH), 6.97 (t, *J* = 7.4 Hz, 1H, aromatic CH), 6.92 – 6.84 (m, 4H, 4 x aromatic CH), 6.77 (d, *J* = 7.6 Hz, 1H, TCANH), 5.48 (s, 1H, PhCH), 5.21 (t, *J* = 9.5 Hz, 1H,Glc H-2), 5.02 (m, 2H, GalN H-1, GalN H-3), 4.68 (d, *J* = 10.1 Hz, 1H, Glc H-1), 4.61 (dd, *J* = 14.8, 11.6 Hz, 2H, GalN H-4), 4.48 (d, *J* = 11.4 Hz, 1H, GalN H-5), 4.30 (dd, *J* = 10.6, 3.6 Hz, 1H), 4.25 (dd, *J* = 19.6, 10.7 Hz, 2H, Glc H-4, Glc H-6), 4.01 (d, *J* = 3.4 Hz, 1H, GalN H-2, GalN H-6, Glc H-3, Glc H-5), 3.47 (d, *J* = 9.8 Hz, 1H), 3.10 (s, 1H), 2.28 (s, 3H, SPhCH₃), 0.88 (s, 9H, C(CH₃)₃), 0.10 (d, *J* = 5.9 Hz, 6H, Si(CH₃)₂). ¹³C NMR (126 MHz, cdcl₃) δ 165.09, 161.44, 159.18, 138.45, 138.06, 137.83, 133.53, 132.95, 130.61, 130.10, 129.86, 129.51, 129.48, 128.67, 128.62, 128.28, 128.15, 127.99, 127.81, 126.94, 126.12, 113.64, 100.70, 97.85, 92.52, 86.20, 82.30, 79.16, 75.80, 74.97, 74.77, 72.76, 71.93, 69.30, 68.90, 68.31, 66.37, 57.05, 55.33, 25.69, 25.63, 21.13, 18.07, -4.37, -4.49. HRMS: C₅₀H₆₄Cl₃NO₁₂SSi [M+NH₄]+ calcd: 1125.3322, obsd: 1125.3304.

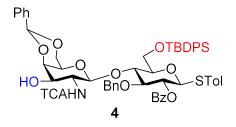


 $[\alpha_D^{20}] = +197.6$ (C = 0.658, DCM). ¹H NMR (500 MHz, CDCl₃) δ 8.05 – 8.00 (m, 2H, 2 x aromatic CH), 7.41 – 7.18 (m, 14H, 14 x aromatic CH), 7.00 (d, *J* = 6.6 Hz, 1H, TCANH), 5.59 (d, *J* = 1.5 Hz, 1H, Glc H-1), 5.40 (s, 1H), 5.21 (d, *J* = 8.3 Hz, 1H, GalN H-1), 4.91 (q, *J* = 1.4 Hz, 1H, Glc H-2), 4.84 (d, *J* = 12.6 Hz, 1H, PhCH₂), 4.71 (d, *J* = 12.7 Hz, 1H, PhCH₂), 4.64 (dd, *J* = 6.2, 1.5 Hz, 1H, Glc H-4), 4.46 (dd, *J* = 10.5, 3.6 Hz, 1H, GalN H-3), 4.17 (dd, *J* = 7.3, 1.1 Hz, 1H, Glc H-6), 4.07 (t, *J* = 1.6 Hz, 1H, Glc H-3), 3.97 (dd, *J* = 3.7, 1.1 Hz, 1H, GalN H-4), 3.81 – 3.75 (m, 4H, 2 x GalN H-6, Glc H-5, Glc H-6), 3.62 (d, *J* = 8.9 Hz, 1H, GalN H-2), 3.01 (q, *J* = 1.5 Hz, 1H, GalN H-5), 0.88 (s, 9H, C(CH₃)₃), 0.08 (d, *J* = 4.5 Hz, 6H, Si(CH₃)₂). ¹³C NMR (126 MHz, CDCl₃) δ 166.04, 161.80, 138.15, 137.82, 133.01, 129.88, 129.51, 128.67, 128.65, 128.43, 128.34, 127.97, 127.82, 127.67, 126.02, 100.33, 99.41, 99.03, 92.26,

78.52, 77.27, 77.21, 77.01, 76.76, 75.77, 74.69, 74.49, 71.55, 69.36, 68.91, 68.70, 66.48, 64.91, 57.08, 25.68, 18.06, -4.52, -4.57. HRMS: C₄₁H₄₈Cl₃NO₁₁Si [M+NH₄]⁺ calcd: 881.2400, obsd: 881.2407.

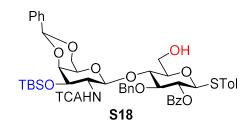


p-Tolyl 4,6-*O*-benzylidine-2-deoxy-2-*N*-trichloroacetamido- β -D-galactopyranosyl-(1 \rightarrow 4)-2-*O*-benzoyl-3-*O*-benzyl-6-*O*-*p*-methoxybenzyl-1-thio- β -D-glucopyranoside S17:


Compound 8 (1.163 g, 1.04 mmol) was dissolved in pyridine (8 mL) in a plastic flask followed by addition of 65-70% HF-pyridine (4 mL) under 0 °C. The reaction mixture was stirred overnight until all the starting material was consumed as judged by TLC analysis. The reaction mixture was diluted with EtOAc, washed with 10% HCl, saturated aqueous solution of NaHCO₃, water and then dried over Na₂SO₄, filtered and concentrated. Silica gel column purification (Hexane/EtOAc, $8:1 \rightarrow$ 3:1) afforded *p*-tolyl 4,6-*O*-benzylidine-2-deoxy-2-*N*-trichloroacetamido- β -Dgalactopyranosyl- $(1 \rightarrow 4)$ -2-O-benzoyl-3-O-benzyl-6-O-p-methoxybenzyl-1-thio- β -D-glucopyranoside S17 as a white solid in 82% yield (0.86 g, 0.86 mmol). $[\alpha_D^{20}] = -93.3$ (C = 0.075, DCM). ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, J = 7.1 Hz, 2H, 2 x aromatic CH), 7.59 (dd, J = 10.6, 4.3 Hz, 1H, aromatic CH), 7.47 – 7.42 (m, 4H, 4 x aromatic CH), 7.37 (d, J = 8.1 Hz, 2H, 2 x aromatic CH), 7.32 – 7.25 (m, 6H, 6 x aromatic CH), 7.17 – 7.13 (m, 2H, 2 x aromatic CH), 7.05 (d, J = 8.0 Hz, 2H, 2 x aromatic CH), 7.01 (d, J = 7.4 Hz, 1H, aromatic CH), 6.96 - 6.91 (m, 4H, 4 x aromatic CH), 6.79 (d, J = 8.2 Hz, 1H, TCANH), 5.53 (s, 1H, PhCH), 5.25 – 5.20 (m, 1H, Glc H-2), 5.05 (d, J = 11.4 Hz, 1H), 4.69 (d, J = 10.1 Hz, 1H, Glc H-1), 4.65 (dd, J = 11.5, 6.5 Hz, 2H, PhCH₂), 4.59 (d, J = 8.3 Hz, 1H, GalN H-1), 4.45 (d, J = 11.5 Hz, 1H, CH₂PhOCH₃), 4.22 (d, J = 11.9 Hz, 1H, GalN H-6), 4.08 (dd, J = 12.2, 6.2 Hz, 2H, GalN H-4, GalN H-5), 3.99 (dt, J = 10.7, 8.3 Hz, 1H, GalN H-2), 3.92 (dd, J = 12.4, 1.3 Hz, 1H, Glc H-6), 3.84 (s, 3H, CH₃OPh), 3.83 (dd, J = 4.3, 2.8 Hz, 1H, Glc H-5), 3.81 – 3.77 (m, 1H, GalN H-5), 3.74 (dd, J = 11.2, 2.7 Hz, 1H, Glc H-3), 3.57 – 3.48 (m, 2H, GalN H-3, Glc H-4), 3.18 (s, 1H, GalN H-6), 2.56 (s, 1H), 2.30 (s, 3H, SPhCH₃). ¹³C NMR (126 MHz, CDCl₃) δ 165.14, 162.61, 159.64, 138.25, 138.24, 137.46, 133.62, 133.08, 130.21, 129.98, 129.88, 129.77, 129.59, 129.20, 128.48, 128.36, 128.21, 127.99, 127.92, 127.17, 126.34, 113.93, 101.23, 99.71, 92.64, 86.40, 81.93, 78.73, 77.40, 75.18, 74.70, 73.39, 71.96, 70.63, 68.71, 68.68, 66.53, 56.17, 55.41, 21.16. HRMS: C₅₀H₅₀Cl₃NO₁₂S [M+NH₄]⁺ calcd: 1011.2458, obsd: 1011.2452.

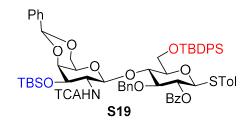
p-Tolyl 4,6-*O*-benzylidine-2-deoxy-2-*N*-trichloroacetamido- β -D-galactopyranosyl-(1 \rightarrow 4)-2-*O*-benzoyl-3-*O*-benzyl-1-thio- β -D-glucopyranoside 9:

Compound **S17** (0.9, 0.9 mmol) was dissolved in DCM/H₂O (10:1, 16 mL) followed by addition of DDQ (0.49 g, 2.17 mmol). The reaction mixture was stirred at room temperature and after the reaction was completed (≈ 5 h), it was quenched with saturated aqueous NaHCO₃ solution, diluted with DCM. The organic phase was washed with H₂O until the solution became colorless. The solvent was concentrated in vacuo and the residue was purified by silica gel column chromatography (Hexane/EtOAc, $8:1 \rightarrow 1:2$) to afford *p*-tolyl 4,6-*O*-benzylidine-2-deoxy-2-*N*-trichloroacetamido- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -2-O-benzoyl-3-O-benzyl-1-thio- β -D-glucopyranoside **9** as white solid in 83% yield (0.66 g, 0.75 mmol). $[\alpha_D^{20}] = +20$ (C = 0.05, DCM). ¹H NMR (500 MHz, CDCl₃) δ 8.05 (dd, J = 8.1, 0.9 Hz, 2H, 2 x aromatic CH), 7.63 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.8 Hz, 2H, 2 x aromatic CH), 7.44 (dd, J = 7.7, 1.6 Hz, 2H, 2 x aromatic CH), 7.33 – 7.26 (m, 5H, 5 x aromatic CH), 7.10 (dd, J = 13.1, 7.6 Hz, 4H, 4 x aromatic CH), 7.03 (t, J = 7.4 Hz, 1H, aromatic CH), 6.93 (t, J = 7.6 Hz, 2H, 2 x aromatic CH), 5.37 (s, 1H, PhCH), 5.27 – 5.22 (m, 1H, Glc H-2), 5.14 (d, J = 11.1 Hz, 1H, PhCH₂), 4.83 (d, J = 8.3 Hz, 1H, GalN H-1), 4.78 (d, J = 10.2 Hz, 1H, Glc H-1), 4.61 (d, J = 11.1 Hz, 1H, PhCH₂), 4.23 (t, J = 9.2 Hz, 1H, Glc H-4), 4.14 (m, 2H, GalN H-2, GalN H-5), 4.00 (d, J = 10.9 Hz, 1H, GalN H-3), 3.92 – 3.82 (m, 4H, 2 x GalN H-6, Glc H-3, Glc H-6), 3.60 (dt, J = 29.3, 13.3 Hz, 2H, Glc H-6), 3.41 $(d, J = 9.6 \text{ Hz}, 1\text{H}, \text{Glc H-5}), 3.34 \text{ (m, 1H, GalN H-4)}, 2.70 \text{ (s, 2H)}, 2.31 \text{ (s, 3H, SPhCH_3)}.$ ¹³C NMR (126 MHz, 126 MHz, 126 MHz), 13</sup>C NMR (126 MHz), 13 C NMR (12 CDCl₃) δ 162.88, 138.45, 138.32, 137.51, 134.48, 133.50, 132.61, 129.95, 129.84, 129.76, 129.53, 129.15, 129.00, 128.56, 128.19, 128.06, 127.32, 126.32, 101.08, 100.37, 92.86, 87.25, 82.21, 79.37, 75.49, 74.32, 72.30, 69.95, 68.80, 66.36, 61.00, 56.21, 21.13. HRMS: C₄₂H₄₂Cl₃NO₁₁S [M+NH₄]⁺ calcd: 891.1882, obsd: 891.1860.


p-Tolyl 4,6-*O*-benzylidine-2-deoxy-2-*N*-trichloroacetamido- β -D-galactopyranosyl-(1 \rightarrow 4)-2-*O*-benzoyl-3-*O*-benzyl-6-*O*-*t*-butyldiphenylsilyl-1-thio- β -D-glucopyranoside 4:

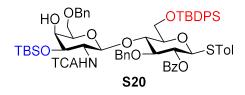
Compound 9 (2 g, 2.3 mmol) was dissolved in DCM (25 mL) followed by the addition of DMAP (0.42 g, 3.4 mmol) and TBDPSCl (0.654 mL, 2.5 mmol). The resulting mixture was stirred at room temperature until the reaction was completed (≈ 6 h). The reaction was diluted with DCM, washed with 10% HCl, saturated aqueous NaHCO₃ solution and dried over Na₂SO₄. After concentration, column purification (Hexane/EtOAc, 7:1 \rightarrow 2:1) afforded *p*-tolyl 4,6-*O*-benzylidine-2-deoxy-2-*N*-trichloroacetamido- β -D-galactopyranosyl-(1 \rightarrow 4)-2-*O*-benzyl-3-*O*-benzyl-6-*O*-t-

butyldiphenylsilyl-1-thio-β-D-glucopyranoside **4** as a white solid in 87% yield (2.2 g, 2 mmol). $[α_D^{20}] = -179.96$ (C = 0.017, DCM). ¹H NMR (500 MHz, CDCl₃) δ 8.03 (dd, J = 8.3, 1.2 Hz, 2H, 2 x aromatic CH), 7.75 (td, J = 8.2, 1.4 Hz, 4H, 4 x aromatic CH), 7.63 – 7.58 (m, 1H, aromatic CH), 7.53 (m, 1H, aromatic CH), 7.51 – 7.45 (m, 5H, 5 x aromatic CH), 7.43 (dd, J = 7.7, 6.0 Hz, 6H, 6 x aromatic CH), 7.30 (m, 1H, aromatic CH), 7.26 (m, 3H, 3 x aromatic CH), 7.18 – 7.13 (m, 2H, 2 x aromatic CH), 7.05 – 6.98 (m, 3H, 3 x aromatic CH), 6.95 – 6.89 (m, 2H, 2 x aromatic CH), 6.00 (d, J = 8.8 Hz, 1H, TCANH), 5.54 (s, 1H, PhCH₂), 4.60 (d, J = 8.3 Hz, 1H, GalN H-1), 4.37 (d, J = 9.7 Hz, 1H GalN H-3), 4.33 (d, J = 4.2 Hz, 1H, Glc H-5), 4.16 – 4.11 (m, 2H, 2 x GalN H-6), 4.02 – 3.94 (m, 2H, GalN H-2, Glc H-6b), 3.86 – 3.80 (m, 2H, Glc H-3), 3.38 – 3.30 (m, 2H, Glc H-4, Glc H-6b), 3.20 (s, 1H), 2.45 (d, J = 11.4 Hz, 1H), 2.28 (s, 3H, SPhCH₃), 1.12 (s, 9H, C(CH₃)₃). ¹³C NMR (126 MHz, CDCl₃) δ 165.03, 162.16, 138.25, 137.29, 136.02, 135.65, 134.15, 133.78, 132.98, 132.10, 130.36, 130.19, 130.16, 129.89, 129.54, 129.30, 128.65, 128.32, 128.24, 128.13, 127.91, 127.85, 127.16, 126.36, 101.45, 99.69, 92.39, 85.75, 81.86, 79.43, 75.20, 74.97, 74.49, 71.84, 70.25, 68.72, 66.45, 61.81, 55.82, 26.87, 21.16, 19.41. HRMS: C₅₈H₆₀Cl₃NO₁₁SSi [M+NH₄]⁺ calcd: m/z: 1129.3060, obsd: 1129.3032.

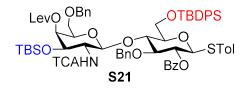

p-Tolyl 4,6-*O*-benzylidine-3-*O*-*t*-butyldimethylsilyl-2-deoxy-2-*N*-trichloroacetamido- β -D-galactopyranosyl-(1 \rightarrow 4)-2-*O*-benzyl-3-*O*-benzyl-1-thio- β -D-glucopyranoside S18:

Compound **8** (13.27 g, 11.96 mmol) was dissolved in DCM/H₂O (10:1, 55 mL) followed by addition of DDQ (6.52 g, 28.7 mmol). The mixture was stirred at room temperature till all starting material was consumed (4-6 h). The reaction was diluted with DCM (150 mL), quenched with saturated NaHCO₃ solution and the organic phase was washed with

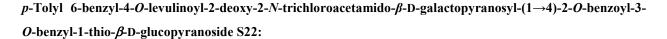
water till the solution become clear, dried over Na₂SO₄ and concentrated. Silica gel column purification (Hexane/EtOAc, $10:1 \rightarrow 2:1$) afforded compound **S18** as a white solid in 84% yield (9.94 g, 10 mmol). [α_D^{20}] = +236.4 (C = 0.258, DCM). ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, *J* = 7.5 Hz, 2H, 2 x aromatic CH), 7.64 (t, *J* = 7.1 Hz, 1H, aromatic CH), 7.49 (t, *J* = 7.5 Hz, 4H, 4 x aromatic CH), 7.44 – 7.22 (m, 6H, 6 x aromatic CH), 7.11 (d, *J* = 7.3 Hz, 3H, 3 x aromatic CH), 7.02 (t, *J* = 7.1 Hz, 1H, aromatic CH), 6.88 (t, *J* = 7.2 Hz, 2H, 2 x aromatic CH), 5.39 (s, 1H, PhCH), 5.28 (t, *J* = 9.6 Hz, 1H, Glc H-2), 5.19 (d, *J* = 11.4 Hz, 1H, PhCH₂), 5.04 (d, *J* = 8.0 Hz, 1H, GalN H-1), 4.79 (d, *J* = 10.1 Hz, 1H, PhCH₂), 4.67 (d, *J* = 11.5 Hz, 1H, Glc H-1), 4.33 (dd, *J* = 22.8, 10.9 Hz, 2H, Glc H-5, Glc H-6), 4.22 (d, *J* = 9.3 Hz, 1H, GalN H-5), 4.12 – 4.01 (m, 2H, GalN H-2, GalN H-4), 3.93 (dd, *J* = 26.4, 10.5 Hz, 3H, GalN H-3, GalN H-6, Glc H-3), 3.64 (m, 1H, GalN H-6), 3.45 (m, 2H, Glc H-4, Glc H-6), 2.83 (s, 1H), 2.33 (s, 3H, SPhCH₃), 0.89 (s, 9H, C(CH₃)₃), 0.05 (s, 3H, Si(CH₃)₂), 0.00 (s, 3H, Si(CH₃)₂). ¹³C NMR (126 MHz, CDCl₃) δ 165.70, 161.88, 138.63, 138.30, 137.93, 133.34, 132.84, 129.97, 129.82, 129.75, 129.15, 128.73, 128.47, 128.00, 127.17, 126.37, 109.99, 100.85, 99.35, 92.82, 87.20, 82.37, 79.62, 75.37, 75.25, 74.22, 72.16, 70.22, 69.07, 66.37, 61.14, 56.50, 25.79, 21.17, 18.21, -4.09, -4.24. ESI-MS: C₁₀₀H₁₁₂Cl₃NO₁₇SSi₃ [M+NH₄]⁺ calcd: 1837.6363, obsd: 1837.6073.

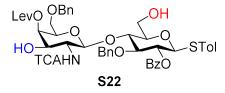

p-Tolyl 4,6-*O*-benzylidine-3-*O*-*t*-butyldimethylsilyl-2-deoxy-2-*N*-trichloroacetamido- β -D-galactopyranosyl-(1 \rightarrow 4)-2-*O*-benzyl-3-*O*-benzyl-6-*O*-*t*-butyldiphenylsilyl-1-thio- β -D-glucopyranoside S19:

Compound **S18** (6.618 g, 6.7 mmol) was dissolved in DCM (25 mL) followed by the addition of TBDPSCl (2.26 mL, 8.7 mmol) and imidazole (0.911 g, 13.4 mmol). The mixture was stirred overnight at room temperature. After reaction completion, it was diluted with DCM, washed with saturated NaHCO₃, dried over Na₂SO₄, concentrated and purified with silica gel column (Hexane/EtOAc, $20:1 \rightarrow 5:1$) to afford compound **S19** as a white solid in 94% yield (7.72 g, 6.3 mmol). [α_D^{20}] = +51.6 (C = 1.125, DCM). ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, *J* = 7.6 Hz, 2H, 2 x aromatic CH), 7.92 (dd, *J* = 16.6, 5.8 Hz, 4H, 4 x aromatic CH), 7.65 (t, *J* = 7.3 Hz, 1H, aromatic CH), 7.62 – 7.46 (m, 12H, 12 x aromatic CH), 7.36 (d, *J* = 4.6 Hz, 3H, 3 x aromatic CH), 7.20 (d, *J* = 7.4 Hz, 2H, 2 x aromatic CH), 7.13 – 7.06 (m, 3H, 3 x aromatic CH), 6.99 (t, *J* = 7.4 Hz, 2H, 2 x aromatic CH), 6.47 (d, *J* = 7.9 Hz, 1H, TCANH), 5.61 (s, 1H, PhCH), 5.40 (t, *J* = 9.5 Hz, 1H, Glc H-2), 5.22 (d, *J* = 11.6 Hz, 1H, PhCH₂), 5.13 (d, *J* = 8.1 Hz, 1H, GalN H-1), 4.86 (d, *J* = 10.0 Hz, 1H, Glc H-1), 4.79 (d, *J* = 11.6 Hz, 1H, PhCH₂), 4.56 (t, *J* = 9.1 Hz, 1H, GalN H-3), 4.43 (d, *J* = 12.2 Hz, 1H, Glc H-4), 4.24 (d, *J* = 11.5 Hz, 1H, Glc H-6), 4.18 – 3.97 (m, 6H, GalN H-2, GalN H-5, 2 x GalN H-6, Glc H-3, Glc H-6), 3.52 (d, *J* = 2.7 Hz, 6H, Si(CH₃)₂). ¹³C NMR (126 MHz, CDCl₃) δ 165.24, 161.49, 138.61, 138.13, 137.97, 136.21, 135.85, 134.03, 133.68, 133.13, 132.58, 130.28, 130.13, 129.98, 129.71, 128.86, 128.81, 128.45, 128.35, 128.35, 128.13, 127.98, 127.92, 127.09, 126.31, 100.92, 98.55, 92.51, 86.39, 82.54, 79.92, 75.71,


75.04, 74.24, 72.15, 70.10, 68.99, 66.53, 62.53, 56.56, 26.99, 25.84, 21.30, 19.63, 18.22, -4.05, -4.23. HRMS: C₆₄H₇₄Cl₃NO₁₁SSi₂ [M+NH₄]⁺ calcd: m/z 1243.3925, obsd: 1243.3917.

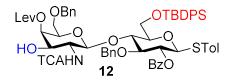
p-Tolyl 6-benzyl-3-*O*-*t*-butyldimethylsilyl-2-deoxy-2-*N*-trichloroacetamido- β -D-galactopyranosyl-(1 \rightarrow 4)-2-*O*-benzyl-3-*O*-benzyl-6-*O*-*t*-butyldiphenylsilyl-1-thio- β -D-glucopyranoside S20:


Compound S19 (3.3 g, 2.7 mmol) was dissolved in anhydrous DCM (20 mL) and the solution was cooled to -60 °C, followed by addition of Et₃SiH (4.29 mL, 26.9 mmol), then TFA (2.06 mL, 26.9 mmol) was added dropwise. The reaction mixture was stirred at -60 °C to -5 °C for 2 h. After completion, the reaction diluted with DCM and was neutralized with Et₃N till the pH around 7. The solution was washed with saturated aqueous NaHCO₃ solution, dried over Na₂SO₄ and concentrated. Silica gel column chromatography (Hexane/EtOAc, $15:1 \rightarrow 5:1$) gave compound **S20** as a white solid in 99% yield (3.3 g, 2.7 mmol). $[\alpha_D^{20}] = +74.96$ (C = 0.067, DCM). ¹H NMR (500 MHz, CDCl₃) δ 8.12 (d, J = 7.6 Hz, 2H, 2 x aromatic CH), 7.82 (m, 4H, 4 x aromatic CH), 7.64 (t, J = 7.2 Hz, 1H, aromatic CH), 7.48 (m, 10H, 10 x aromatic CH), 7.38 (m, 5H, 5 x aromatic CH), 7.28 – 7.23 (m, 2H, 2 x aromatic CH), 7.10 (m, 5H, 5 x aromatic CH), 6.13 (d, J = 9.1 Hz, 1H, TCANH), 5.27 (t, J = 9.5 Hz, 1H, Glc H-2), 5.00 (d, J = 10.8 Hz, 1H, PhCH₂), 4.77 (d, *J* = 10.0 Hz, 1H, Glc H-1), 4.69 (d, *J* = 8.3 Hz, 1H, GalN H-1), 4.63 (d, *J* = 10.8 Hz, 1H, PhCH₂), 4.55 – 4.49 (m, 2H, PhCH₂), 4.43 (t, *J* = 9.2 Hz, 1H, GalN H-5), 4.16 (d, *J* = 11.4 Hz, 1H, Glc H-4), 3.98 (dd, *J* = 22.0, 12.8 Hz, 2H, GalN H-2, GalN H-4), 3.89 – 3.77 (m, 3H, Glc H-3, Glc H-5), 3.71 – 3.67 (m, 1H, Glc H-6), 3.62 (dd, J = 9.3, 5.1 Hz, 1H, GalN H-3), 3.56 – 3.52 (m, 1H, GalN H-6), 3.42 (d, J = 9.5 Hz, 1H, GalN H-6), 2.52 (s, 1H), 2.34 (s, 3H, SPhCH₃), 1.14 (s, 9H, C(CH₃)₃), 0.98 (s, 9H, C(CH₃)₃), 0.23 (s, 3H, Si(CH₃)₂), 0.19 (s, 3H, Si(CH₃)₂). ¹³C NMR (126 MHz, CDCl₃) & 165.09, 161.47, 138.37, 138.21, 138.17, 136.09, 135.85, 133.94, 133.90, 133.08, 132.39, 130.25, 130.13, 130.01, 129.91, 129.63, 128.58, 128.46, 128.43, 128.31, 128.05, 127.98, 127.82, 127.71, 127.30, 98.89, 92.45, 85.98, 82.08, 79.70, 75.18, 73.72, 73.66, 72.80, 72.09, 71.96, 68.21, 68.16, 61.86, 56.07, 26.86, 25.73, 21.25, 19.29, 17.95, -4.12, -4.49. HRMS: C₆₄H₇₆Cl₃NO₁₁SSi₂ [M+NH₄]⁺ calcd: m/z 1245.4081, obsd: 1245.4069.


p-Tolyl 6-benzyl-3-*O*-*t*-butyldimethylsilyl-4-*O*-levulinoyl-2-deoxy-2-*N*-trichloroacetamido- β -D-glactopyranosyl-(1 \rightarrow 4)-2-*O*-benzyl-3-*O*-benzyl-6-*O*-*t*-butyldiphenylsilyl-1-thio- β -D-glucopyranoside S21:

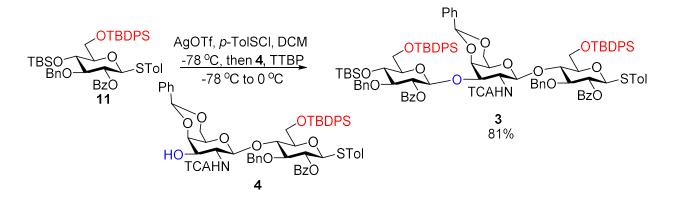
The mixture of compound **S20** (3.384 g, 2.9 mmol), DMAP (1.76 g, 14.4 mmol) and DCC (4.16 g, 20.2 mmol) was dissolved in DCM (40 mL) followed by addition of LevOH (2.66 mL, 26 mmol). The resulting solution was stirred at

50 °C overnight, then the reaction was diluted with DCM, washed with 10% HCl solution, saturated NaHCO3 solution, dried over Na₂SO₄, concentrated and purified with silica gel column (Hexane/EtOAc, $15:1 \rightarrow 5:1$) to afford compound **S21** as a white solid in 70% yield (2.6 g, 1.9 mmol). $[\alpha_D^{20}] = +21.02$ (C = 0.33, DCM). ¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, J = 7.3 Hz, 2H, 2 x aromatic CH), 7.78 (m, 4H, 4 x aromatic CH), 7.65 – 7.60 (m, 1H, aromatic CH), 7.54 -7.41 (m, 10H, 10 x aromatic CH), 7.39 - 7.31 (m, 5H, 5 x aromatic CH), 7.19 (d, J = 6.1 Hz, 2H, 2 x aromatic CH), 7.10 (d, J=6.9 Hz, 3H, 3 x aromatic CH), 7.05 (d, J=7.5 Hz, 2H, 2 x aromatic CH), 6.06 (d, J=9.1 Hz, 1H, TCANH), 5.43 (s, 1H, GalN H-4), 5.22 (t, J = 9.4 Hz, 1H, Glc H-2), 4.99 (d, J = 10.6 Hz, 1H, PhCH₂), 4.74 (d, J = 9.9 Hz, 1H, Glc H-1), 4.63 (m, 2H, GalN H-1, PhCH₂), 4.42 (dd, J = 19.5, 10.3 Hz, 3H, GlC H-6a), 4.15 (d, J = 11.3 Hz, 1H, Glc H-4, 4.00 - 3.94 (m, 1H, GalN H-2), 3.83 (m, 2H, Glc H-3, Glc H-5), 3.61 (d, J = 7.2 Hz, 2H, GalN H-3), 3.54 - 3.37(m, 3H, GalN H-5, 2 x GalN H-6, Glc H-6b), 2.84 – 2.77 (m, 1H, CH₃COCH₂CH₂), 2.67 (m, 1H, CH₃COCH₂CH₂), 2.62 – 2.50 (m, 2H, CH₃COCH₂CH₂), 2.32 (s, 3H, SPhCH₃), 2.12 (s, 3H, CH₃COCH₂CH₂), 1.12 (s, 9H, C(CH₃)₃), 0.86 (s, 9H, C(CH₃)₃), 0.18 (s, 3H, Si(CH₃)₂), 0.11 (s, 3H, Si(CH₃)₂). ¹³C NMR (126 MHz, CDCl₃) δ 205.90, 171.57, 165.02, 161.42, 138.26, 138.21, 137.95, 136.04, 135.78, 135.48, 133.99, 133.81, 133.06, 132.30, 130.22, 130.01, 129.89, 129.61, 128.66, 128.42, 128.37, 128.17, 128.06, 127.82, 127.72, 127.40, 109.99, 99.27, 92.33, 85.87, 81.84, 79.61, 75.06, 73.82, 73.74, 72.14, 71.94, 70.34, 68.97, 67.37, 61.77, 56.42, 53.29, 37.77, 29.78, 27.87, 26.85, 25.92, 25.58, 21.21, 19.27, 17.71, -4.33, -4.62. HRMS: C₆₉H₈₂Cl₃NO₁₃SSi₂ [M+NH₄]⁺ calcd: 1343.4449, obsd: 1343.4418.

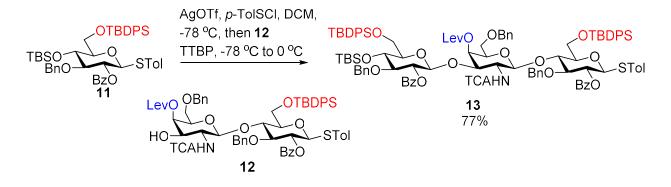


Compound **S21** (2.45 g, 1.8 mmol) was dissolved in pyridine (14 mL) in a plastic flask followed by addition of 65-70% HF-pyridine solution (7 mL) at 0 °C and the solution was stirred overnight. Then the reaction mixture was diluted with EtOAc, washed with 10% HCl solution, saturated NaHCO₃ solution, dried over Na₂SO₄ and concentrated. Purification with silica gel column (Hexane/EtOAc, $8:1 \rightarrow 0:1$) afforded compound **S22** as white solid in 80% yield (1.4 g, 1.5 mmol). $[\alpha_{D}^{20}] = -60.2$ (C = 0.083, DCM). ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, *J* = 7.2 Hz, 2H, 2 x aromatic CH), 7.59 (t, *J* = 7.4 Hz, 1H, aromatic CH), 7.45 (t, *J* = 7.8 Hz, 2H, 2 x aromatic CH), 7.31 (dd, *J* = 14.3, 7.4 Hz, 4H, 4 x aromatic CH), 7.25 (dd, *J* = 12.6, 6.0 Hz, 4H, 3 x aromatic CH, TCANH), 7.14 (d, *J* = 6.8 Hz, 2H, 2 x aromatic CH), 7.09 – 7.02 (m, 5H, 5 x aromatic CH), 5.42 (d, *J* = 2.5 Hz, 1H, GalN H-3), 5.15 (t, *J* = 9.6 Hz, 1H, Glc H-2), 4.91 (d, *J* = 11.0 Hz, 1H, PhCH₂), 4.74 (dd, *J* = 11.0, 9.0 Hz, 2H, GalN H-1, Glc H-1), 4.60 (d, *J* = 11.1 Hz, 1H, PhCH₂), 4.38 (d, *J* = 11.8 Hz, 1H), 4.26 (d, *J* = 11.8 Hz, 1H), 4.05 – 3.95 (m, 3H, GalN H-4, GalN H-6, Glc H-5), 3.37 (dd, *J* = 9.7, 5.7 Hz, 1H, Glc H-6), 3.31 (dd, *J* = 9.9, 7.4 Hz, 2H, Glc H-4), 2.76 – 2.66 (m, 3H, CH₃COCH₂CH₂), 2.56 (dt, *J* = 12.5, 6.1 Hz, 1H, CH₃COCH₂CH₂), 2.51 (s, 3H, CH₃COCH₂CH₂). ¹³C NMR (126 MHz, CDCl₃) δ 207.97, 172.47, 165.20, 162.89, 138.35,

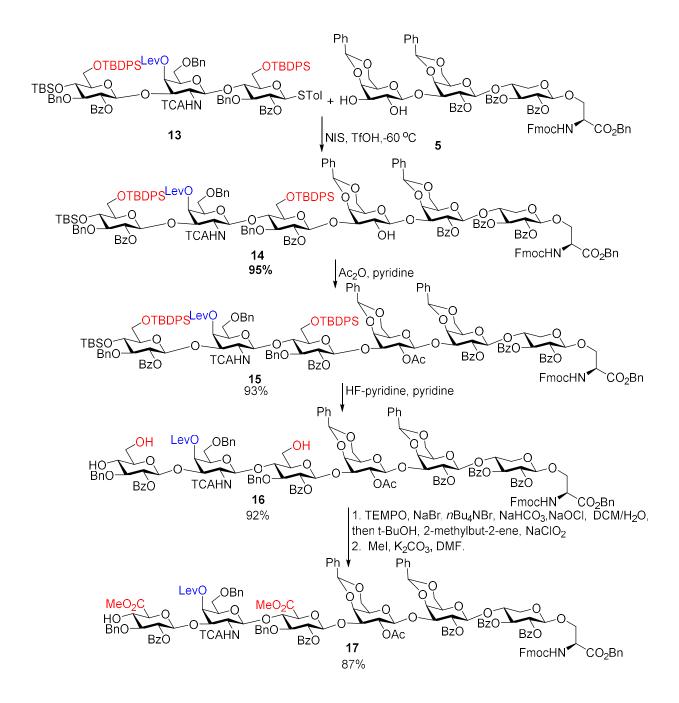
138.29, 137.86, 133.19, 133.00, 129.84, 129.77, 129.74, 128.62, 128.40, 128.37, 127.96, 127.89, 127.88, 127.64, 127.31, 100.31, 92.59, 86.58, 81.37, 79.13, 77.27, 77.02, 76.77, 75.93, 74.74, 73.47, 72.33, 71.99, 70.40, 69.93, 67.60, 61.52, 56.46, 38.27, 29.74, 28.01, 21.14. HRMS: C₄₇H₅₀Cl₃NO₁₃S [M+NH₄]⁺ calcd: 991.2407, obsd: 991.2411.


p-Tolyl 6-benzyl-4-*O*-levulinoyl-2-deoxy-2-*N*-trichloroacetamido- β -D-galactopyranosyl-(1 \rightarrow 4)-2-*O*-benzoyl-3-*O*-benzyl-6-*O*-t-butyldiphenylsilyl-1-thio- β -D-glucopyranoside 12:

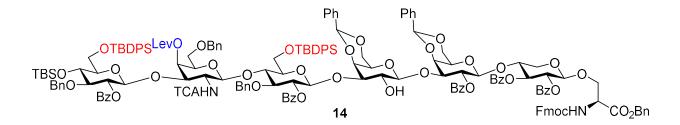
Compound S22 (1.312, 1.35 mmol) was dissolved in DCM (15 mL), followed by addition of DMAP (0.328, 2.7 mmol) and TBDPSCI (0.385 mL, 1.48 mmol). The mixture was stirred at room temperature for 6 h till completion. The reaction was diluted with DCM, washed with10% HCl solution, saturated NaHCO3 solution, dried over Na2SO4 and concentrated. Purification with silica gel column (Hexane/EtOAc, $10:1 \rightarrow 3:1$) afforded compound **12** as a white solid in 74% yield (1.2 g, 1 mmol). $[\alpha_D^{20}] = -150.2$ (C = 0.033, DCM). ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, J = 7.2 Hz, 2H, 2 x aromatic CH), 7.75 – 7.70 (m, 4H, 4 x aromatic CH), 7.61 (t, J = 7.4 Hz, 1H, 2 x aromatic CH), 7.53 – 7.40 (m, 11H, 11 x aromatic CH), 7.37 – 7.33 (m, 2H, 2 x aromatic CH), 7.31 – 7.27 (m, 3H, 3 x aromatic CH), 7.14 (d, J = 7.1 Hz, 2H, 2 x aromatic CH), 7.07 (d, J = 7.4 Hz, 1H, aromatic CH), 7.05 - 6.99 (m, 4H, 4 x aromatic CH), 5.94 (d, J = 8.8 Hz, 1H, TCANH), 5.45 (d, J = 3.0 Hz, 1H, Glc H-6), 5.17 (t, J = 9.6 Hz, 1H, Glc H-2), 4.90 (d, J = 10.7 Hz)Hz, 1H, PhCH₂), 4.69 (d, *J* = 10.0 Hz, 1H, Glc H-1), 4.56 (d, *J* = 10.8 Hz, 1H, PhCH₂), 4.47 (d, *J* = 2.1 Hz, 1H), 4.45 (m, 1H, GalN H-1), 4.35 - 4.29 (m, 2H, GalN H-6, Glc H-4), 4.12 (d, J = 10.9 Hz, 1H), 3.85 - 3.81 (m, 1H, Glc H-3), 3.80 – 3.75 (m, 2H, GalN H-2, GalN H-6), 3.57 (dd, *J* = 7.8, 5.6 Hz, 1H, GalN H-4), 3.43 (dd, *J* = 9.3, 5.2 Hz, 1H, Glc H-6), 3.39 – 3.33 (m, 3H, GalN H-3, GalN H-5, Glc H-5), 2.93 (d, J = 8.7 Hz, 1H), 2.71 (dd, J = 11.6, 5.1 Hz, 2H, CH₃COCH₂CH₂), 2.47 (dd, *J* = 11.1, 6.1 Hz, 2H, CH₃COCH₂CH₂), 2.30 (s, 3H, SPhCH₃), 2.13 (s, 3H), 1.09 (s, 9H, C(CH₃)₃). ¹³C NMR (126 MHz, CDCl₃) & 207.95, 172.37, 164.95, 162.19, 138.30, 138.26, 137.83, 136.00, 135.72, 134.24, 133.64, 133.03, 132.14, 130.37, 130.14, 130.09, 129.84, 129.56, 128.40, 128.38, 128.28, 128.19, 127.98, 127.91, 127.85, 127.72, 127.68, 127.34, 99.70, 92.43, 85.59, 81.72, 79.45, 74.98, 74.06, 73.56, 72.08, 71.83, 70.52, $69.45, 67.01, 61.47, 56.04, 38.36, 29.68, 28.07, 26.78, 21.19, 19.22. HRMS: C_{63}H_{68}Cl_3NO_{13}SSi [M+NH_4]^+ calcd: m/z$ 1229.3584, obsd: 1229.3540.


Synthesis of trisaccharides:

p-Tolyl 2-*O*-benzoyl-3-*O*-benzyl-4-*O*-t-butyldimethylsilyl-6-*O*-t-butyldiphenylsilyl- β -D-glucopyranosyl-(1 \rightarrow 3)-4,6-*O*-benzylidine-2-deoxy-2-*N*-trichloroacetamido- β -D-galactopyranosyl-(1 \rightarrow 4)-2-*O*-benzoyl-3-*O*-benzyl-6-*O*-t-butyldiphenylsilyl-1-thio- β -D-glucopyranoside 3:

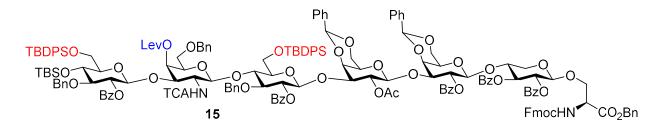

The trisaccharide 3 was synthesized from donor 11 and acceptor 4 in 81% yield following the general procedure of single step glycosylation. $[\alpha_D^{20}] = +103.4$ (C = 0.058, DCM). ¹H NMR (500 MHz, CDCl₃) δ 7.97 (dd, J = 11.8, 4.2 Hz, 4H, 4 x aromatic CH), 7.76 – 7.66 (m, 9H, 9 x aromatic CH), 7.59 – 7.49 (m, 5H, 5 x aromatic CH), 7.45 – 7.41 (m, 5H, 5 x aromatic CH), 7.38 - 7.34 (m, 8H, 8 x aromatic CH), 7.31 (dd, J = 7.4, 4.6 Hz, 6H, 6 x aromatic CH), 7.11 – 7.05 (m, 6H, 6 x aromatic CH), 6.97 (t, J = 7.7 Hz, 4H, 4 x aromatic CH), 6.82 (t, J = 7.5 Hz, 2H, 2 x aromatic CH), 6.38 (d, J = 6.9 Hz, 1H, TCANH), 5.42 (s, 1H, PhCH), 5.36 - 5.32 (m, 1H, H-2a), 5.23 (dd, J = 13.5, 5.5 Hz, 2H, H-1b, H-2c), 4.94 (m, 2H, H-1a, PhCH₂), 4.70 (d, *J* = 10.1 Hz, 1H, H-1c), 4.61 (d, *J* = 5.2 Hz, 2H, PhCH₂), 4.53 - 4.51 (m, 1H, PhCH₂), 4.44 - 4.39 (m, 2H, H-3b, H-6c), 4.28 - 4.23 (m, 1H, H-6b), 4.09 (d, J = 11.7 Hz, 1H, H-4a), 4.02 (dd, J = 10.8, 2.2 Hz, 1H, H-4c), 3.96 – 3.88 (m, 3H, H-4b, H-6b, H-6a), 3.72 (dd, J = 10.8, 8.1 Hz, 2H, H-5a), 3.58 (dd, J = 9.5, 5.7 Hz, 3H, H-3c, H-6c, H-3a), 3.54 – 3.49 (m, 1H, H-2b), 3.35 (dd, J = 9.7, 2.2 Hz, 1H, H-5b), 3.06 (m, 1H, H-5c), 2.27 (s, 3H, SPhCH₃), 1.07 (s, 9H, C(CH₃)₃), 1.03 (s, 9H, C(CH₃)₃), 0.70 (s, 9H, C(CH₃)₃), -0.15 (s, 3H, Si(CH₃)₂), -0.30 (s, 3H, Si(CH₃)₂). ¹³C NMR (126 MHz, CDCl₃) δ 165.11, 165.07, 161.64, 138.38, 138.12, 137.76, 137.65, 135.98, 135.75, 135.50, 135.49, 133.62, 133.19, 133.13, 133.06, 133.00, 132.96, 132.88, 132.76, 130.08, 129.98, 129.91, 129.83, 129.81, 129.70, 129.67, 129.58, 129.53, 128.53, 128.37, 128.34, 128.28, 127.99, 127.95, 127.90, 127.83, 127.80, 127.71, 127.65, 127.33, 127.23, 126.87, 126.17, 101.39, 100.18, 97.28, 91.90, 86.73, 83.19, 82.82, 79.95, 77.82, 75.63, 74.70, 74.54, 74.16, 74.08, 72.27, 71.38, 69.21, 68.46, 66.52, 64.62, 64.01, 62.96, 55.91, 29.71, 26.95, 26.78, 25.78, 21.11, 19.44, 19.28, 17.75, 14.15, -4.03, -4.69. ESI-MS: C₁₀₀H₁₁₂Cl₃NO₁₇SSi₃ [M+NH₄]⁺ calcd: 1837.6363, obsd: 1837.6099.

p-Tolyl 2-*O*-benzoyl-3-*O*-benzyl-4-*O*-t-butyldimethylsilyl-6-*O*-*t*-butyldiphenylsilyl-β-D-glucopyranosyl-(1→3)-6-*O*-benzyl-4-*O*-levulinoyl-2-deoxy-2-*N*-trichloroacetamido-β-D-galactopyranosyl-(1→4)-2-*O*-benzoyl-3-*O*benzyl-6-*O*-t-butyldiphenylsilyl-1-thio-β-D-glucopyranoside 13:

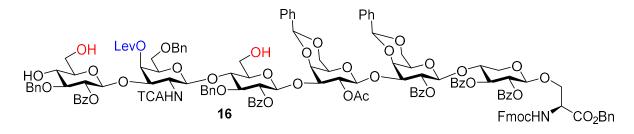


Compounds 13 were synthesized from donor 11 and acceptors 12 in 77% yield, following the general procedure of single step glycosylation. $[\alpha_D^{20}] = +83.1$ (C = 0.12, DCM). ¹H NMR (500 MHz, CDCl₃) δ 8.06 (dd, J = 8.2, 1.1 Hz, 2H, 2 x aromatic CH), 7.96 – 7.91 (m, 2H, 2 x aromatic CH), 7.79 – 7.71 (m, 8H, 8 x aromatic CH), 7.60 (dd, J = 11.7, 4.3 Hz, 1H, aromatic CH), 7.53 (t, J = 7.4 Hz, 1H, aromatic CH), 7.50 – 7.37 (m, 18H, 18 x aromatic CH), 7.29 - 7.20 (m, 5H, 5 x aromatic CH), 7.16 - 7.10 (m, 5H, 5 x aromatic CH), 7.10 - 7.00 (m, 7H, 7 x aromatic CH), 5.76 -5.74 (m, 1H, TCANH), 5.22 - 5.17 (m, 2H, H-2a, H-2c), 4.88 (d, J = 10.6 Hz, 1H, PhCH₂), 4.74 - 4.66 (m, 3H, H-1a, H-1b, H-1c), 4.63 (d, J = 11.5 Hz, 2H, PhCH₂), 4.50 (d, J = 10.6 Hz, 1H, PhCH₂), 4.35 (d, J = 12.0 Hz, 1H, H-6c), 4.31 – 4.23 (m, 2H, H-6b, H-5c), 4.17 (dd, J = 10.8, 3.4 Hz, 1H, H-4c), 4.02 – 3.96 (m, 2H, H-3b, H-4a), 3.83 (dd, J = 10.8, 7.8 Hz, 1H, H-4b), 3.66 (m, 8H, H-2b, H-6b, H-3c, H-3a, H-5a, H-6a), 3.41 (m, 2H, H-5b), 3.31 (d, J = 9.5 Hz, 1H, H-6c), 3.02 – 2.95 (m, 1H), 2.84 – 2.61 (m, 4H, CH₃COCH₂CH₂), 2.31 (s, 3H, SPhCH₃), 2.20 (s, 3H, CH₃COCH₂CH₂), 1.05 (d, J = 7.3 Hz, 18H, 2 x C(CH₃)₃), 0.78 (s, 9H, C(CH₃)₃), -0.07 (s, 3H, Si(CH₃)₂), -0.25 (s, 3H, Si(CH₃)₂). ¹³C NMR (126 MHz, CDCl₃) & 206.81, 171.58, 165.07, 165.00, 161.01, 138.21, 138.17, 138.09, 137.66, 136.02, 135.96, 135.71, 135.65, 133.81, 133.71, 133.39, 133.03, 132.85, 132.47, 130.16, 129.93, 129.87, 129.83, 129.75, 129.73, 129.69, 129.54, 128.38, 128.35, 128.23, 128.19, 128.16, 128.04, 127.98, 127.93, 127.88, 127.84, 127.80, 127.47, 127.35, 127.33, 100.63, 98.23, 92.45, 85.90, 82.82, 81.93, 79.54, 78.11, 74.85, 74.75, 74.07, 73.63, 73.41, 72.93, 72.75, 71.95, 71.60, 69.44, 67.76, 64.33, 61.85, 56.00, 38.28, 29.84, 27.99, 26.84, 26.80, 25.89, 21.18, 19.19, 19.17, 17.89, -3.79, -4.70. HRMS: C₁₀₅H₁₂₀Cl₃NO₁₉SSi₃ [M+2NH₄]²⁺ calcd: 1937.6887, obsd: 1937.6815. $HRMS: C_{105}H_{120}Cl_{3}NO_{19}SSi_{3} \ [M+NH_{4}]^{+} \ calcd: \ m/z \ 1937.6887, \ obsd: \ 1937.6927.$

Synthesis of Hexasaccharide 17:

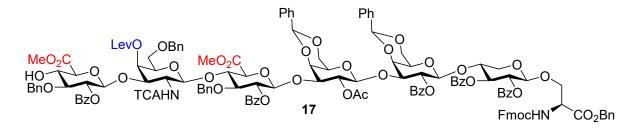

N-Fluorenylmethyloxycarbonyl-*O*-[2-*O*-benzoyl-3-*O*-benzyl-4-*O*-*t*-butyldimethylsilyl-6-*O*-*t*-butyldiphenylsilyl- β -D-glucopyranosyl-(1 \rightarrow 3)-6-*O*-benzyl-4-*O*-levulinoyl-2-deoxy-2-*N*-trichloroacetamido- β -D-galactopyranosyl-(1 \rightarrow 4)-2-*O*-benzoyl-3-*O*-benzyl-6-*O*-*t*-butyldiphenylsilyl- β -D-glucopyranosyl-(1 \rightarrow 3)-4,6-*O*-benzylidene- β -D-galactopyranosyl-(1 \rightarrow 3)-2-*O*-benzoyl-4,6-*O*-benzylidene- β -D-galactopyranosyl-(1 \rightarrow 4)-2,3-di-*O*-benzoyl- β -D-xylopyranosyl]-L-serine benzyl ester 14:

Trisaccharide acceptor 5^8 (0.273g, 0.2 mmol) and trisaccharide donor 13 (0.5 g, 0.26 mmol) were dissolved in anhydrous DCM (10 mL) followed by addition of freshly activated MS. The mixture was stirred at room temperature for 1 h then cooled to -60 °C. NIS (0.076 g, 0.34 mmol) was added followed by the addition of TfOH (8.05 µL, 91 µmol). The reaction was stirred for 2 h from -60 °C to room temperature. After the reaction was completed, the mixture was diluted with DCM, neutralized with DIPEA, filtered through Celite, washed with saturated NaHCO₃, brine, dried over Na₂SO₄, concentrated and purified with silica gel column chromatography (toluene/acetone, $30:1 \rightarrow 3:1$) to give hexasaccharide 14 as a colorless oil in 95% yield (0.6 g, 0.19 mmol). $[\alpha_D^{20}] = +285.7$ (C = 0.005, DCM). ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, J = 7.9 Hz, 4H, 4 x aromatic CH), 7.95 – 7.92 (m, 4H, 4 x aromatic CH), 7.92 – 7.90 (m, 2H, 2 x aromatic CH), 7.78 (dd, J = 7.5, 3.5 Hz, 2H, 2 x aromatic CH), 7.70 – 7.66 (m, 4H, 4 x aromatic CH), 7.61 (d, J = 7.1 Hz, 4H, 4 x aromatic CH), 7.56 – 7.50 (m, 4H, 4 x aromatic CH), 7.49 – 7.45 (m, 3H, 3 x aromatic CH), 7.39 (dd, J = 11.2, 4.5 Hz, 7H, 7 x aromatic CH), 7.37 – 7.34 (m, 12H, 12 x aromatic CH), 7.33 (m, 3H, 3 x aromatic CH), 7.28 (m, 8H, 8 x aromatic CH), 7.23 (m, 10H, 10 x aromatic CH), 7.20 (dd, J = 5.9, 2.7 Hz, 3H, 3 x aromatic CH), 7.18 - 7.15 (m, 4H, 4 x aromatic CH), 7.10 (dd, J = 6.3, 2.7 Hz, 4H, 4 x aromatic CH), 7.05 (dd, J = 6.3, 2.7 Hz, 4H, 4 x aromatic CH), 7.05 (dd, J = 6.3, 2.7 Hz, 4 H, 4 x aromatic CH), 7.05 (dd, J = 6.3, 2.5 Hz, 4 H, 4 x aromatic CH), 7.05 (dd, J = 6.3, 2.5 Hz, 4 Hz, 4 x aromatic CH), 7.05 (dd, J = 6.3, 3.5 Hz, 4 Hz, 4 x aromatic CH), 7.05 (dd, J = 6.3, 3.5 Hz, 4 Hz, 4 x aromatic CH), 7.05 (dd, J = 6.3, 3.5 Hz, 4 Hz, 4 x aromatic CH), 7.05 (dd, 3.5 Hz, 4 Hz, 4 x aromatic CH), 7.05 (dd, 3.5 Hz, 4 H 6.6, 3.0 Hz, 3H, 3 x aromatic CH), 7.02 (dd, J = 5.1, 1.7 Hz, 2H, 2 x aromatic CH), 6.03 (d, J = 8.0 Hz, 1H, TCANH), 5.67 (d, J = 3.4 Hz, 1H), 5.63 - 5.55 (m, 3H), 5.50 (dd, J = 10.0, 8.2 Hz, 2H), 5.34 (d, J = 5.5 Hz, 2H, 2 x PhCH),5.18 – 5.11 (m, 4H, GalN H-3), 5.10 – 5.03 (m, 3H, COOCH₂Ph), 4.84 (dd, 2H, GalN H-1, H-1), 4.79 (d, *J* = 11.0 Hz, 1H), 4.74 (d, J = 7.9 Hz, 1H, H-1), 4.67 (d, J = 7.7 Hz, 1H, H-1), 4.60 – 4.57 (m, 3H, H-1, PhCH₂), 4.51 (d, J = 8.5 Hz, 1H), 4.48 (d, J = 11.0 Hz, 1H), 4.34 (d, J = 3.1 Hz, 1H), 4.33 – 4.29 (m, 2H), 4.25 (dd, J = 9.8, 7.0 Hz, 3H), 4.20 (m, 2H, H-1), 4.15 (dd, J = 11.7, 6.4 Hz, 3H), 4.08 (d, J = 12.0 Hz, 1H), 3.94 (d, J = 3.7 Hz, 4H, GalN H-6), 3.85 (d, J = 12.0 Hz, 1H), 3.94 (d, J = 3.7 Hz, 4H, GalN H-6), 3.85 (d, J = 12.0 Hz, 1H), 3.94 (d, J = 3.7 Hz, 4H, GalN H-6), 3.85 (d, J = 12.0 Hz, 1H), 3.94 (d, J = 3.7 Hz, 4H, GalN H-6), 3.85 (d, J = 12.0 Hz, 1H), 3.94 (d, J = 3.7 Hz, 4H, GalN H-6), 3.85 (d, J = 12.0 Hz, 1H), 3.94 (d, J = 3.7 Hz, 4H, GalN H-6), 3.85 (d, J = 3.7 Hz, 1H), 3.94 (dJ = 12.0 Hz, 1H), 3.77 (d, J = 5.8 Hz, 3H, GalN H-5, GalN H-6), 3.75 (s, 1H), 3.68 (d, J = 13.0 Hz, 3H, GalN H-4), 3.64 (d, J = 9.0 Hz, 1H), 3.58 (t, J = 6.3 Hz, 1H), 3.54 (t, J = 6.3 Hz, 3H), 3.51 - 3.47 (m, 2H, GalN H-2), 3.36 (d, J = 0.0 Hz, 1H), 3.58 (t, J = 0.0 Hz, 1H), 3.58 (t, J = 0.0 Hz, 1H), 3.54 (t, J= 6.1 Hz, 2H), 3.18 (s, 1H), 3.10 (s, 1H), 2.94 (dd, J = 14.5, 11.4 Hz, 2H), 2.81 – 2.73 (m, 2H), 2.62 (m, 4H, 2H), 2.62 (m, 2H), 2.64 (m CH₃COCH₂CH₂), 2.17 (s, 3H, CH₃COCH₂CH₂), 0.97 (s, 9H, C(CH₃)₃), 0.96 (s, 9H, C(CH₃)₃), 0.74 (s, 9H, C(CH₃)₃), -0.11 (s, 3H, Si(CH₃)₂), -0.28 (s, 3H, Si(CH₃)₂). ¹³C NMR (126 MHz, CDCl₃) & 206.79, 171.60, 169.52, 165.58, 165.33, 165.19, 165.14, 165.04, 161.15, 155.96, 143.87, 143.72, 141.30, 141.27, 138.37, 138.18, 137.89, 137.76, 137.70, 137.60, 135.93, 135.74, 135.68, 135.63, 135.18, 133.79, 133.47, 133.23, 133.17, 133.00, 130.29, 130.01, 129.97, 129.82, 129.76, 129.70, 129.53, 129.15, 129.08, 128.84, 128.54, 128.45, 128.39, 128.32, 128.27, 128.20, 128.07, 128.00, 127.94, 127.90, 127.85, 127.77, 127.70, 127.52, 127.36, 127.25, 127.16, 127.14, 126.70, 125.97, 125.34, 125.23, 120.04, 103.77, 102.09, 101.05, 100.65, 100.55, 100.20, 97.69, 92.44, 82.87, 80.47, 78.12, 76.58, 75.63, 75.49, 74.91, 74.23, 74.03, 73.94, 73.40, 73.23, 72.77, 72.28, 71.62, 71.35, 70.80, 69.90, 69.14, 67.96, 67.36,

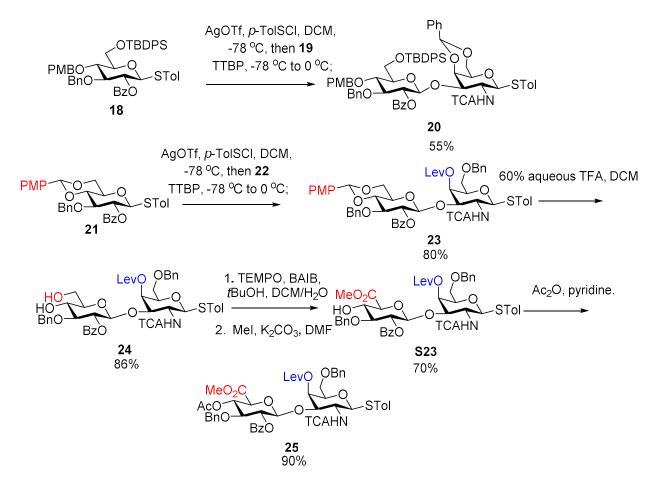

 $\begin{array}{l} 67.26,\ 67.06,\ 66.93,\ 62.34,\ 56.71,\ 54.31,\ 47.12,\ 38.31,\ 29.87,\ 28.02,\ 27.12,\ 26.87,\ 26.76,\ 26.10,\ 25.89,\ 21.53,\ 19.35,\ 19.17,\ 17.89,\ -3.80,\ -4.67.\ HRMS:\ C_{175}H_{183}Cl_3N_2O_{41}Si_3\left[M+2NH_4\right]^{2+} calcd:\ m/z\ 1597.0690,\ obsd:\ 1597.1101. \end{array}$

N-Fluorenylmethyloxycarbonyl-*O*-[2-*O*-benzoyl-3-*O*-benzyl-4-*O*-*t*-butyldimethylsilyl-6-*O*-*t*-butyldiphenylsilyl- β -D-glucopyranosyl-(1 \rightarrow 3)-6-*O*-benzyl-4-*O*-levulinoyl-2-deoxy-2-*N*-trichloroacetamido- β -D-galactopyranosyl-(1 \rightarrow 4)-2-*O*-benzoyl-3-*O*-benzyl-6-*O*-*t*-butyldiphenylsilyl- β -D-glucopyranosyl-(1 \rightarrow 3)-2-*O*-acetyl-4,6-*O*-benzylidene- β -D-galactopyranosyl-(1 \rightarrow 3)-2-*O*-benzoyl-4,6-*O*-benzylidene- β -D-galactopyranosyl-(1 \rightarrow 4)-2,3-di-*O*-benzoyl- β -D-xylopyranosyl]-L-serine benzyl ester 15:

Hexasaccharide 14 (0.6 g, 0.19 mmol) was dissolved in pyridine (7 mL) followed by addition of Ac₂O (4 mL). The reaction mixture was stirred overnight, then diluted with EtOAc, washed with 10% HCl solution, saturated NaHCO3 solution, dried over Na₂SO₄ and concentrated. The crude was purified with silica gel column chromatography (Toluene/Acetone, $30:1 \rightarrow 3:1$) to afford compound **15** in 92% yield (0.56 g, 0.17 mmol). $[\alpha_D^{20}] = +48.01$ (C = 0.042, DCM). ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, J = 7.7 Hz, 2H, 2 x aromatic CH), 7.96 (d, J = 8.2 Hz, 4H, 4 x aromatic CH), 7.92 – 7.88 (m, 4H, 4 x aromatic CH), 7.78 (dd, J = 7.4, 3.6 Hz, 2H, 2 x aromatic CH), 7.71 – 7.67 (m, 4H, 4 x aromatic CH), 7.59 (d, J = 6.6 Hz, 4H, 4 x aromatic CH), 7.55 (m, 3H, 3 x aromatic CH), 7.53 – 7.50 (m, 2H, 2 x aromatic CH), 7.49 – 7.45 (m, 2H, 2 x aromatic CH), 7.43 – 7.39 (m, 7H, 7 x aromatic CH), 7.38 (dd, J = 4.7, 2.3 Hz, 8H, 8 x aromatic CH), 7.35 (d, J = 7.6 Hz, 8H, 8 x aromatic CH), 7.32 – 7.28 (m, 7H, 7 x aromatic CH), 7.26 – 7.24 (m, 2H, 2 x aromatic CH), 7.24 – 7.20 (m, 10H, 10 x aromatic CH), 7.16 (dd, J = 9.7, 4.5 Hz, 4H, 4 x aromatic CH), 7.10 (m, 3H, 3 x aromatic CH), 7.06 - 7.03 (m, 4H, 4 x aromatic CH), 7.02 - 6.99 (m, 3H, 3 x aromatic CH), 5.78 (d, J = 8.4 Hz, 1H, TCANH), 5.63 – 5.61 (m, 1H), 5.60 – 5.55 (m, 2H), 5.46 – 5.42 (m, 1H, GalN H-4), 5.33 (s, 1H, PHCH), 5.30 (s, 1H, PhCH), 5.17 – 5.13 (m, 3H), 5.11 – 5.07 (m, 2H, COOCH₂Ph), 5.03 (d, *J* = 12.2 Hz, 1H), 4.77 (d, J = 10.9 Hz, 1H), 4.69 (d, J = 7.8 Hz, 1H, H-1), 4.65 (dd, J = 11.4, 8.0 Hz, 2H, GalN H-1, H-1), 4.59 (d, J = 10.2 Hz, 1H, 1)Hz, 2H, GalN H-5), 4.57 – 4.54 (m, 2H, 2 x H-1), 4.53 – 4.50 (m, 1H, H-1), 4.46 (d, J = 10.9 Hz, 1H), 4.33 (d, J = 3.3 Hz, 1H), 4.30 (d, J = 14.7 Hz, 1H), 4.24 (m, 3H), 4.20 – 4.17 (m, 2H), 4.15 (d, J = 7.2 Hz, 2H, GalN H-3), 4.10 (dd, J = 10.9, 3.4 Hz, 1H), 4.03 - 4.00 (m, 1H), 3.98 - 3.94 (m, 2H), 3.92 - 3.89 (m, 1H), 3.87 (d, J = 10.3 Hz, 1H), 3.77- 3.74 (m, 2H), 3.73 - 3.68 (m, 5H), 3.57 - 3.55 (m, 2H, GalN H-2), 3.54 - 3.48 (m, 4H), 3.37 - 3.34 (m, 1H), 3.30 (d, J = 6.1 Hz, 2H), 3.26 (d, J = 4.2 Hz, 1H), 3.09 (s, 1H), 3.02 - 2.91 (m, 3H), 2.78 (dd, J = 6.9, 5.9 Hz, 1H), 2.66 - 2.91 (m, 3H), 2.91 (m2.53 (m, 4H, CH₃COCH₂CH₂), 2.18 (s, 3H, CH₃COCH₂CH₂), 1.27 (s, 3H, CH₃CO), 1.01 (s, 9H, C(CH₃)₃), 1.00 (s, 9H, C(CH₃)₃), 0.74 (s, 9H, C(CH₃)₃), -0.11 (s, 3H, Si(CH₃)₂), -0.28 (s, 3H, Si(CH₃)₂). ¹³C NMR (126 MHz, CDCl₃) δ 206.79, 176.93, 171.54, 169.47, 168.81, 165.54, 165.07, 164.99, 164.75, 164.57, 161.02, 155.93, 143.84, 143.69, 141.24, 141.22, 138.04, 138.03, 137.80, 137.63, 137.61, 135.69, 135.67, 135.60, 135.57, 135.13, 133.56, 133.32, 133.14, 133.10, 133.01, 132.97, 132.90, 132.83, 130.13, 130.04, 129.96, 129.93, 129.83, 129.79, 129.75, 129.69, 129.67, 129.63, 129.53, 129.13, 129.04, 128.73, 128.49, 128.45, 128.40, 128.37, 128.34, 128.28, 128.23, 128.17, 128.10, 128.06, 128.02, 127.95, 127.87, 127.82, 127.75, 127.70, 127.45, 127.39, 127.33, 127.22, 127.11, 127.09, 126.45, 126.21, 125.30, 125.20, 119.98, 102.32, 101.65, 100.58, 100.53, 100.50, 98.24, 92.36, 82.84, 80.23, 78.13, 76.02, 75.79, 75.06, 74.87, 74.39, 74.11, 73.76, 73.36, 73.18, 72.72, 72.55, 71.82, 71.53, 71.28, 70.85, 69.50, 69.21, 69.10, 68.19, 67.95, 67.31, 67.21, 67.10, 66.78, 64.23, 64.02, 62.76, 62.44, 56.01, 54.25, 47.06, 38.22, 31.64, 29.83, 29.71, 29.56, 27.92, 27.04, 26.81, 26.78, 26.01, 25.83, 22.72, 21.49, 20.08, 19.32, 19.19, 17.84, -3.85, -4.72. HRMS: $C_{177}H_{185}Cl_3N_2O_{42}Si_3$ [M+2NH4]²⁺ calcd: 1618.0743, obsd: 1618.0773.

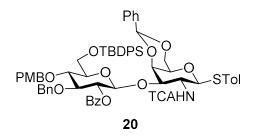

N-Fluorenylmethyloxycarbonyl-*O*-[2-*O*-benzoyl-3-*O*-benzyl- β -D-glucopyranosyl-(1 \rightarrow 3)-6-*O*-benzyl-4-*O*-levulinoyl-2-deoxy-2-*N*-trichloroacetamido- β -D-galactopyranosyl-(1 \rightarrow 4)-2-*O*-benzoyl-3-*O*-benzyl- β -D-glucopyranosyl-(1 \rightarrow 3)-2-*O*-benzoyl-4,6-*O*-benzylidene- β -D-galactopyranosyl-(1 \rightarrow 3)-2-*O*-benzoyl-4,6-*O*-benzylidene- β -D-galactopyranosyl-(1 \rightarrow 4)-2,3-di-*O*-benzoyl- β -D-xylopyranosyl]-L-serine benzyl ester 16:

Compound 15 (0.784 g, 0.24 mmol) was dissolved in pyridine (2 mL) in a plastic flask, followed by addition of HFpyridine solution (1 mL) at 0 °C. The mixture was stirred over 2 days until the reaction was completed. Then the reaction was diluted with EtOAc, washed with saturated CuSO4 solution, saturated NaHCO3 solution, and brine, dried over Na₂SO₄ and concentrated. The crude was purified with silica gel column chromatography (MeOH/DCM, 40:1 \rightarrow 10:1) to afford compound 16 as a white solid in 93% yield (0.59 g, 0.23 mmol). [α_D^{20}] = +480.2 (C = 0.0083, DCM). ¹H NMR (500 MHz, CDCl₃) δ 8.02 (dd, J = 7.2, 4.1 Hz, 4H, 4 x aromatic CH), 7.97 (d, J = 7.6 Hz, 4H, 4 x aromatic CH), 7.89 (d, J = 7.2 Hz, 2H, 2 x aromatic CH), 7.78 (dd, J = 7.5, 3.9 Hz, 2H, 2 x aromatic CH), 7.61 – 7.52 (m, 5H, 5 x aromatic CH), 7.50 – 7.33 (m, 17H, 17 x aromatic CH), 7.32 – 7.21 (m, 19H, 19 x aromatic CH), 7.18 – 7.15 (m, 3H, 3 x aromatic CH), 7.13 – 7.05 (m, 7H, 7 x aromatic CH), 6.93 (d, J = 6.0 Hz, 1H, TCANH), 5.66 (d, J = 3.2 Hz, 1H, GalN H-4), 5.59 (m, 2H), 5.49 (dd, *J* = 9.8, 8.2 Hz, 1H), 5.34 (d, *J* = 9.9 Hz, 2H, 2 x PhCH), 5.18 – 5.08 (m, 5H, COOCH₂Ph), 5.07 – 4.97 (m, 3H, GalN H-1), 4.79 (t, J = 8.5 Hz, 2H, 2 x H-1), 4.74 – 4.69 (m, 2H, 2 x H-1), 4.66 (d, J = 8.5 Hz, 1H, H-1), 4.61 (d, J = 8.6 Hz, 1H, H-1), 4.54 (d, J = 5.8 Hz, 1H), 4.52 - 4.48 (m, 2H), 4.41 (dd, J = 5.8 Hz, 1H), 4.52 - 4.48 (m, 2H), 4.41 (dd, J = 5.8 Hz, 1H), 4.54 (dd, J = 5.8 Hz, 1H= 10.5, 3.0 Hz, 1H, GalN H-3), 4.36 - 4.29 (m, 3H), 4.27 - 4.22 (m, 3H), 4.16 - 4.11 (m, 3H), 4.10 - 4.06 (m, 1H), 3.90 (m, 6H), 3.79 – 3.69 (m, 6H, GalN H-5), 3.67 – 3.57 (m, 5H, GalN H-2), 3.42 (d, J = 4.5 Hz, 1H), 3.38 – 3.31 (m, 3H), 3.26 (dd, J = 10.9, 7.3 Hz, 2H), 3.19 (s, 1H), 3.13 (s, 1H), 2.83 – 2.75 (m, 2H, CH₃COCH₂CH₂), 2.68 (dd, J = 10.9, 7.3 Hz, 2H), 3.19 (s, 1H), 3.13 (s, 1H), 2.83 – 2.75 (m, 2H, CH₃COCH₂CH₂), 2.68 (dd, J = 10.9, 7.3 Hz, 2H), 3.19 (s, 1H), 3.13 (s, 1H), 2.83 – 2.75 (m, 2H, CH₃COCH₂CH₂), 2.68 (dd, J = 10.9, 7.3 Hz, 2H), 3.19 (s, 1H), 3.13 (s, 1H), 2.83 – 2.75 (m, 2H, CH₃COCH₂CH₂), 2.68 (dd, J = 10.9, 7.3 Hz, 2H), 3.19 (s, 1H), 3.13 (s, 1H), 2.83 – 2.75 (m, 2H, CH₃COCH₂CH₂), 2.68 (dd, J = 10.9, 7.3 Hz, 2H), 3.19 (s, 1H), 3.13 (s, 1H), 3. J = 15.3, 9.2 Hz, 1H), 2.58 (dd, J = 8.8, 4.8 Hz, 2H, CH₃COCH₂CH₂), 2.35 (s, 2H), 2.15 (s, 3H, CH₃COCH₂CH₂), 1.42 (s, 3H, CH₃CO). ¹³C NMR (126 MHz, CDCl₃) δ 206.37, 172.65, 171.22, 169.48, 165.57, 165.12, 164.83, 164.56, 161.83, 155.93, 143.84, 143.69, 141.25, 141.23, 138.12, 137.90, 137.80, 137.75, 137.46, 135.12, 133.40, 133.26, 133.17, 130.08, 129.93, 129.76, 129.56, 129.11, 129.05, 129.00, 128.56, 128.52, 128.49, 128.41, 128.39, 128.36,


128.31, 128.29, 128.24, 128.18, 128.02, 127.89, 127.86, 127.78, 127.73, 127.70, 127.63, 127.33, 127.11, 126.40, 126.15, 125.20, 120.00, 102.29, 101.14, 100.76, 100.51, 100.32, 100.23, 98.21, 91.98, 82.27, 80.20, 75.77, 75.71, 75.62, 75.35, 74.83, 74.65, 74.15, 74.06, 73.62, 73.56, 73.03, 72.42, 71.73, 71.30, 70.81, 69.97, 69.72, 69.09, 68.91, 68.74, 68.22, 67.92, 67.32, 67.22, 67.09, 66.62, 62.35, 61.28, 60.92, 60.44, 56.41, 54.25, 47.06, 37.95, 31.95, 29.84, 29.72, 29.39, 28.13, 22.72, 21.10, 20.28, 14.23. HRMS: $C_{139}H_{135}Cl_3N_2O_{42}$ [M+2NH₄]²⁺ calcd: 1323.4101, obsd: 1323.4023.

N-Fluorenylmethyloxycarbonyl-*O*-[methlyl-2-*O*-benzoyl-3-*O*-benzyl- β -D-glucopyranosyluronate-(1 \rightarrow 3)-6-*O*-benzyl-4-*O*-levulinoyl-2-deoxy-2-*N*-trichloroacetamido- β -D-galactopyranosyl-(1 \rightarrow 4)-methyl-2-*O*-benzoyl-3-*O*-benzyl- β -D-glucopyranosyluronate-(1 \rightarrow 3)-2-*O*-acetyl-4,6-*O*-benzylidene- β -D-galactopyranosyl-(1 \rightarrow 3)-2-*O*-benzoyl-4,6-*O*-benzylidene- β -D-galactopyranosyl-(1 \rightarrow 4)-2,3-di-*O*-benzoyl- β -D-xylopyranosyl]-L-serine benzyl ester 17:

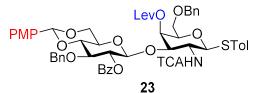
To a cooled solution of triol 16 (50 mg, 19.1 µmol) in DCM (1.5 mL) and H₂O (250 µL) in an ice –water bath, an aqueous solution of NaBr (1 M, 50 µL), an aqueous solution of tetrabutylammonium bromide (1 M, 100 µL), TEMPO (2 mg, 0.013 mmol, 0.3 equiv per hydroxyl group) and a saturated aqueous solution of NaHCO₃ (250 µL) were added. Then NaOCl (300 µL, chlorine content not less than 4%) was added and the mixture was continuously stirred for 1 hour as the temperature increased from 0 °C to room temperature. The reaction was neutralized with HCl (1 N, about 50 µL) to pH 6-7. Then, tBuOH (1.4 mL), 2- methylbut-2-ene in THF (2 M, 2.8 mL) and a solution of NaClO₂ (100 mg, 0.44 mm) and NaH₂PO₄ (80 mg, 0.34 mm) in water (400 μ L) were added. The reaction mixture was kept at room temperature for 2–3 h, diluted with saturated aqueous NaH₂PO₄ solution (10 mL), and extracted with EtOAc (3x10 mL). The organic layers were combined and dried over Na₂SO₄. After removal of the solvent, the crude was dissolved in DMF (2 mL) followed by addition of K₂CO₃ (63 mg, 0.48 mmol) and MeI (0.03 mL, 0.48 mmol). The reaction mixture was stirred overnight, then diluted with EtOAc, washed with NaHCO3 and brine and concentrated. The residue was purified with silica gel column chromatography (Toluene/Acetone, $30:1 \rightarrow 3:1$) to give hexasaccharide acceptor 17 as a white solid in 87% yield (44.4 mg, 16.7 μ mol). [α _D²⁰] = +240.1 (C = 0.008, DCM). ¹H NMR (500 MHz, CDCl₃) δ 8.03 (dd, J = 13.1, 7.5 Hz, 4H, 4 x aromatic CH), 7.96 (d, J = 7.9 Hz, 4H, 4 x aromatic CH), 7.88 (d, J = 7.5 Hz, 2H, 2 x aromatic CH), 7.77 (dd, J = 7.4, 3.8 Hz, 2H, 2 x aromatic CH), 7.56 (m, 5H, 5 x aromatic CH), 7.49 – 7.34 (m, 17H, 17 x aromatic CH), 7.33 – 7.19 (m, 20H, 20 x aromatic CH), 7.13 (m, 6H, 6 x aromatic CH), 7.09 – 7.07 (m, 2H, 2 x aromatic CH), 6.60 (d, J = 8.1 Hz, 1H, TCANH), 5.61 – 5.52 (m, 3H), 5.50 – 5.45 (m, 1H, GalN H-4), 5.36 (d, J = 8.9 Hz, 2H, 2 x PhCH), 5.17 – 5.07 (m, 5H), 5.02 (d, J = 12.1 Hz, 1H), 4.84 (d, J = 8.4 Hz, 1H, GalN H-1), 4.74 (dd, *J* = 13.0, 6.8 Hz, 3H, H-1, PhCH₂), 4.71 – 4.68 (m, 2H, 2 x H-1), 4.60 (d, *J* = 7.9 Hz, 1H, H-1), 4.52 (m, 4H, H-1), 4.52 (m, 4H, H-1), 4.52 (m, 4H, H-1), 4.53 (m, 4H, H-1), 4.54 (m, 4H, H-1), 4


1, PhCH₂), 4.35 - 4.20 (m, 8H, GalN H-3), 4.12 (m, 6H, GalN H-6), 3.92 - 3.84 (m, 5H, GalN H-5, GalN H-6), 3.82 - 3.76 (m, 2H), 3.74 (s, 3H, CO₂CH₃), 3.73 - 3.66 (m, 4H, GalN H-2), 3.62 (s, 3H, CO₂CH₃), 3.61 - 3.56 (m, 2H), 3.34 (dd, J = 6.0, 2.4 Hz, 2H), 3.24 (m, 3H), 3.12 (s, 1H), 2.90 - 2.83 (m, 1H, CH₃COCH₂CH₂), 2.70 (m, 1H, CH₃COCH₂CH₂), 2.55 (m, 3H, CH₃COCH₂CH₂), 2.14 (s, 3H, CH₃COCH₂CH₂), 1.27 (s, 3H, CH₃CO). ¹³C NMR (126 MHz, CDCl₃) δ 206.78, 171.63, 169.63, 169.46, 169.28, 168.97, 166.55, 165.54, 165.08, 164.95, 164.76, 164.56, 161.44, 155.91, 143.83, 143.68, 141.24, 141.22, 137.91, 137.88, 137.73, 137.57, 135.12, 133.21, 133.15, 133.00, 130.01, 129.92, 129.75, 129.66, 129.56, 129.46, 129.11, 128.85, 128.51, 128.48, 128.40, 128.37, 128.34, 128.28, 128.25, 128.11, 128.05, 128.04, 127.95, 127.84, 127.75, 127.71, 127.69, 127.64, 127.44, 127.11, 127.09, 126.40, 126.22, 125.18, 119.98, 102.30, 100.72, 100.61, 100.55, 100.50, 100.27, 100.10, 99.01, 92.52, 80.43, 79.56, 77.78, 75.80, 75.26, 75.05, 74.32, 74.22, 73.94, 73.63, 73.50, 72.91, 72.78, 72.43, 71.73, 71.30, 70.82, 69.20, 69.13, 69.09, 68.79, 68.20, 68.01, 67.30, 67.20, 67.09, 66.69, 64.01, 62.38, 55.41, 54.24, 52.84, 47.06, 38.05, 31.93, 31.64, 29.81, 29.70, 29.67, 29.65, 29.37, 28.95, 27.84, 22.71, 19.97, 14.15. HRMS: C₁₄₁H₁₃₅Cl₃N₂O₄₄ [M+2NH₄]²⁺ calcd: 1351.9067, obsd: 1351.9071.

p-Tolyl 2-*O*-benzoyl-3-*O*-benzyl-4-*O*-*p*-methoxybenzyl-6-*O*-*t*-butyldiphenylsilyl-1-thio-β-D-glucopyranoside 18: see page S14.

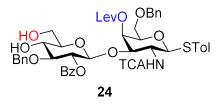
p-Tolyl 4,6-*O*-benzylidine-2-deoxy-2-*N*-trichloroacetamido-1-thio-β-D-galactopyranoside 19: see page S8.

p-Tolyl 2-*O*-benzoyl-3-*O*-benzyl-4-*O*-*p*-methoxybenzyl-6-*O*-t-butyldiphenylsilyl-β-D-glucopyranosyl-(1→3)-4,6-*O*-benzylidine-2-deoxy-2-*N*-trichloroacetamido-β-D-galactopyranoside 20:



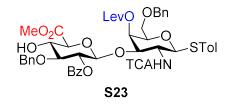
Disaccharide 20 was synthesized from donor 18 (1.94 g, 2.3 mmol) and acceptor 19 (1 g, 1.9 mmol) in 55% yield (1.3 g, 1 mmol) as a white solid following the general procedure of single step glycosylation. $[\alpha_D^{20}] = +120.01$ (C = 0.033, DCM). ¹H NMR (500 MHz, CDCl₃) δ 8.10 (d, J = 7.6 Hz, 1H, aromatic CH), 7.97 (d, J = 7.6 Hz, 2H, 2 x aromatic CH), 7.77 (d, J = 6.8 Hz, 1H, aromatic CH), 7.72 (m, 4H, 4 x aromatic CH), 7.57 (t, J = 8.0 Hz, 1H, aromatic CH), 7.43 (m, 17H, 17 x aromatic CH), 7.23 (d, J = 7.5 Hz, 1H, aromatic CH), 7.20 – 7.06 (m, 7H, 7 x aromatic CH), 6.99 (m, 3H, 3 x aromatic CH), 6.83 (d, J = 8.5 Hz, 1H, aromatic CH), 6.75 (m, 3H, TCANH), 6.43 (d, J = 5.8 Hz, 1H), 5.51 (s, 1H), 5.40 (s, 1H, PhCH), 5.37 (d, J = 10.0 Hz, 1H, GalN H-1), 5.31 (dd, J = 15.7, 7.3 Hz, 1H, Glc H-2), 5.15 (d, J = 8.1 Hz, 1H), 4.86 - 4.79 (m, 2H, Glc H-1), 4.76 - 4.60 (m, 5H, GalN H-3), 4.48 - 4.34 (m, 3H, Glc H-6, GalN H-7)H-4), 4.23 (d, J = 12.6 Hz, 1H, Glc H-4), 4.04 (d, J = 10.2 Hz, 1H), 4.00 – 3.95 (m, 1H), 3.93 – 3.86 (m, 2H), 3.78 (s, 2H) 3H, PhOCH₃), 3.76 – 3.63 (m, 4H, Glc H-3, Glc H-6, GalN H-2, GalN H5), 3.60 – 3.56 (m, 1H), 3.28 (m, 1H, Glc H-5), 2.32 (s, 3H, SPhCH₃), 1.13 (s, 9H, C(CH₃)₃). ¹³C NMR (126 MHz, CDCl₃) & 165.53, 165.16, 162.06, 161.80, 159.36, 159.32, 138.38, 138.00, 137.86, 137.58, 137.24, 135.85, 135.64, 135.57, 135.55, 133.67, 133.49, 133.25, 133.17, 132.95, 130.22, 130.09, 129.97, 129.95, 129.92, 129.89, 129.81, 129.78, 129.74, 129.71, 128.78, 128.74, 128.41, 128.36, 128.33, 128.26, 128.16, 128.09, 128.00, 127.97, 127.91, 127.90, 127.80, 127.72, 127.69, 127.62, 127.39, 126.41, 125.77, 113.90, 113.82, 105.65, 101.20, 100.30, 100.11, 99.87, 92.10, 82.93, 82.88, 82.80, 77.57, 77.41, 77.35, 77.10, 76.84, 76.56, 76.37, 76.13, 75.97, 75.25, 75.13, 74.91, 74.55, 74.34, 73.90, 73.62, 73.54, 70.67, 70.15, 69.03, 68.67, 67.49, 63.29, 62.76, 55.30, 55.27, 52.84, 27.02, 26.92, 21.27, 19.54, 19.45. HRMS: C₆₆H₆₈Cl₃NO₁₂SSi [M+NH₄]⁺ calcd: 1249.3635, obsd: 1249.3653.

p-Tolyl 2-*O*-benzoyl-3-*O*-benzyl-4,6-*O*-*p*-methoxybenzylidene-1-thio-β-D-glucopyranoside 21: see page S11.

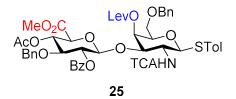

p-Tolyl 6-*O*-benzyl-4-*O*-levulinoyl-2-deoxy-2-*N*-trichloroacetamido-1-thio-β-D-galactopyranoside 22: see page S10.

p-Tolyl 2-*O*-benzoyl-3-*O*-benzyl-4,6-*O*-*p*-methoxybenzylidene- β -D-glucopyranosyl-(1 \rightarrow 3)-6-*O*-benzyl-4-*O*-levulinoyl-2-deoxy-2-*N*-trichloroacetamido-1-thio- β -D-galactopyranoside 23:

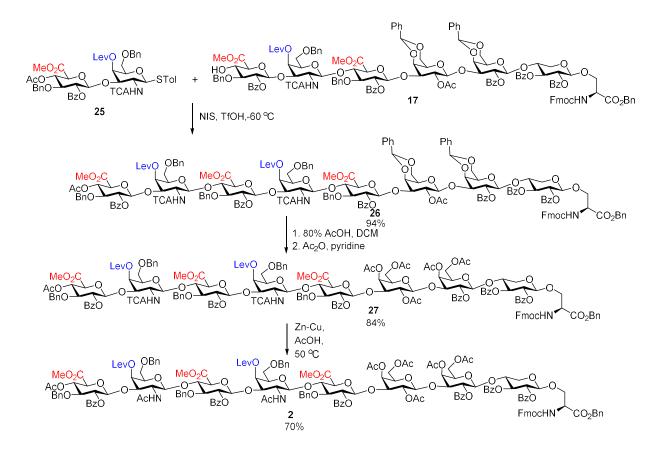
23 was synthesized from donor 21 (1.32 g, 2.2 mmol) and acceptor 22 (0.904 g, 1.46 mmol) in 80% yield (1.28 g, 1.17 mmol) as a white solid following the general procedure of single step glycosylation. $\left[\alpha_{\rm D}^{20}\right] = +685.7$ (C = 0.006, DCM). ¹H NMR (500 MHz, CDCl₃) δ 7.93 (dd, J = 8.2, 1.1 Hz, 2H, 2 x aromatic CH), 7.64 – 7.60 (m, 1H, aromatic CH), 7.48 – 7.43 (m, 4H, 4 x aromatic CH), 7.38 – 7.28 (m, 8H, 8 x aromatic CH), 7.18 – 7.14 (m, 1H, aromatic CH), 7.11 - 7.08 (m, 4H, 4 x aromatic CH), 7.02 (d, J = 8.0 Hz, 2H, 2 x aromatic CH), 6.94 - 6.91 (m, 2H, 2 x aromatic CH), 6.67 (d, *J* = 7.1 Hz, 1H, TCANH), 5.58 (s, 1H, PhCH), 5.55 (d, *J* = 3.3 Hz, 1H, GalN H-4), 5.25 (d, *J* = 10.4 Hz, 1H, GalN H-1), 5.17 (dd, J = 8.6, 7.6 Hz, 1H, Glc H-2), 4.79 (d, J = 12.0 Hz, 1H, PhCH₂), 4.72 (d, J = 7.4 Hz, 1H, Glc H-1), 4.66 (d, J = 12.0 Hz, 1H, GalN H-3), 4.61 (dd, J = 10.3, 3.4 Hz, 1H, GalN H-6), 4.50 (m, 2H, PhCH₂), 4.35 (dd, J = 10.6, 5.0 Hz, 1H, Glc H-5), 3.88 – 3.80 (m, 7H, PhOCH₃, Glc H-4, GalN H-5, GalN H-6), 3.74 (t, J = 8.9 Hz, 1H, Glc H-3), 3.63 (dd, J = 10.0, 6.2 Hz, 1H, Glc H-6), 3.55 (dd, J = 10.0, 5.9 Hz, 1H), 3.45 (m, 2H, Glc H-6, GalN H-2), 2.93 – 2.86 (m, 1H, CH₃COCH₂CH₂), 2.75 – 2.63 (m, 2H, CH₃COCH₂CH₂), 2.57 – 2.51 (m, 1H, CH₃COCH₂CH₂), 2.31 (s, 3H, SPhCH₃), 2.23 (s, 3H, CH₃COCH₂CH₂). ¹³C NMR (126 MHz, CDCl₃) δ 206.66, 171.69, 164.88, 161.62, 160.06, 138.48, 137.93, 137.69, 133.37, 133.18, 129.90, 129.79, 129.66, 129.53, 128.49, 128.38, 128.17, 128.16, 128.11, 127.98, 127.74, 127.61, 127.35, 113.62, 101.17, 101.04, 92.04, 84.30, 81.16, 77.65, 76.68, 73.88, 73.62, 73.42, 73.35, 69.82, 68.61, 68.50, 66.28, 55.32, 54.62, 38.16, 29.91, 28.00, 21.18. HRMS: C₅₅H₅₆C₁₃NO₁₄S [M+NH₄]⁺ calcd: 1109.2831, obsd: 1109.2773.


p-Tolyl 2-*O*-benzoyl-3-*O*-benzyl- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -6-*O*-benzyl-4-*O*-levulinoyl-2-deoxy-2-*N*-trichloroacetamido-1-thio- β -D-galactopyranoside 24:

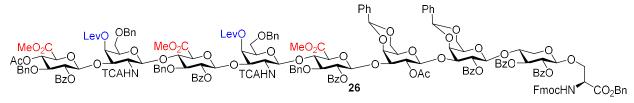
Compound **23** (1.28 g, 1.17 mmol) was dissolved in DCM, then treated with 60% aqueous TFA. The reaction was stirred for 2 h. After the reaction was completed, it was diluted with DCM and washed with saturated NaHCO₃ solution. The aqueous layer was extracted with DCM three times. The organic layers were combined, washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography (Hexane/EtOAc, 8:1 \rightarrow 1:1) on silica gel to provide compound **24** as a white solid in 86% yield (0.98 g, 1 mmol). [α_D^{20}] = +120.0 (C = 0.108, DCM). ¹H NMR (500 MHz, CDCl₃) δ 7.99 (dd, *J* = 8.2, 1.1 Hz, 2H, 2 x aromatic CH), 7.61 – 7.57 (m, 1H, aromatic CH), 7.45 (t, *J* = 7.8 Hz, 2H, 2 x aromatic CH), 7.39 – 7.28 (m, 7H, 7 x aromatic CH), 7.18 – 7.09 (m, 5H, 5 x aromatic CH), 7.05 (d, *J* = 8.0 Hz, 2H, 2 x aromatic CH), 6.83 (d, *J* = 7.0 Hz, 1H, TCANH), 5.74 (d, *J* = 3.4 Hz, 1H, GalN H-4), 5.31 (d, *J* = 10.4 Hz, 1H, GalN H-1), 5.16 (dd, *J* = 9.6, 7.8 Hz, 1H, Glc H-2), 4.74 (d, *J* = 7.7 Hz, 1H, Glc H-1), 4.65 (q, *J* = 11.5 Hz, 2H, PhCH₂), 4.59 (dd, *J* = 10.3, 3.5 Hz, 1H, GalN H-3), 4.46 (m, 2H, PhCH₂), 3.89 – 3.81 (m, 3H, GalN H-6, Glc H-4), 3.77 (dd, *J* = 12.4, 2.9 Hz, 1H, GalN H-5), 3.64 – 3.58 (m, 2H, Glc H-3, Glc H-5), 3.54 – 3.45 (m, 2H, GOCH₂CH₂), 2.74 – 2.68 (m, 1H, CH₃COCH₂CH₂), 2.67 – 2.58 (m, 2H, CH₃COCH₂CH₂), 2.32 (s, 3H, SPhCH₃),


2.20 (s, 3H, CH₃COCH₂CH₂). ¹³C NMR (126 MHz, CDCl₃) δ 206.53, 172.82, 165.16, 161.68, 138.49, 137.86, 137.75, 133.44, 133.13, 130.00, 129.83, 129.49, 128.57, 128.41, 128.37, 128.26, 127.96, 127.92, 127.85, 127.74, 101.40, 91.79, 84.29, 82.27, 76.38, 75.67, 75.17, 74.70, 73.60, 73.57, 70.51, 68.83, 68.54, 60.83, 54.25, 38.00, 29.87, 28.20, 21.19. HRMS: C₄₇H₅₀Cl₃NO₁₃S [M+NH₄]⁺ calcd: 991.2412, obsd: 991.2359.

p-Tolyl methyl-2-*O*-benzoyl-3-*O*-benzyl- β -D-glucopyranosyluronate- $(1 \rightarrow 3)$ -6-*O*-benzyl-4-*O*-levulinoyl-2-deoxy-2-*N*-trichloroacetamido-1-thio- β -D-galactopyranoside S23:


Compound 24 (108 mg, 0.11 mmol) was dissolved in DCM/tBuOH/H₂O (4:4:1, 4.5 mL), followed by addition of TEMPO (3.5 mg) and BAIB (107 mg). The resulting mixture was stirred at room temperature until all starting material was consumed as indicated by TLC analysis (\approx 5 h). Then it was neutralized by 1 M HCl solution to adjust pH around 6, diluted with EtOAc, washed with H₂O, dried over Na₂SO₄. After concentration, the crude was dissolved in dry DMF (5 mL), followed by addition of MeI (63 µL, 1 mmol) and K₂CO₃ (209 mg, 1.5 mmol). The resulting mixture was stirred under room temperature overnight, then diluted with EtOAc, washed with NaHCO₃, brine, dried over Na₂SO₄ and concentrated. The residue underwent silica gel column chromatography (Hexane/EtOAc, $10:1 \rightarrow 2:1$) to give compound **S23** as a white solid in 70% yield (77.8 mg, 77.5 μ mol). [α D²⁰] = +600 (C = 0.01, DCM). ¹H NMR (500 MHz, CDCl₃) δ 7.93 (dd, J = 8.3, 1.2 Hz, 2H, 2 x aromatic CH), 7.63 – 7.59 (m, 1H, aromatic CH), 7.45 (dd, J = 10.8, 4.8 Hz, 2H, 2 x aromatic CH), 7.38 - 7.28 (m, 7H, 7 x aromatic CH), 7.18 - 7.12 (m, 5H, 5 x aromatic CH), 7.02 (d, J = 8.0 Hz, 2H, 2 x aromatic CH), 6.73 (d, J = 7.2 Hz, 1H, TCANH), 5.60 (d, J = 3.2 Hz, 1H, GalN H-4), 5.25 (d, J = 10.4 Hz, 1H, GalN H-1), 5.12 (dd, J = 9.1, 7.4 Hz, 1H, Glc H-2), 4.77 (d, J = 11.6 Hz, 1H, Glc H-1), 4.70 (dd, *J* = 9.5, 5.8 Hz, 2H, PhCH₂), 4.64 (dd, *J* = 10.4, 3.3 Hz, 1H, GalN H-3), 4.51 – 4.46 (m, 2H, PhCH₂), 4.08 – 4.02 (m, 1H, Glc H-4), 3.85 (dd, J = 7.7, 4.4 Hz, 2H, GalN H-5), 3.74 (s, 3H, CO₂CH₃), 3.64 – 3.46 (m, 5H, GalN H-3, 2 x GalN H-6, Glc H-3), 3.26 (d, J = 2.7 Hz, 1H, Glc H5), 2.86 (m, 1H, CH₃COCH₂CH₂), 2.72 - 2.60 (m, 2H, CH₃COCH₂CH₂), 2.51 (m, 1H, CH₃COCH₂CH₂), 2.31 (s, 3H, SPhCH₃), 2.20 (s, 3H, CH₃COCH₂CH₂). ¹³C NMR (126 MHz, CDCl₃) δ 206.78, 171.58, 169.64, 164.91, 161.61, 138.45, 137.97, 137.71, 133.39, 133.12, 129.86, 129.78, 129.46, 128.49, 128.33, 128.25, 128.07, 127.96, 127.70, 127.67, 100.63, 92.08, 84.42, 80.31, 76.84, 74.35, 73.81, 73.67, 73.61, 72.76, 71.89, 69.81, 68.73, 60.43, 54.47, 52.81, 38.13, 29.87, 27.94, 21.17, 14.21. HRMS: C₄₈H₅₀C₁₃NO₁₄S [M+NH₄]⁺ calcd: 1019.2361, obsd: 1019.2306.

p-Tolyl methyl-4-*O*-acetyl-2-*O*-benzoyl-3-*O*-benzyl- β -D-glucopyranosyluronate- $(1 \rightarrow 3)$ -6-*O*-benzyl-4-*O*-levulinoyl-2-deoxy-2-*N*-trichloroacetamido-1-thio- β -D-galactopyranoside 25:



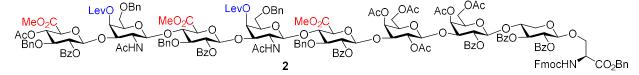
Compound **S23** (0.5 g, 0.5 mmol) was dissolved in pyridine (8 mL) allowed by addition of Ac₂O (4 mL). The mixture was stirred overnight, diluted with EtOAc, washed with 10% HCl solution, saturated NaHCO3 solution, dried over Na₂SO₄ and concentrated. The crude was purified with silica gel column chromatography (Hexane/EtOAc, 10:1 \rightarrow 2:1) to afford compound **25** as a white solid in 90% yield (0.47 g, 0.45 mmol). $[\alpha_D^{20}] = +120$ (C = 0.025, DCM). ¹H NMR (500 MHz, CDCl₃) δ 7.94 (dd, *J* = 8.3, 1.2 Hz, 2H, 2 x aromatic CH), 7.63 – 7.59 (m, 1H, aromatic CH), 7.46 (t, J = 7.8 Hz, 2H, 2 x aromatic CH), 7.37 (d, J = 8.1 Hz, 2H, 2 x aromatic CH), 7.35 – 7.28 (m, 5H, 5 x aromatic CH), 7.18 – 7.13 (m, 3H, 3 x aromatic CH), 7.07 (dd, J = 7.5, 1.8 Hz, 2H, 2 x aromatic CH), 7.02 (d, J = 8.0 Hz, 2H, 2 x aromatic CH), 6.71 (d, J = 7.2 Hz, 1H, TCANH), 5.57 (d, J = 3.2 Hz, 1H, GalN H-4), 5.30 – 5.20 (m, 3H, GalN H-1, Glc H-2, GalN H-6), 4.75 (d, J = 7.5 Hz, 1H, Glc H-1), 4.63 (dd, J = 10.4, 3.3 Hz, 1H, GalN H-3), 4.56 (s, 2H, PhCH₂), 4.48 (s, 2H, PhCH₂), 3.94 (d, J = 9.8 Hz, 1H, Glc H-5), 3.83 (t, J = 6.0 Hz, 1H, GalN H-5), 3.77 (t, J = 9.0 Hz, 1H, Glc H-3), 3.71 (s, 3H, CO₂CH₃), 3.61 (dd, J = 10.1, 6.4 Hz, 1H, Glc H-4), 3.57 - 3.50 (m, 2H, GalN H-2, GalN H-6), 2.91 – 2.84 (m, 1H, CH₃COCH₂CH₂), 2.72 – 2.60 (m, 2H, CH₃COCH₂CH₂), 2.55 – 2.48 (m, 1H, CH₃COCH₂CH₂), 2.31 (s, 3H, SPHCH₃), 2.21 (s, 3H, CH₃COCH₂CH₂), 1.98 (s, 3H, CH₃CO). ¹³C NMR (126 MHz, CDCl₃) δ 206.79, 171.49, 169.23, 167.25, 164.68, 161.58, 138.46, 138.00, 137.18, 133.47, 133.13, 133.00, 129.86, 129.78, 129.66, 129.32, 128.53, 128.33, 128.29, 128.20, 127.95, 127.92, 127.82, 127.64, 99.98, 92.10, 84.38, 78.88, 76.94, 73.90, 73.84, 73.59, 72.73, 72.65, 70.59, 69.43, 69.20, 68.83, 64.01, 54.34, 52.77, 38.10, 31.93, 29.88, 29.71, 29.38, 27.89, 22.71, 21.17, 20.68, 14.15. HRMS: C₅₀H₅₂Cl₃NO₁₅S [M+NH₄]⁺ calcd: m/z: 1061.2461, obsd: 1061.2513.

Synthesis of Octasaccharide:

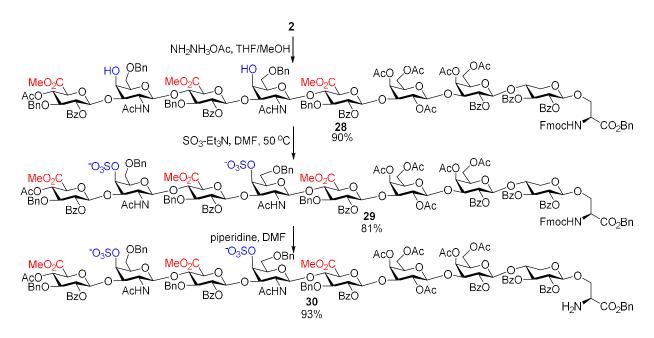
 $N-Fluorenylmethyloxycarbonyl-O-[methyl-4-O-acetyl-2-O-benzoyl-3-O-benzyl-$\beta-D-glucopyranosyluronate-(1\rightarrow 3)-6-O-benzyl-4-O-levulinoyl-2-deoxy-2-N-trichloroacetamido-$\beta-D-galactopyranosyl-(1\rightarrow 4)-methyl-2-O-benzyl-4-O-levulinoyl-2-deoxy-2-N-trichloroacetamido-$\beta-D-galactopyranosyluronate-(1\rightarrow 3)-6-O-benzyl-4-O-levulinoyl-2-deoxy-2-N-trichloroacetamido-$\beta-D-galactopyranosyl-(1\rightarrow 4)-methyl-2-O-benzoyl-3-O-benzyl-$\beta-D-glucopyranosyluronate-(1\rightarrow 3)-6-O-benzyl-$\beta-D-galactopyranosyl-(1\rightarrow 4)-methyl-2-O-benzoyl-3-O-benzyl-$\beta-D-glucopyranosyluronate-(1\rightarrow 3)-6-O-benzyl-$\beta-D-glucopyranosyluronate-(1\rightarrow 3)-6-O-benzyl-$\beta-D-glucopyranosyluronate-(1\rightarrow 3)-6-O-benzyl-$\beta-D-glucopyranosyluronate-(1\rightarrow 3)-6-O-benzyl-$\beta-D-glucopyranosyluronate-(1\rightarrow 3)-6-O-benzyl-$\beta-D-glucopyranosyluronate-(1\rightarrow 3)-6-O-benzyl-$\beta-D-glucopyranosyluronate-(1\rightarrow 3)-6-O-benzyl-$\beta-D-glucopyranosyluronate-(1\rightarrow 3)-6-O-benzyl-$\beta-D-glucopyranosyluronate-(1\rightarrow 3)-2-O-acetyl-$\beta-O-benzylidene-$\beta-D-galactopyranosyl-(1\rightarrow 3)-2-O-benzoyl-$\beta,6-O-benzylidene-$\beta-D-galactopyranosyl-(1\rightarrow 3)-2-O-benzoyl-$\beta,6-O-benzylidene-$\beta-D-galactopyranosyl-(1\rightarrow 3)-2-O-benzoyl-$\beta,6-O-benzylidene-$\beta-D-galactopyranosyl-(1\rightarrow 3)-2-O-benzoyl-$\beta,6-O-benzylidene-$\beta-D-galactopyranosyl-(1\rightarrow 3)-2-O-benzoyl-$\beta,6-O-benzylidene-$\beta-D-galactopyranosyl-(1\rightarrow 4)-2,3-di-$\beta-benzoyl-$\beta-D-xylopyranosyl-[\beta-benzyl-$\beta-benzyl ester 26:}$

A mixture of hexasaccharide acceptor 17 (166 mg, 62.2 µmol) and disaccharide donor 25 (195 mg, 0.19 mmol) was dissolved in anhydrous DCM (10 mL) followed by addition of freshly activated MS. The mixture was stirred at room temperature for 1 h then cooled to -60 °C. NIS (40.4 mg, 0.18 mmol) was added followed by addition of TfOH (0.82 µL, 9.2 µmol). The reaction was stirred for 3 h from -60 °C to room temperature. The mixture was diluted with DCM, neutralized with DIPEA, filtered through Celite, washed with saturated NaHCO₃, brine, dried over Na₂SO₄, concentrated and purified with silica gel column chromatography (Toluene/Acetone, 30:1 \rightarrow 3:1) to give octasaccharide **26** as a white solid in 94% yield (209 mg,58.5 µmol). [α_D^{20}] = +240.0 (C = 0.083, DCM). ¹H NMR (500 MHz, CDCl₃) δ 8.04 – 8.00 (m, 4H, 4 x aromatic CH), 7.99 – 7.93 (m, 6H, 6 x aromatic CH), 7.89 (dd, *J* = 8.3,

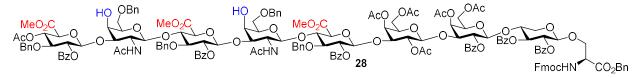
1.2 Hz, 2H, 2 x aromatic CH), 7.78 (dd, J = 7.5, 3.9 Hz, 2H, 2 x aromatic CH), 7.61 – 7.53 (m, 6H, 6 x aromatic CH), 7.50 – 7.35 (m, 19H, 19 x aromatic CH), 7.33 – 7.23 (m, 22H, 22 x aromatic CH), 7.23 – 7.16 (m, 12H, 12 x aromatic CH), 7.11 (m, 12H, 12 x aromatic CH), 6.88 (d, J = 8.3 Hz, 1H, TCANH), 6.57 (d, J = 8.1 Hz, 1H, TCANH), 5.60 (t, J = 7.5 Hz, 1H), 5.57 - 5.54 (m, 2H), 5.51 - 5.47 (m, 2H), 5.37 (d, J = 9.8 Hz, 2H, 2 x PhCH), 5.34 - 5.24 (m, 3H), 5.18 – 5.12 (m, 3H), 5.11 (s, 1H), 5.09 (d, J = 4.4 Hz, 1H), 5.05 – 5.02 (m, 1H), 4.91 (d, J = 8.4 Hz, 1H, GalN H-1'), 4.84 (dd, J = 7.9, 2.3 Hz, 2H, GalN H-1"), 4.74 (m, 6H, 3 x H-1), 4.62 - 4.60 (m, 1H, H-1), 4.59 - 4.54 (m, 5H, H-1), 4.52 - 4.48 (m, 1H), 4.36 - 4.31 (m, 2H), 4.29 - 4.27 (m, 3H), 4.24 (d, J = 10.8 Hz, 5H), 4.21 - 4.08 (m, 7H), 3.96 (d, J = 9.8 Hz, 2H, GalN H-2'), 3.93 – 3.89 (m, 4H), 3.81 (m, 3H), 3.77 – 3.73 (m, 3H, GalN H-2"), 3.72 (s, 3H, CO₂CH₃), 3.69 (dd, *J* = 6.5, 5.0 Hz, 3H), 3.66 (s, 3H, CO₂CH₃), 3.62 (s, 3H, CO₂CH₃), 3.61 – 3.56 (m, 2H), 3.38 – 3.31 (m, 4H), 3.26 (t, J = 5.9 Hz, 2H), 3.13 (s, 1H), 2.93 – 2.85 (m, 2H), 2.78 – 2.70 (m, 2H, CH₃COCH₂CH₂), 2.66 - 2.46 (m, 7H, CH₃COCH₂CH₂), 2.15 (s, 3H, CH₃COCH₂CH₂), 2.10 (s, 3H, CH₃COCH₂CH₂), 1.99 (s, 3H, CH₃CO), 1.35 (s, 3H, CH₃CO). ¹³C NMR (126 MHz, CDCl₃) δ 206.85, 206.83, 171.55, 171.52, 169.46, 169.30, 169.22, 169.18, 168.97, 167.45, 165.55, 165.08, 164.87, 164.80, 164.75, 164.55, 161.57, 155.92, 143.84, 143.69, 141.25, 141.23, 137.96, 137.93, 137.91, 137.88, 137.75, 137.59, 137.27, 135.13, 133.26, 133.17, 133.15, 133.01, 130.07, 130.03, 129.93, 129.76, 129.56, 129.54, 129.51, 129.49, 129.12, 129.04, 128.85, 128.52, 128.49, 128.41, 128.38, 128.35, 128.32, 128.29, 128.23, 128.11, 128.06, 128.00, 127.98, 127.96, 127.93, 127.84, 127.80, 127.76, 127.72, 127.65, 127.58, 127.47, 127.43, 127.12, 127.10, 126.41, 126.23, 125.30, 125.19, 119.99, 102.31, 100.72, 100.59, 100.56, 100.50, 100.12, 100.02, 99.69, 99.60, 99.08, 92.68, 92.43, 79.87, 79.58, 78.90, 75.81, 75.27, 75.03, 74.41, 74.36, 74.13, 73.96, 73.87, 73.79, 73.64, 73.60, 73.05, 72.97, 72.86, 72.69, 72.56, 72.40, 71.76, 71.30, 70.82, 70.69, 69.10, 68.84, 68.17, 67.31, 67.21, 67.10, 66.71, 62.39, 55.23, 55.12, 54.25, 52.90, 52.82, 47.07, 38.13, 38.03, 31.94, 31.65, $29.85, 29.71, 29.68, 27.89, 27.82, 22.72, 21.49, 20.69, 19.98, 14.16. \ ESI-MS: C_{184}H_{179}Cl_6N_3O_{59} \ [M+2NH_4]^{2+} \ calcd: C_{184}H_{179}Cl_6N_$ 1811.4955, obsd: 1811.4644.


 $N-Fluorenylmethyloxycarbonyl-O-[2-O-benzoyl-3-O-benzyl-\beta-D-glucopyranosyl-(1\rightarrow 3)-6-O-benzyl-4-O-levulinoyl-2-deoxy-2-N-trichloroacetamido-\beta-D-galactopyranosyl-(1\rightarrow 4)-2-O-benzoyl-3-O-benzyl-\beta-D-galactopyranosyl-(1\rightarrow 3)-6-O-benzyl-4-O-levulinoyl-2-deoxy-2-N-trichloroacetamido-\beta-D-galactopyranosyl-(1\rightarrow 4)2-O-benzoyl-3-O-benzyl-\beta-D-glucopyranosyl-(1\rightarrow 3)-2,4,6-tri-O-acetyl-\beta-D-galactopyranosyl-(1\rightarrow 3)-4,6-di-O-acetyl-2-O-benzoyl-\beta-D-galactopyranosyl-(1\rightarrow 4)-2,3-di-O-benzoyl-\beta-D-xylopyranosyl]-L-serine benzyl ester 27:$

Octasaccharide **26** (150 mg, 41.8 μ mol) was treated with 80% aqueous acetic acid (10 mL), and the mixture was heated at 60 °C until the reaction was completed. The solvent was removed *in vacuo* and the residue was co-evaporated with toluene to afford the tetraol. ESI-MS: C₁₇₀H₁₇₁Cl₆N₃O₅₉ [M+2NH₄]²⁺ calcd: 1724.9644, obsd: 1724.9280. The crude was dissolve in pyridine (5 mL), then treated with Ac₂O (3 mL). The reaction mixture was stirred overnight till completion. The mixture was diluted with EtOAc, washed with 10% HCl solution, saturated NaHCO₃ solution, dried

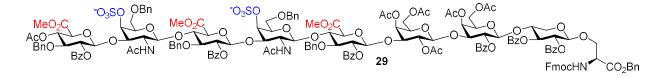

over Na₂SO₄ and concentrated. The residue was purified with silica gel column chromatography (Toluene/Acetone, $30:1 \rightarrow 3:1$) to provide compound 27 as a white solid in 84% yield (125.7 mg, 35.1 µmol) over two steps. $[\alpha_D^{20}] = -$ 30.03 (C = 0.033, DCM). ¹H NMR (500 MHz, CDCl₃) δ 8.06 – 7.93 (m, 10H, 10 x aromatic CH), 7.89 – 7.85 (m, 2H, 2 x aromatic CH), 7.78 (dd, J = 7.5, 2.5 Hz, 2H, 2 x aromatic CH), 7.56 (m, 7H, 7 x aromatic CH), 7.48 – 7.38 (m, 13H, 13 x aromatic CH), 7.37 – 7.22 (m, 16H, 16 x aromatic CH), 7.20 – 7.08 (m, 18H, 18 x aromatic CH), 6.88 (d, *J* = 8.3 Hz, 1H, TCANH), 6.78 (d, *J* = 8.2 Hz, 1H, TCANH), 5.57 – 5.50 (m, 4H), 5.34 – 5.22 (m, 6H), 5.14 (m, 3H), 4.99 (dd, J = 9.2, 7.0 Hz, 2H), 4.94 – 4.89 (m, 2H, GalN H-1'), 4.88 (d, J = 8.4 Hz, 1H), 4.81 (dd, J = 15.2, 6.9 Hz, 2H), 4.76 (dd, J = 10.9, 6.7 Hz, 2H), 4.63 (d, J = 8.0 Hz, 1H), 4.60 - 4.55 (m, 4H), 4.52 (m, 4H, GalN H-2"), 4.39 -4.34 (m, 2H), 4.32 (d, J = 7.2 Hz, 1H), 4.27 (dd, J = 9.8, 4.5 Hz, 3H), 4.25 - 4.19 (m, 3H), 4.17 (d, J = 8.3 Hz, 1H), 4.21 (d, J = 9.8, 4.5 Hz, 3H), 4.25 - 4.19 (m, 3H), 4.17 (d, J = 8.3 Hz, 1H), 4.21 (d, J = 9.8, 4.5 Hz, 3H), 4.25 - 4.19 (m, 3H), 4.17 (d, J = 8.3 Hz, 1H), 4.21 (d, J = 9.8, 4.5 Hz, 3H), 4.25 - 4.19 (m, 3H), 4.17 (d, J = 8.3 Hz, 1H), 4.21 (d, J = 9.8, 4.5 Hz, 3H), 4.25 - 4.19 (m, 3H), 4.17 (d, J = 8.3 Hz, 1H), 4.21 (d, J = 9.8, 4.5 Hz, 3H), 4.25 - 4.19 (m, 3H), 4.17 (d, J = 8.3 Hz, 1H), 4.21 (d, J = 9.8, 4.5 Hz, 3H), 4.25 - 4.19 (m, 3H), 4.17 (d, J = 8.3 Hz, 1H), 4.21 (d, J = 9.8, 4.5 Hz, 3H), 4.25 - 4.19 (m, 3H), 4.17 (d, J = 8.3 Hz, 1H), 4.21 (d, J = 9.8, 4.5 Hz, 3H), 4.17 (d, J = 8.3 Hz, 1H), 4.21 (d, J = 9.8, 4.5 Hz, 3H), 4.21 (d, J = 9.8, 4.4.13 (dd, J = 10.9, 3.4 Hz, 1H), 4.09 (dd, J = 11.6, 5.3 Hz, 1H), 3.97 – 3.87 (m, 7H, GalN H-1', GalN H-2''), 3.85 – 3.80 (m, 2H), 3.77 (s, 3H, CO₂CH₃), 3.76 – 3.73 (m, 2H), 3.71 (s, 3H, CO₂CH₃), 3.68 (d, *J* = 7.3 Hz, 2H), 3.65 (s, 3H, CO₂CH₃), 3.62 (dd, *J* = 12.2, 6.8 Hz, 3H), 3.55 (dd, *J* = 10.1, 3.5 Hz, 1H), 3.38 – 3.35 (m, 2H), 3.32 (d, *J* = 6.7 Hz, 2H), 3.12 (dd, J = 12.2, 6.1 Hz, 1H), 2.89 (m, 2H), 2.74 – 2.67 (m, 2H, CH₃COCH₂CH₂), 2.64 – 2.43 (m, 7H, CH₃COCH₂CH₂), 2.15 (s, 3H, CH₃COCH₂CH₂), 2.08 (s, 3H, CH₃COCH₂CH₂), 2.08 (s, 3H, CH₃CO), 2.02 (s, 3H, CH₃CO), 1.99 (s, 3H, CH₃CO), 1.98 (s, 3H, CH₃CO), 1.92 (s, 3H, CH₃CO), 1.31 (s, 3H, CH₃CO). ¹³C NMR (126 MHz, CDCl₃) & 206.86, 171.55, 170.59, 170.57, 170.22, 169.68, 169.22, 169.21, 169.08, 168.53, 167.44, 165.27, 164.85, 164.80, 164.51, 164.29, 161.62, 161.54, 143.80, 143.65, 141.28, 141.24, 137.95, 137.93, 137.90, 137.26, 133.41, 133.23, 133.18, 133.00, 130.10, 130.06, 129.93, 129.87, 129.73, 129.66, 129.61, 129.49, 129.26, 129.03, 128.66, 128.46, 128.44, 128.34, 128.33, 128.31, 128.27, 128.11, 128.05, 128.00, 127.97, 127.93, 127.89, 127.79, 127.73, 127.64, 127.58, 127.46, 127.43, 127.10, 127.07, 125.14, 125.11, 120.01, 99.96, 99.76, 99.74, 99.68, 99.67, 99.58, 99.24, 73.92, 73.77, 73.61, 73.03, 72.85, 72.68, 72.48, 70.69, 69.20, 68.92, 68.19, 67.30, 67.18, 64.01, 62.28, 52.90, 52.81, 52.80, 47.10, 38.15, 38.03, 31.93, 31.63, 29.84, 29.70, 29.69, 29.67, 29.65, 29.64, 29.52, 29.37, 29.17, 27.82, 22.71, 20.87, 20.72, 20.70, 20.68, 20.51, 19.66. HRMS: C₁₇₈H₁₇₉Cl₆N₃O₆₃ [M+2NH₄]²⁺ calcd: 1807.4853, obsd: 1807.4600.

 $N-Fluorenylmethyloxycarbonyl-O-[2-O-benzoyl-3-O-benzyl-$\beta-D-glucopyranosyl-(1\rightarrow 3)-2-N-acetyl-6-O-benzyl-4-O-levulinoyl-2-deoxy-$\beta-D-galactopyranosyl-(1\rightarrow 4)-2-O-benzyl-$\beta-D-glucopyranosyl-(1\rightarrow 3)-2-N-acetyl-6-O-benzyl-4-O-levulinoyl-2-deoxy-$\beta-D-galactopyranosyl-(1\rightarrow 4)2-O-benzoyl-3-O-benzyl-$\beta-D-galactopyranosyl-(1\rightarrow 3)-2,4,6-tri-O-acetyl-$\beta-D-galactopyranosyl-(1\rightarrow 3)-4,6-di-O-acetyl-2-O-benzoyl-$\beta-D-galactopyranosyl-(1\rightarrow 3)-2,4,6-tri-O-acetyl-$\beta-D-galactopyranosyl-(1\rightarrow 3)-4,6-di-O-acetyl-2-O-benzoyl-$\beta-D-galactopyranosyl-(1\rightarrow 3)-2,3-di-O-benzoyl-$\beta-D-xylopyranosyl]-L-serine benzyl ester 2:$

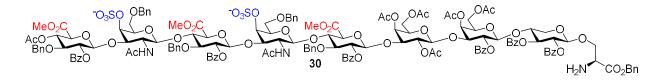


To a solution of octasaccharide **27** (90 mg, 25.1 µmol) in anhydrous AcOH (2 mL), Zn-Cu couple (97.3 mg, 0.75 mmol, 5 equiv/Cl) was added in five portions at 2 h. The mixture was stirred at 50 °C for 24 h. After the reaction was consumed as indicated from mass spectrometry, the mixture was cooled to room temperature and filtered through Celite, washed with DCM, EtOAc, and toluene. The filtrate was concentrated and subjected to silica gel column

chromatography (Toluene/Acetone, $30:1 \rightarrow 1:1$) to afford compound **2** as a white solid in 70% yield (59.4 mg, 17.6 μ mol). $[\alpha_D^{20}] = +95.9$ (C = 0.0417, DCM). ¹H NMR (500 MHz, CDCl₃) δ 8.04 – 7.94 (m, 10H, 10 x aromatic CH), 7.91 (d, J = 7.4 Hz, 2H, 2 x aromatic CH), 7.77 (dd, J = 7.4, 2.5 Hz, 2H, 2 x aromatic CH), 7.55 (m, 7H, 7 x aromatic CH), 7.51 – 7.40 (m, 12H, 12 x aromatic CH), 7.39 – 7.33 (m, 4H, 4 x aromatic CH), 7.30 – 7.19 (m, 16H, 16 x aromatic CH), 7.16 (m, 13H, 13 x aromatic CH), 7.11 – 7.07 (m, 3H, 3 x aromatic CH), 5.99 (d, J = 8.3 Hz, 1H, AcNH), 5.75 (d, *J* = 7.9 Hz, 1H, AcNH), 5.63 (s, 1H), 5.56 (t, *J* = 6.8 Hz, 2H), 5.51 (d, *J* = 2.5 Hz, 1H), 5.43 (d, *J* = 3.0 Hz, 1H), 5.37 – 5.33 (m, 1H), 5.30 – 5.23 (m, 3H), 5.17 – 5.11 (m, 3H), 5.04 (dd, *J* = 9.8, 8.2 Hz, 1H), 4.99 (dd, J = 7.7, 4.1 Hz, 2H), 4.92 (d, J = 4.7 Hz, 1H), 4.79 (dd, J = 8.1, 4.3 Hz, 2H, GalN H-1"), 4.69 – 4.62 (m, 3H, GalN H-1'), 4.60 - 4.47 (m, 8H), 4.41 - 4.27 (m, 10H), 4.23 (d, J = 8.2 Hz, 1H), 4.16 (t, J = 7.0 Hz, 1H), 4.09 (d, J = 10.6Hz, 1H), 4.05 (dd, J = 10.8, 5.0 Hz, 2H), 3.98 – 3.91 (m, 4H, GalN H-2'), 3.87 – 3.78 (m, 5H), 3.75 (s, 3H), 3.72 (s, 3H), 3.69 (s, 6H, GalN H-2"), 3.64 (dd, J = 15.5, 9.2 Hz, 3H), 3.48 (dd, J = 13.0, 8.1 Hz, 2H), 3.43 – 3.34 (m, 4H), 3.13 (dd, J = 12.1, 6.0 Hz, 1H), 2.86 – 2.77 (m, 2H), 2.67 – 2.57 (m, 3H, CH₃COCH₂CH₂), 2.53 – 2.28 (m, 6H, CH₃COCH₂CH₂), 2.14 (s, 3H, CH₃COCH₂CH₂), 2.05 (s, 3H, CH₃COCH₂CH₂), 2.03 (s, 3H, CH₃CO), 2.02 (s, 3H, CH₃CO), 1.96 (s, 6H, 2 x CH₃CO), 1.77 (s, 2H, CH₃CO), 1.75 (s, 2H, CH₃CO), 1.59 (s, 3H, CH₃CO), 1.53 (s, 3H, CH₃CO). ¹³C NMR (126 MHz, CDCl₃) δ 206.75, 206.74, 171.66, 170.91, 170.61, 170.53, 169.75, 169.46, 169.23, 168.90, 167.55, 165.26, 155.91, 143.80, 143.64, 141.27, 141.24, 138.04, 137.93, 137.75, 137.37, 135.66, 135.06, 133.53, 133.47, 133.39, 133.35, 133.29, 133.17, 130.11, 129.88, 129.80, 129.72, 129.60, 129.49, 129.28, 129.07, 128.70, 128.44, 128.34, 128.30, 128.25, 128.08, 128.06, 127.92, 127.89, 127.86, 127.77, 127.73, 127.65, 127.56, 127.10, 127.06, 125.13, 120.65, 120.00, 109.99, 101.91, 101.90, 101.36, 101.32, 101.26, 100.73, 100.17, 100.16, 99.76, 79.11, 75.24, 73.63, 73.61, 73.58, 73.05, 72.81, 72.62, 71.67, 71.56, 70.63, 69.49, 69.44, 69.03, 68.92, 67.30, 67.17, 62.01, 54.16, 52.67, 47.09, 38.12, 29.81, 29.44, 28.02, 23.28, 23.07, 20.84, 20.81, 20.74, 20.67, 20.56, 19.96. HRMS: C₁₇₈H₁₈₅N₃O₆₃ [M+2H]²⁺ calcd: m/z: 1688.0776, obsd: 1688.0627.

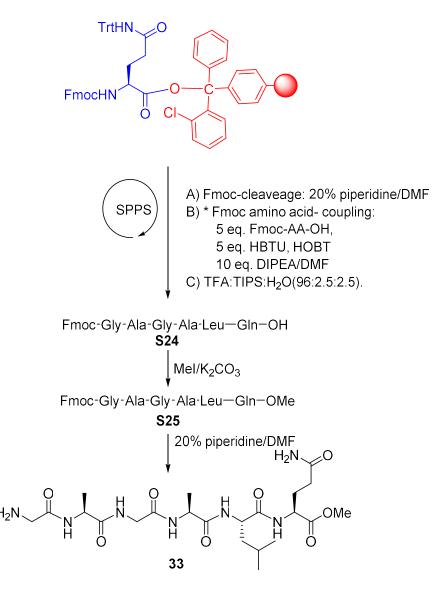


 $N-Fluorenylmethyloxycarbonyl-O-[2-O-benzoyl-3-O-benzyl-\beta-D-glucopyranosyl-(1\rightarrow 3)-2-N-acetyl-6-O-benzyl-2-deoxy-\beta-D-galactopyranosyl-(1\rightarrow 4)-2-O-benzoyl-3-O-benzyl-\beta-D-glucopyranosyl-(1\rightarrow 3)-2-N-acetyl-6-O-benzyl-2-deoxy-\beta-D-galactopyranosyl-(1\rightarrow 4)2-O-benzoyl-3-O-benzyl-\beta-D-glucopyranosyl-(1\rightarrow 3)-2,4,6-tri-O-acetyl-\beta-D-galactopyranosyl-(1\rightarrow 3)-4,6-di-O-acetyl-2-O-benzoyl-\beta-D-galactopyranosyl-(1\rightarrow 4)-2,3-di-O-benzoyl-\beta-D-xylopyranosyl]-L-serine benzyl ester 28:$

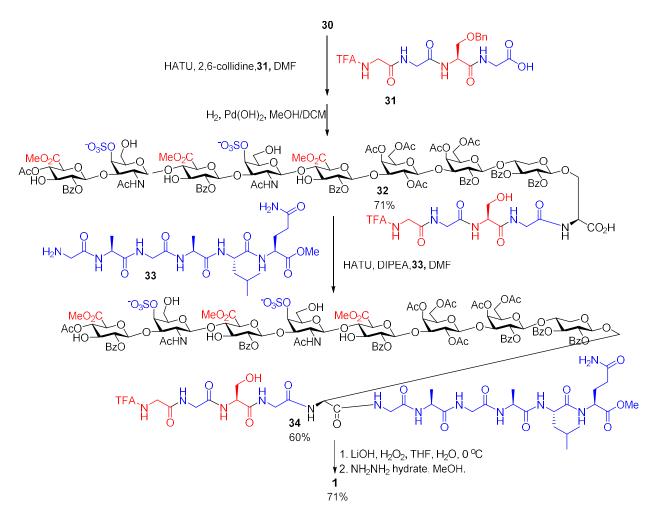

Compound 2 (90 mg, 26.7 µmol) was dissolved in THF/MeOH (10:1, 3.3 mL). The mixture was cooled to 0 °C then hydrazine acetate (NH₂NH₃OAc) (25 mg, 0.27 mmol) was added. The mixture was stirred at 0 °C for 2 h. After the reaction was completed, it was quenched with acetone (0.2 mL), stirred for another 0.5-1 h from 0 °C to room temperature and then, acetone was evaporated under vacuum. The residue was diluted with EtOAc, washed with saturated NaHCO₃ solution, 10% HCl and water and the organic layer was dried over Na₂SO₄ and concentrated in *vacuo* and the residue was purified with silica gel chromatography (DCM/MeOH, $40:1 \rightarrow 15:1$) to give compound **28** as a white solid in 90% yield (76.3 mg, 24 μ mol). [α _D²⁰] = +400 (C = 0.0075, DCM). ¹H NMR (500 MHz, CDCl₃) δ 7.98 (m, 10H), 7.87 (d, J = 7.2 Hz, 2H, 2 x aromatic CH), 7.77 (dd, J = 7.4, 2.5 Hz, 2H, 2 x aromatic CH), 7.62 - 7.57 (m, 2H, 2 x aromatic CH), 7.56 – 7.52 (m, 4H, 4 x aromatic CH), 7.48 – 7.39 (m, 12H, 12 x aromatic CH), 7.39 – 7.32 (m, 4H, 4 x aromatic CH), 7.30 – 7.23 (m, 10H, 10 x aromatic CH), 7.21 (m, 4H, 4 x aromatic CH), 7.17 – 7.07 (m, 19H, 19 x aromatic CH), 5.60 (d, J = 6.5 Hz, 2H, 2 x AcNH), 5.57 – 5.53 (m, 2H), 5.42 (d, J = 3.2 Hz, 1H), 5.36 – $5.30 \text{ (m, 2H)}, 5.27 \text{ (dd, } J = 11.3, 7.3 \text{ Hz}, 3\text{H}), 5.15 \text{ (m, 5H)}, 5.00 - 4.94 \text{ (m, 4H, GalN H-1')}, 4.79 \text{ (dd, } J = 11.2, 7.2 \text{$ Hz, 2H, GalN H-1", H-1), 4.74 – 4.68 (m, 3H, H-1), 4.64 (dd, J = 13.8, 8.1 Hz, 3H, 2 x H-1), 4.60 – 4.56 (m, 4H, H-1), 4.50 (m, 4H), 4.42 (m, 2H), 4.35 (m, 4H, H-1), 4.32 – 4.27 (m, 2H), 4.25 (d, *J* = 7.5 Hz, 1H), 4.21 (d, *J* = 7.7 Hz, 1H), 4.21 (d, J = 7 1H), 4.16 (dd, J = 13.4, 7.3 Hz, 2H), 4.09 (s, 1H), 4.04 - 3.96 (m, 6H), 3.92 - 3.87 (m, 3H), 3.86 - 3.81 (m, 2H), 3.78 - 3.71 (m, 4H), 3.70 (s, 3H, CO₂CH₃), 3.68 (s, 3H, , CO₂CH₃), 3.66 - 3.63 (m, 3H), 3.62 (s, 3H, , CO₂CH₃), 3.60 (d, J = 2.5 Hz, 1H), 3.51 (m, 4H, GalN H-2"), 3.32 (dd, J = 15.5, 7.6 Hz, 2H, GalN H-1"), 3.12 (dd, J = 12.3, 6.0 Hz, 1H), 2.73 (s, 2H), 2.04 (s, 3H, CH₃CO), 2.02 (s, 3H, CH₃CO), 2.00 (s, 3H, CH₃CO), 1.93 (s, 3H, CH₃CO), 1.88 (s, 3H, CH₃CO), 1.43 (s, 3H, CH₃CO), 1.25 (s, 6H, 2 x CH₃CO). ¹³C NMR (126 MHz, CDCl₃) δ 171.08, 170.89, 170.60, 170.58, 170.53, 169.72, 169.46, 169.41, 168.93, 168.77, 168.69, 167.43, 165.25, 165.18, 164.82, 164.63, 164.46, 164.32, 155.91, 143.80, 143.64, 141.27, 141.23, 138.14, 138.09, 137.97, 137.81, 137.17, 135.06, 133.63, 133.43, 133.39, 133.28, 133.17, 130.10, 129.87, 129.84, 129.83, 129.75, 129.57, 129.48, 129.36, 129.30, 129.26, 129.23, 128.67, 128.64, 128.46, 128.43, 128.34, 128.33, 128.29, 128.05, 128.04, 127.93, 127.88, 127.86, 127.76, 127.72, 127.65, 127.56, 127.53, 127.52, 127.35, 127.33, 127.09, 127.06, 125.11, 119.99, 109.99, 101.92, 101.28, 101.15, 100.97, 99.75, 99.54, 98.57, 80.33, 79.74, 79.48, 78.74, 78.67, 76.55, 76.06, 75.24, 74.74, 74.11, 73.67, 73.44, 73.42, 73.05, 73.01, 72.89, 72.69, 72.25, 72.12, 71.64, 71.58, 71.30, 70.68, 70.06, 69.48, 69.12, 68.97, 68.80, 67.29, 67.17, 62.08, 61.91, 60.91, 55.99, 54.38, 54.16, 53.06, 52.89, 52.83, 52.73, 47.09, 31.93, 29.70, 29.66, 29.37, 23.06, 22.85, $22.70, 20.81, 20.73, 20.70, 20.68, 20.53, 19.78, 14.14. HSMS: C_{168}H_{173}N_3O_{59} [M+2Na]^{2+} calcd: m/z: 1612.0240, obsd: 10.100 m/z: 1612.000 m/z: 1612.0000 m/z: 1612.000 m/z: 1612.000 m/z: 1612.0000 m/z: 1612.0000 m/z: 1612.0000 m/z: 1612.0000 m/z: 1612.0000 m/z:$ 1612.0148.

CS-A octasaccharide 29:

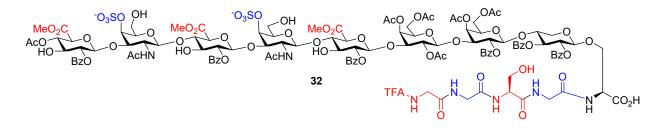
Compound 28 (40 mg, 12.6 µmol) was dissolved in anhydrous DMF (1 mL), followed by addition of SO₃-NEt₃ (91.2 mg, 0.05 mmol). The resulting mixture was stirred at 50 °C overnight. After cooling down to room temperature, it was diluted with MeOH-DCM (0.5 mL) and subjected into LH-20 column chromatography (DCM/MeOH, 1:1) for purification to provide compound **29** as a white solid in 81% yield (34 mg, 10.2 μ mol). [α_D^{20}] = -117.6 (C = 0.017, DCM).¹H NMR (500 MHz, CDCl₃) δ 8.05 - 7.88 (m, 12H, 12 x aromatic CH), 7.77 (dd, J = 7.4, 2.5 Hz, 2H, 2 x aromatic CH), 7.55 (m, 6H, 6 x aromatic CH), 7.50 - 7.41 (m, 9H, 9 x aromatic CH), 7.41 - 7.32 (m, 9H, 9 x aromatic CH), 7.28 (m, 3H, 3 x aromatic CH), 7.25 – 7.08 (m, 23H, 23 x aromatic CH), 7.05 – 6.96 (m, 5H, 5 x aromatic CH), 5.62 - 5.49 (m, 5H, 2 x AcNH), 5.39 - 5.23 (m, 7H), 5.14 (d, J = 8.8 Hz, 2H), 4.97 (dd, J = 19.3, 8.3 Hz, 5H), 4.90 -4.73 (m, 7H), 4.65 (d, J = 8.4 Hz, 3H), 4.59 - 4.50 (m, 5H), 4.39 - 4.28 (m, 7H), 4.23 (d, J = 9.1 Hz, 3H), 4.15 (dd, J = 9.1 H= 14.1, 6.7 Hz, 3H), 4.04 (dd, J = 22.4, 9.8 Hz, 5H), 3.93 (m, 6H), 3.82 - 3.76 (m, 4H), 3.72 - 3.58 (m, 13H), 3.49 (s, 2H), 3.13 (d, J = 12.8 Hz, 3H), 2.04 (dd, J = 13.4, 7.4 Hz, 9H, 3 x CH₃CO), 1.98 – 1.89 (m, 9H, 3 x CH₃CO), 1.61 (d, J = 7.6 Hz, 6H, 2 x CH₃CO). ¹³C NMR (126 MHz, cdcl₃) δ 171.70, 170.62, 170.54, 169.81, 169.63, 169.46, 168.97, 168.18, 165.26, 165.19, 164.45, 164.39, 155.91, 143.79, 143.64, 141.26, 141.23, 138.44, 137.78, 135.05, 133.48, 133.39, 133.17, 130.11, 129.87, 129.80, 129.72, 129.49, 129.37, 129.27, 128.99, 128.70, 128.58, 128.52, 128.45, 128.43, 128.36, 128.33, 128.30, 128.28, 128.26, 128.23, 128.19, 128.12, 128.05, 128.03, 127.91, 127.80, 127.76, 127.72, 127.56, 127.39, 127.09, 127.06, 125.13, 125.10, 119.99, 101.89, 101.86, 101.30, 99.75, 97.74, 97.71, 80.89, 79.76, 77.26, 76.32, 75.23, 74.46, 73.51, 73.15, 72.35, 71.68, 71.54, 71.22, 70.65, 70.43, 69.63, 69.47, 69.08, 68.80, 67.29, 67.16, 62.01, 60.88, 54.16, 52.67, 52.46, 51.82, 47.09, 45.68, 29.69, 23.11, 20.80, 20.77, 20.73, 20.65, 20.56, 20.00. HRMS: C₁₆₈H₁₇₁N₃O₆₅S₂²⁻ [M-2H]²⁻ calcd: 1667.9844, obsd: 1667.9734.


CS-A octasaccharide 30:

Compound **29** (10 mg, 3 µmol) was dissolved in dry DMF (0.4 mL), followed by addition of piperidine (20 µL). The mixture was stirred under room temperature for 20 minutes and the product **30** (8.6 mg, 2.7 µmol) (93% yield) was purified with LH-20 (DCM/MeOH, 1:1) and prep. TLC as a white solid. $[\alpha_D^{20}] = -58.6$ (C = 0.0583, DCM). ¹H NMR (500 MHz, CDCl₃) δ 8.09 – 7.89 (m, 12H), 7.80 (d, *J* = 7.6 Hz, 1H), 7.60 – 7.49 (m, 7H), 7.48 – 7.37 (m, 11H), 7.30 (d, *J* = 5.3 Hz, 3H), 7.26 – 7.11 (m, 19H), 7.09 – 6.96 (m, 6H), 6.83 (d, *J* = 2.7 Hz, 1H), 5.56 (dd, *J* = 18.9, 16.6 Hz,


3H), 5.39 - 5.23 (m, 6H), 5.15 (dd, J = 17.1, 5.5 Hz, 3H), 5.09 - 4.94 (m, 7H), 4.81 (dd, J = 30.3, 19.5 Hz, 5H), 4.67 (d, J = 4.8 Hz, 4H), 4.60 - 4.44 (m, 6H), 4.40 - 4.29 (m, 5H), 4.26 - 4.14 (m, 4H), 4.12 - 4.00 (m, 7H), 3.99 - 3.88 (m, 7H), 3.79 (dd, J = 11.3, 6.5 Hz, 4H), 3.67 (dd, J = 28.7, 11.3 Hz, 12H), 3.49 (s, 2H), 3.19 (dd, J = 15.0, 9.2 Hz, 2H), 2.09 - 2.00 (m, 9H), 1.99 - 1.89 (m, 9H), 1.58 (d, J = 38.3 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 173.05, 171.89, 170.62, 169.73, 168.96, 165.29, 165.12, 164.38, 164.33, 137.72, 135.40, 133.50, 133.34, 133.12, 130.93, 130.55, 130.10, 129.85, 129.49, 129.48, 129.40, 128.68, 128.47, 128.37, 128.29, 128.24, 128.20, 128.15, 128.11, 127.96, 127.85, 127.80, 127.51, 127.44, 127.24, 102.07, 101.98, 101.97, 101.96, 99.67, 99.62, 99.62, 99.59, 77.23, 75.39, 73.21, 73.20, 71.66, 71.62, 70.70, 69.52, 69.03, 66.84, 54.60, 31.94, 29.71, 29.38, 22.71, 20.82, 20.81, 20.73, 20.56, 14.15, 1.03. HRMS: Cl_{153}Hl_{61}N_3O_{63}S2^{2-} [M-2H]²⁻ calcd: 1556.9503, obsd: 1556.9376.

Synthesis of Glycopeptide:



Peptide 31 was synthesized following the general procedure for solid phase peptide synthesis. The crude peptide was purified using HPLC (solvent A: H₂O (0.01% TFA; solvent B: acetonitrile, 5 to 40% in 40 min) to afford pure peptide **31** as a white solid in 55% yield. ¹H NMR (500 MHz, CD₃OD) δ 7.40 – 7.21 (m, 5H, 5 x aromatic CH), 4.66 (dd, *J* = 5.8, 4.7 Hz, 1H, Ser-CH), 4.59 – 4.50 (m, 2H, PhCH₂), 4.04 – 3.86 (m, 6H, 3 x Gly-CH₂), 3.80 (dd, *J* = 9.9, 5.8 Hz, 1H, Ser-CH₂), 3.74 (dd, *J* = 9.9, 4.7 Hz, 1H, Ser-CH₂). ¹³C NMR (126 MHz, CD₃OD) δ 171.17, 170.93, 170.12, 169.23, 158.23, 157.93, 137.80, 127.94, 127.50, 127.31, 117.13, 114.85, 72.80, 69.14, 53.31, 48.09, 48.04, 47.92, 47.87, 47.84, 47.82, 47.81, 47.78, 47.75, 47.71, 47.71, 47.61, 47.60, 47.58, 47.54, 47.46, 47.44, 47.43, 47.41, 47.24, 47.23, 47.07, 42.16, 41.84, 40.46. HRMS: C₁₈H₂₁F₃N₄O₇ [M+H]⁺ calcd: 463.1435, obsd: 463.1427.

Glycopeptide 32:

Compound **30** (5 mg, 1.6 µmol) and tetrapeptide **31** (5.2 mg, 11.2 µmol) were dissolved in anhydrous DMF (0.4 mL), followed by addition of HATU (4.3 mg, 11.2 µmol) and 2,6-collidine (2.7 µL, 16.1 µmol). The mixture was stirred for 3 h at room temperature, then loaded onto a LH-20 column (DCM/MeOH, 1:1) followed by prep. TLC for purification to provide the glycopeptide as a white solid in 90% yield (5 mg, 1.4 µmol). Then the resulting glycopeptide (3 mg, 1.15 µmol) was dissolved in MeOH/DCM (4:1, 1 mL) followed by adding Pd(OH)₂C (10 mg). The resulting mixture was stirred under H₂ atmosphere. The reaction was monitored by mass spectrometry till completion, then diluted with MeOH and filtered. After concentration, the residue was purified by LH-20 (pure MeOH) to afford compound **32** as a white solid in 75% yield (2.6 mg, 0.86 μ mol). [α _D²⁰] = -117.6 (C = 0.017, DCM). ¹H NMR (500 MHz, CD₃OD) δ 8.09 - 7.89 (m, 12H), 7.66 - 7.38 (m, 18H), 5.57 - 5.49 (m, 2H), 5.37 - 5.26 (m, 4H), 5.21 - 5.06 (m, 7H), 5.00 – 4.96 (m, 2H), 4.86 – 4.74 (m, 5H), 4.64 (dd, *J* = 11.3, 5.2 Hz, 3H), 4.51 – 4.42 (m, 4H), 4.36 – 4.29 (m, 3H), 4.22 (dd, J = 5.7, 3.2 Hz, 1H), 4.16 (d, J = 9.9 Hz, 1H), 4.09 (dd, J = 11.0, 4.4 Hz, 3H), 4.05 - 4.00 (m, 4H), 4.16 (d, J = 9.9 Hz, 1H), 4.09 (dd, J = 11.0, 4.4 Hz, 3H), 4.05 - 4.00 (m, 4H), 4.16 (d, J = 9.9 Hz, 1H), 4.16 (d, J = 9.9 Hz, 1H3.99 - 3.92 (m, 7H), 3.86 - 3.79 (m, 8H), 3.79 - 3.72 (m, 11H), 3.72 - 3.64 (m, 6H), 3.56 - 3.44 (m, 5H), 3.35 (d, J = 2.2 Hz, 2H), 3.23 - 3.13 (m, 3H), 2.37 - 2.26 (m, 4H), 2.09 - 2.02 (m, 9H), 1.98 (s, 3H), 1.87 (s, 3H), 1.63 (s, 6H), 1.53 (s, 3H). ¹³C NMR (126 MHz, CD₃OD) δ 129.52, 129.38, 128.17, 128.13, 109.98, 48.10, 47.93, 47.88, 47.76, 47.59, 47.42, 47.25, 47.08, 31.67, 29.37, 29.35, 29.33, 29.31, 29.07, 22.34, 19.33, 13.04. HRMS: C₁₂₂H₁₃₈F₃N₇O₆₉S₂²⁻ [M-2H]²⁻ calcd: 1463.3471, obsd: 1463.3422; [M-3H]³⁻ calcd: 975.2290, obsd: 975.2247.

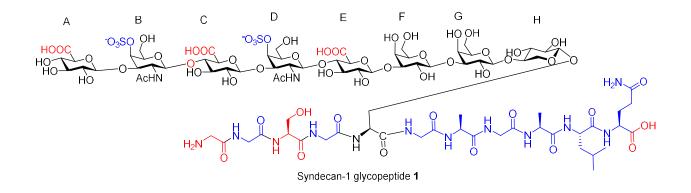
Peptide 33:

Peptide **S24** was synthesized following the general procedure for solid phase peptide synthesis. Then the crude peptide **S24** (258.6 mg, 0.35 mmol) was dissolved in DMF (1 mL), followed by addition of MeI (0.125 mL, 1 mmol) and DIPEA (0.183 mL, 1 mmol). The mixture was stirred under room temperature overnight. The product was precipitated from diethyl ether and the crude was dissolved in DMF (1 mL), followed by addition of piperidine (26 μ L). The resulting mixture was stirred for 1 h, then diluted with diethyl ether and the precipitate was collected and purified with HPLC (solvent A: H₂O (0.01% TFA; solvent B: acetonitrile, 5 to 40% in 40 min) to afford peptide **33** as a white solid in 30% yield over three steps. ¹H NMR (500 MHz, CD₃OD) δ 4.38 – 4.32 (m, 2H), 3.98 – 3.92 (m, 3H), 3.71 (s, 3H, CO₂CH₃), 3.61 – 3.55 (m, 1H), 3.40 (q, *J* = 7.4 Hz, 3H), 1.71 (dt, *J* = 9.2, 3.3 Hz, 2H), 1.45 – 1.43 (m, 6H, 2 x Ala-CH₃), 1.39 – 1.38 (m, 2H), 1.37 – 1.37 (m, 2H), 0.96 (d, *J* = 6.2 Hz, 3H, Leu-CH₃), 0.91 (d, *J* = 6.0 Hz, 3H, Leu-CH₃). ¹³C NMR (126 MHz, CD₃OD) δ 174.09, 173.78, 172.02, 170.50, 63.00, 62.98, 62.97, 52.09, 52.07, 52.05, 51.78, 51.72, 51.40, 49.67, 49.60, 48.99, 48.12, 47.95, 47.78, 47.60, 47.43, 47.26, 47.09, 46.49, 42.59, 42.23, 42.20, 42.17, 40.15, 39.64, 29.58, 26.73, 25.43, 24.65, 24.53, 24.42, 22.88, 22.03, 20.48, 20.45, 17.33, 16.27, 16.25, 16.14, 15.98, 15.25, 8.88. HRMS: C₂₂H₃₉N₇O₈ [M+H]⁺ calcd: 530.2933, obsd: 530.2956.

Glycopeptide **32** (3 mg, 1µmol) and hexapeptide **33** (5.3 mg, 10 µmol) were dissolved in anhydrous DMF. To that solution, HATU (0.57 mg, 1.5 µmol) and DIPEA (0.26 µL, 1.5 µmol) were added. The reaction was stirred for 4 h, then loaded to LH-20 (pure MeOH), and HPLC was used for purification to give glycopeptide **34** as a white solid in 60% yield (2.1 mg, 0.6 µmol). $[\alpha_D^{20}] = +20$ (C = 0.05, DCM). ¹H NMR (500 MHz, CD₃OD) δ 8.09 – 7.88 (m, 12H), 7.67 – 7.37 (m, 18H), 5.52 (dd, *J* = 8.7, 2.9 Hz, 2H), 5.35 (t, *J* = 4.8 Hz, 2H), 5.28 (t, *J* = 2.8 Hz, 2H), 5.21 – 5.07 (m, 7H), 5.00 – 4.96 (m, 2H), 4.82 – 4.75 (m, 4H), 4.49 – 4.27 (m, 12H), 4.16 (d, *J* = 9.8 Hz, 6H), 4.10 – 3.90 (m, 14H), 3.90 – 3.68 (m, 20H), 3.50 – 3.43 (m, 4H), 3.21 – 3.11 (m, 6H), 2.31 (q, *J* = 6.8 Hz, 6H), 2.19 (q, *J* = 7.4 Hz, 7H), 2.10 – 1.85 (m, 18H), 1.67 (m, 22H), 1.41 – 1.31 (m, 12H), 1.01 – 0.94 (m, 5H), 0.91 (m, 5H). ¹³C NMR (based on bsgHSQCAD) (126 MHz, CD₃OD) δ 133.39, 133.48, 132.14, 132.05, 55.84, 51.89, 51.84, 51.94, 23.41, 29.80, 26.53, 33.31, 22.57, 17.10, 13.94, 22.63, 4.12. HRMS: C₁₄₄H₁₇₅F₃N₁₄O₇₆S₂²⁻ [M-2H]²⁻ calcd: 1718.9849, obsd: 1718.9774; [M-3H]³⁻ calcd: 1145.6542, obsd: 1145.6510.

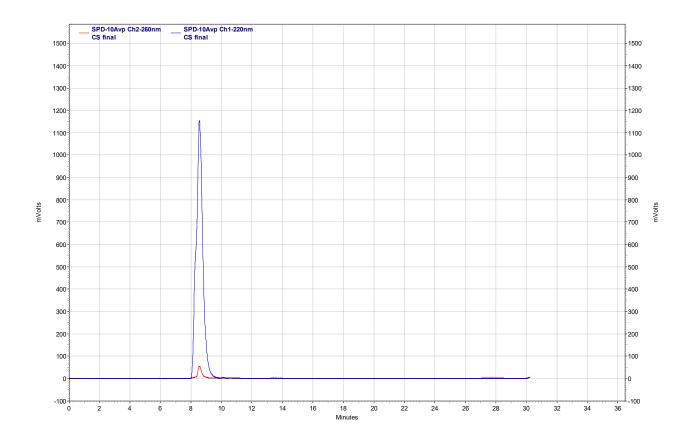
Glycopeptide 1:

Compound **34** (2 mg), was dissolved in THF/H₂O (1:1, 0.4 mL) to which 0.25 M LiOH and H₂O₂ solution were added to maintain pH around 9.0 under 0 °C. When MS analysis showed the complete disappearance of the resulting material (2 h at 0 °C), the mixture was neutralized by 1 M AcOH solution. Then the solution was loaded onto a LH-20 column (pure MeOH) to remove Li salt. The resulting glycopeptide was dissolved in MeOH (0.4 mL), followed by addition of hydrazine hydrate (0.1 mL). The mixture was stirred overnight at room temperature and then neutralized by acetone under 0 °C for 30 minutes. The solution was concentrated and loaded onto a Sephadex G-15 column (H₂O) to afford compound **1** (1 mg, 71% yield). [α_D^{20}] = -240.04 (C = 0.0042, DCM). ¹H NMR (500 MHz, D₂O) δ 4.64 – 4.48 (m, 5H), 4.44 – 4.35 (m, 3H), 4.34 – 4.25 (m, 3H), 4.18 (m, 3H), 4.02 (dd, *J* = 12.6, 6.7 Hz, 2H), 3.92 (m, 7H), 3.80 (m, 5H), 3.70 – 3.62 (m, 8H), 3.57 (m, 7H), 3.53 – 3.49 (m, 3H), 3.46 – 3.41 (m, 2H), 3.34 (m, 4H), 3.25 – 3.14 (m, 4H), 2.06 – 1.93 (m, 4H), 1.92 – 1.83 (m, 6H), 1.64 (m, 3H), 1.52 – 1.42 (m, 4H), 1.24 (m, 5H), 1.17 (d, *J* = 6.9 Hz, 3H), 1.13 (m, 3H), 0.93 (m, 2H), 0.79 (d, *J* = 5.6 Hz, 3H), 0.73 (d, *J* = 5.5 Hz, 3H). ¹³C NMR (126 MHz, D₂O) based on HSQC data δ 152.42, 152.00, 104.56, 103.87, 103.72, 103.34, 102.98, 101.29, 101.06, 101.03, 82.63, 80.20, 76.65, 76.43, 75.32, 74.47, 73.79, 72.25, 72.04, 71.56, 69.81, 69.18, 68.70, 68.06, 60.96, 60.33, 51.48, 49.73, 49.52, 42.21, 38.44, 37.81, 28.96, 25.68, 23.03, 22.55, 21.91, 21.01, 20.17, 16.62, 15.93, 0.82. HRMS: C₈₄H₁₃₂N₁₄O₆₃S₂²⁻ [M-2H]²⁻ calcd: 1204.3504, obsd 1204.3486; [M-3H]³⁻ calcd: 802.5645, obsd: 802.5599.

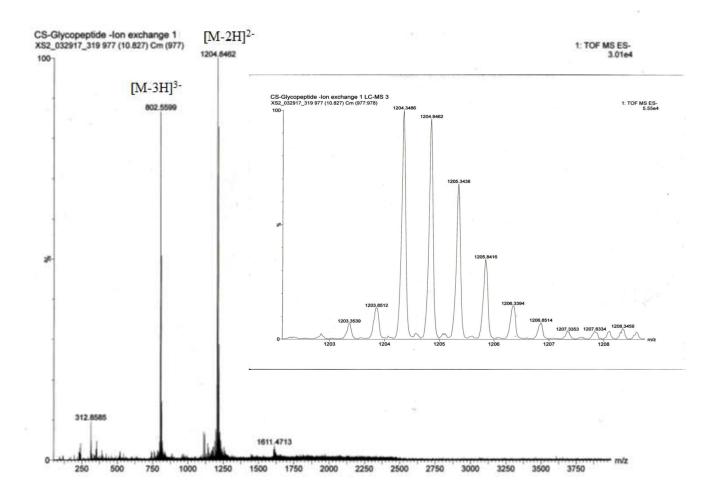

References:

- (1) Bock, K.; Pedersen, C. J. Chem. Soc., Perkin Trans. 2 1974, 293.
- (2) Carpino, L. A.; Han, G. Y. J. Am. Chem. Soc. 1970, 92, 5748.
- (3) Wang, Z.; Zhou, L.; El-Boubbou, K.; Ye, X.-s.; Huang, X. J. Org. Chem. 2007, 72, 6409.
- (4) DeNinno, M. P.; Etienne, J. B.; Duplantier, K. C. *Tetrahedron Lett.* **1995**, *36*, 669.
- (5) Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc.

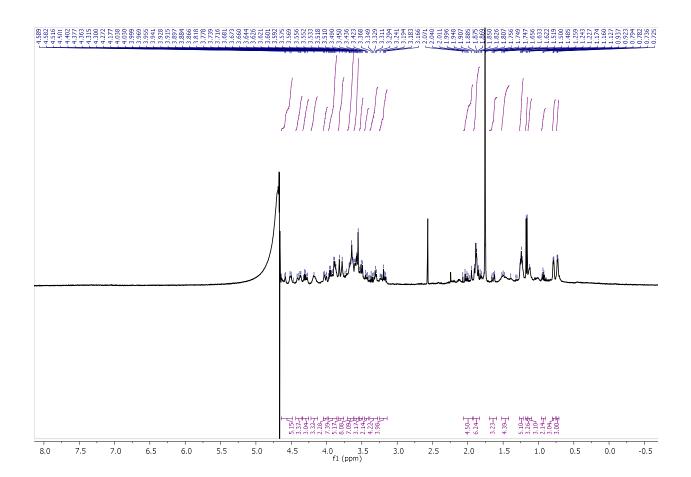
1999, *121*, 734.

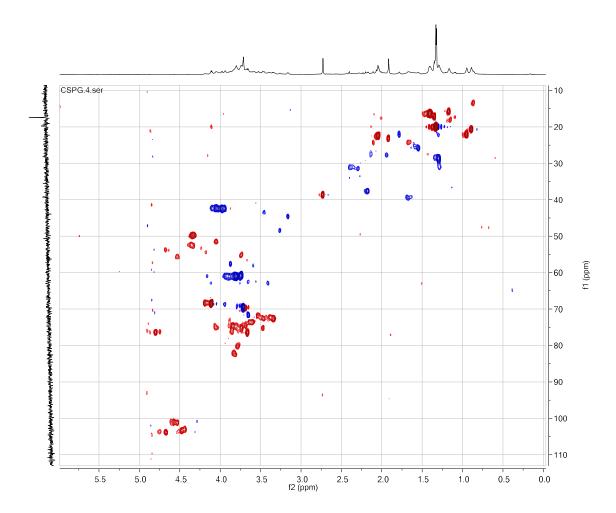

- (6) Huang, L.; Huang, X. Chem. Eur. J. 2007, 13, 529.
- (7) J. Garegg, P.; Hultberg, H.; Wallin, S. *Carbohydr. Res.* **1982**, *108*, 97.
- (8) Yang, B.; Yoshida, K.; Yin, Z.; Dai, H.; Kavunja, H.; El-Dakdouki, M. H.; Sungsuwan, S.;

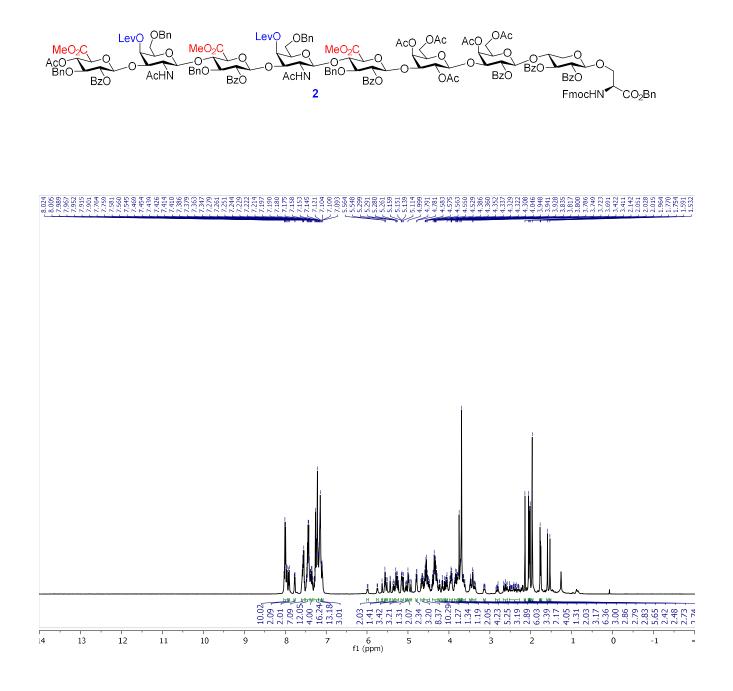
Dulaney, S. B.; Huang, X. Angew. Chem. Int. Ed. 2012, 51, 10185.

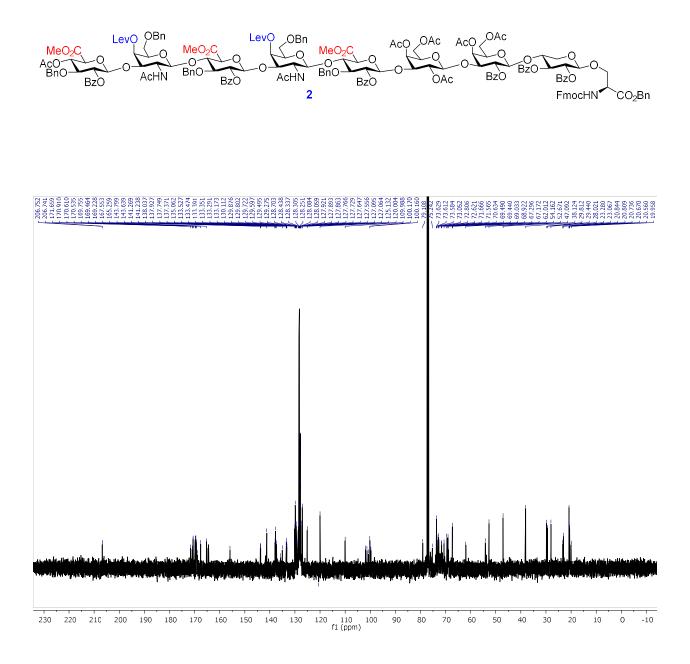


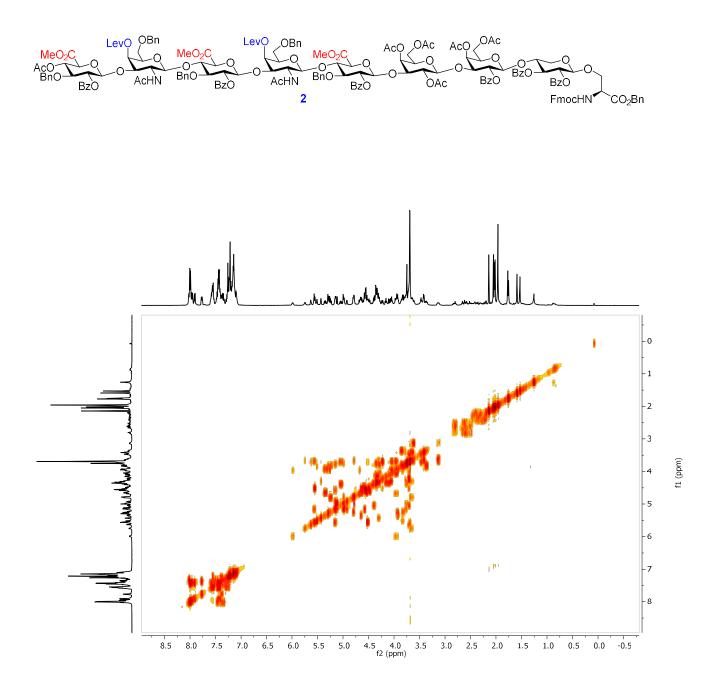
HPLC:


HPLC mobile phase: 40% to 95% B in A over 30 min (solvent A: H₂O; solvent B: CH₃CN). Flow rate: 0.4 mL/min. Detection wavelength: 220 nm. HPLC column: Agilent, ZPRBAX 300SB-C18, 3.5 µm, 4.6x150 mm.

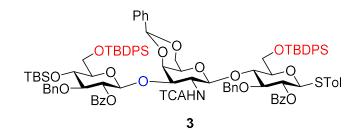

HRMS of CSPG 1

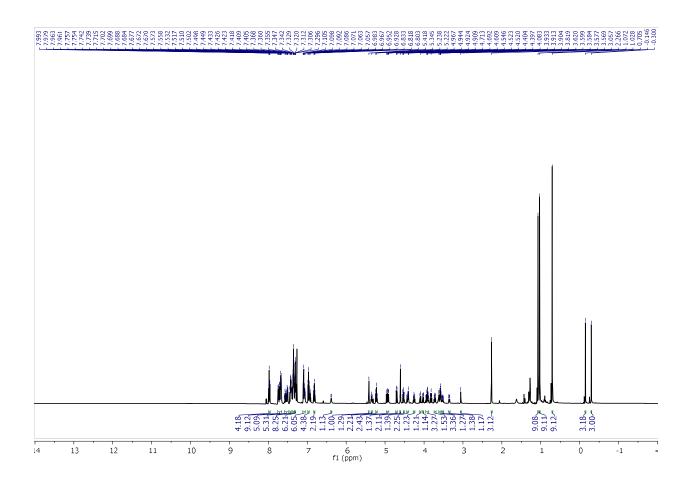


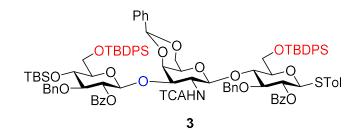

¹H-NMR (CD₃OD, 900 MHz) of 1

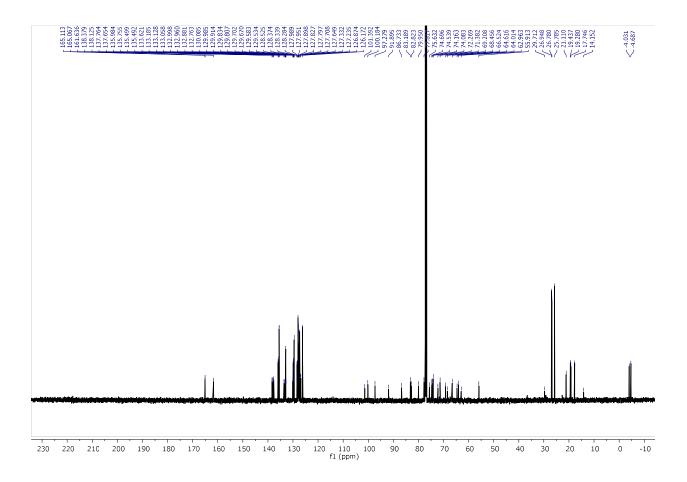


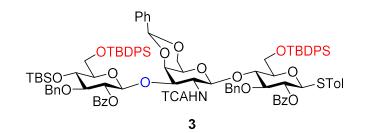
bsgHSQC (CD₃OD, 500 MHz) of 1

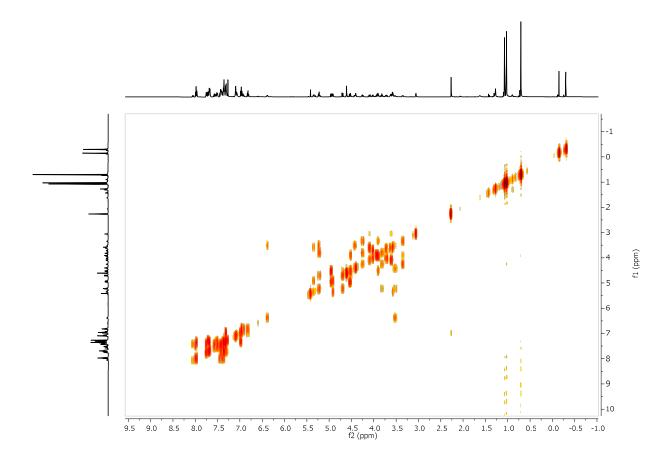


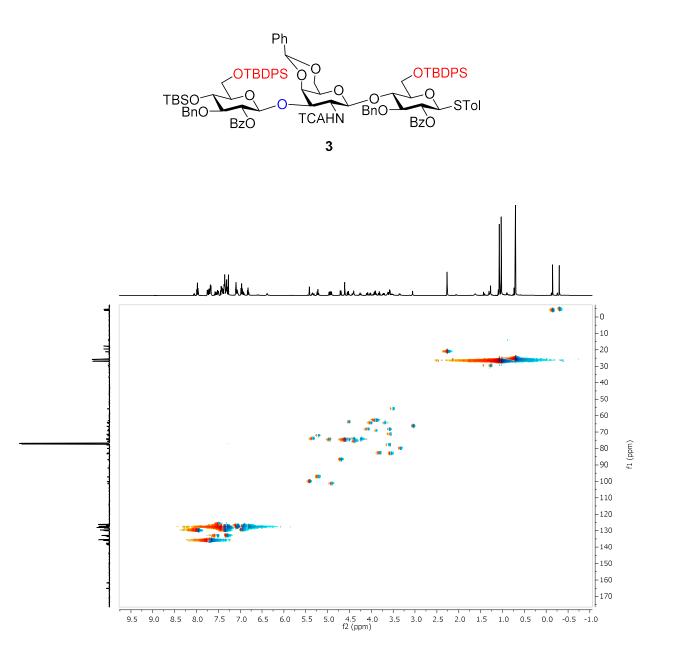


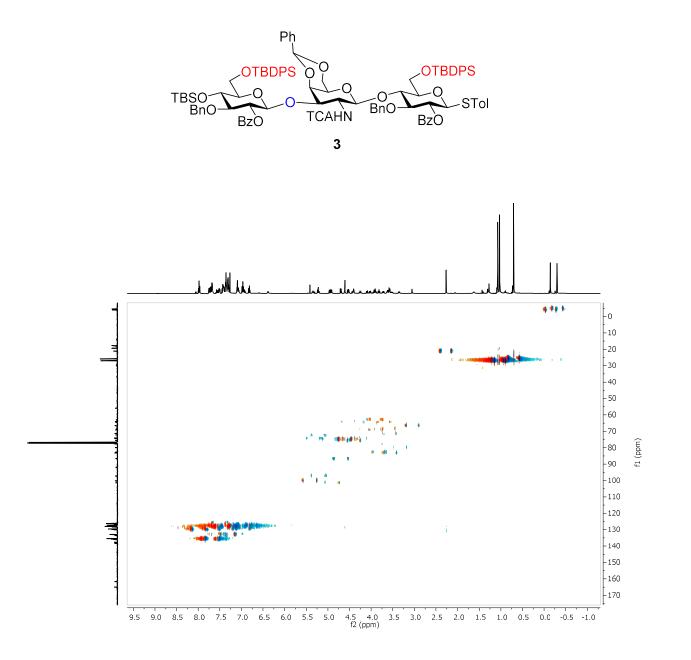


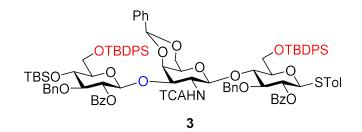

¹H-NMR (CDCl₃, 500 MHz) of $\bf{3}$

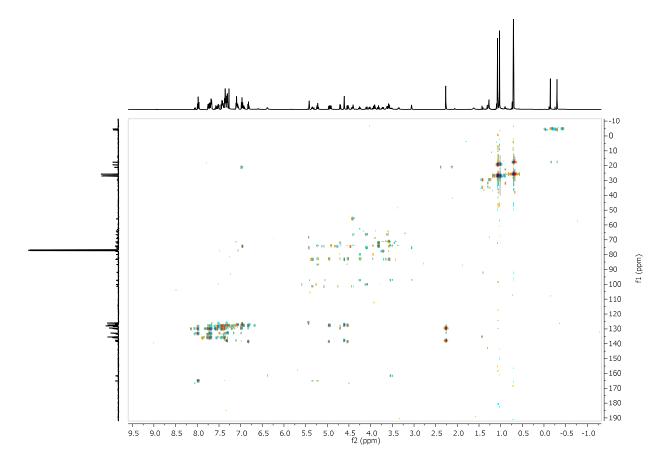



 $^{13}\text{C-NMR}$ (CDCl₃, 126 MHz) of $\boldsymbol{3}$

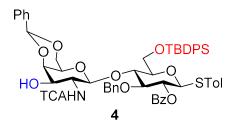


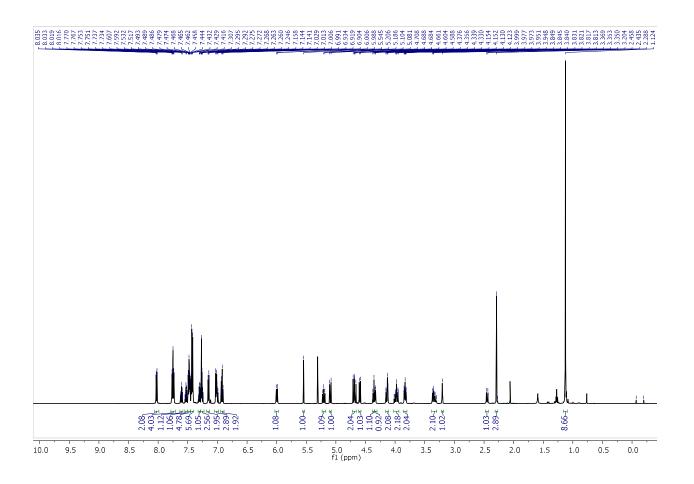

gCOSY (CDCl₃, 500 MHz) of 3

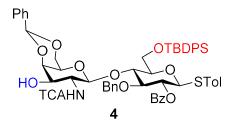


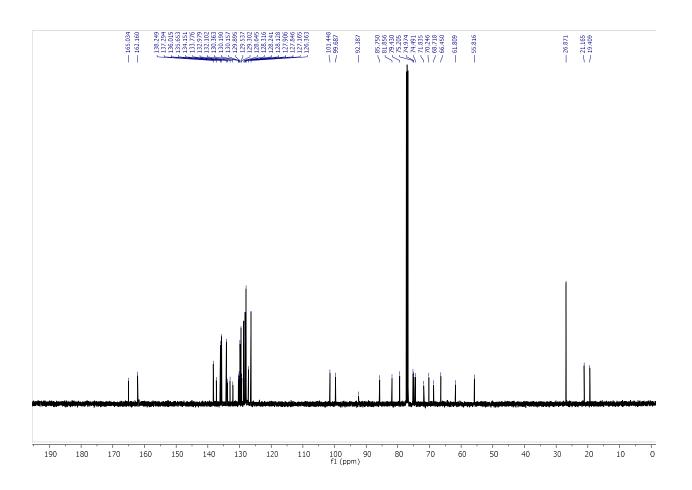


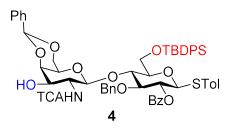
bsgHSQC (CDCl₃, 500 MHz) of **3**

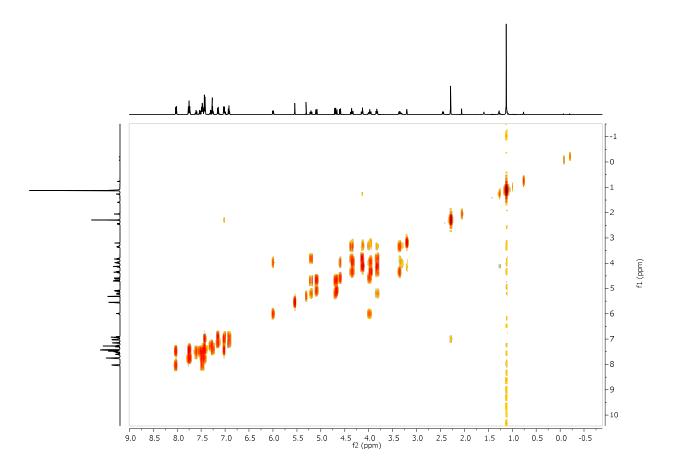


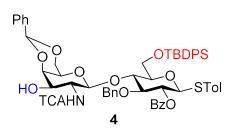


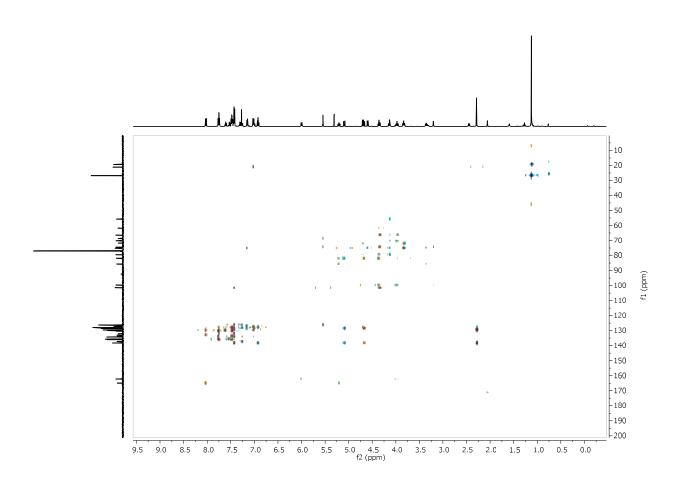


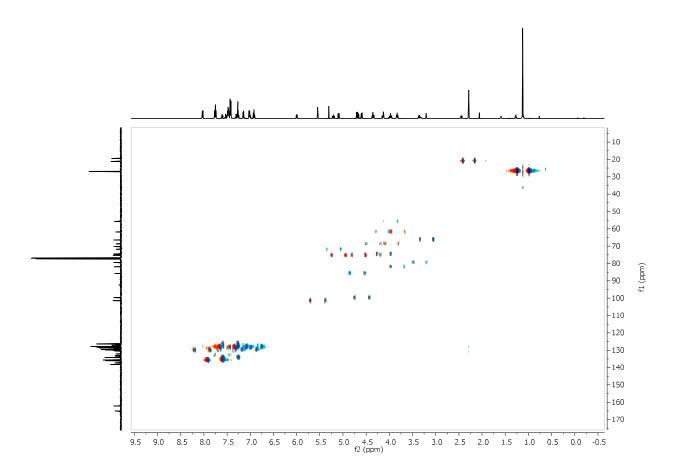

¹H-NMR (CDCl₃, 500 MHz) of 4

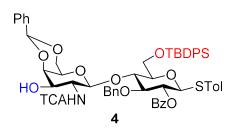


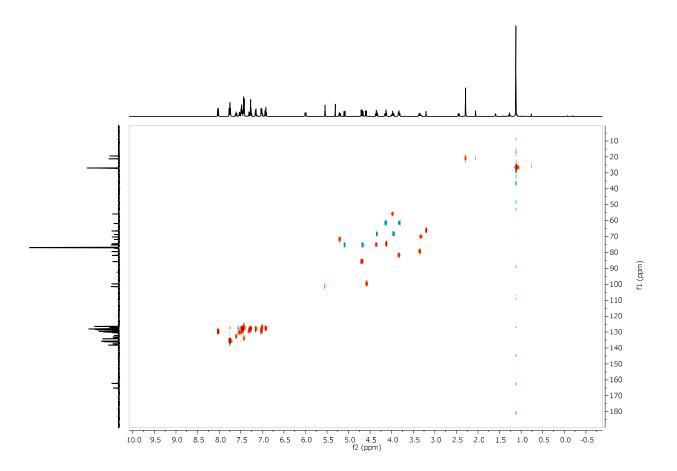

¹³C-NMR (CDCl₃, 126 MHz) of 4



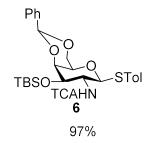

$gCOSY (CDCl_3, 500 \text{ MHz}) \text{ of } 4$


gHMBC (CDCl₃, 500 MHz) of 4

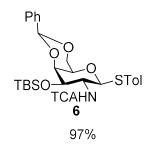


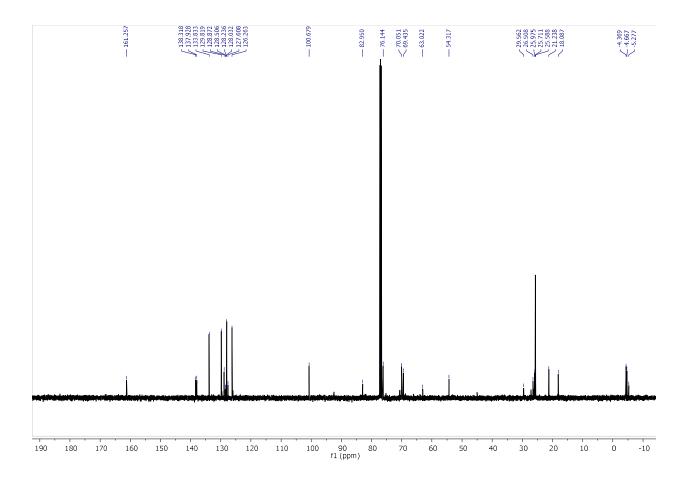


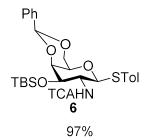
gHSQC (CDCl₃, 500 MHz) of 4

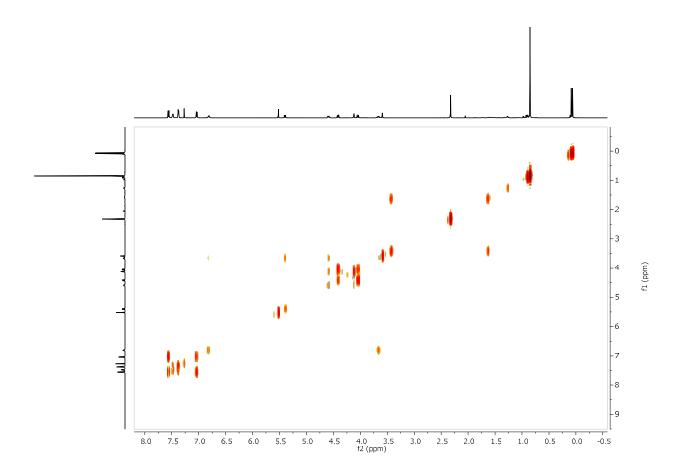


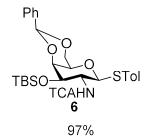


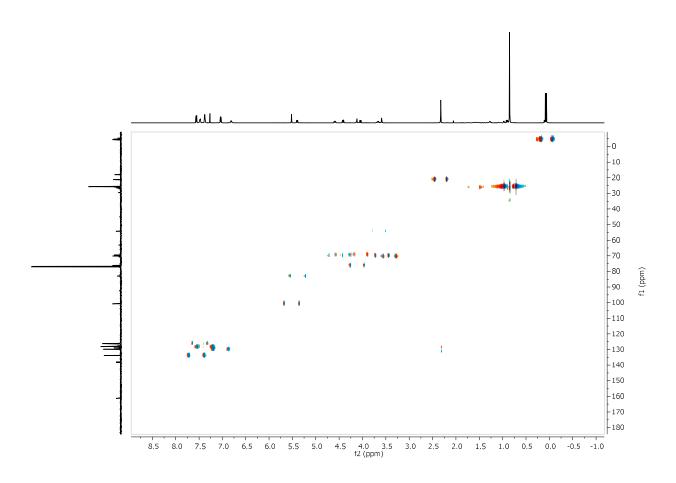


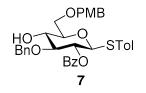

¹H-NMR (CDCl₃, 500 MHz) of **6**

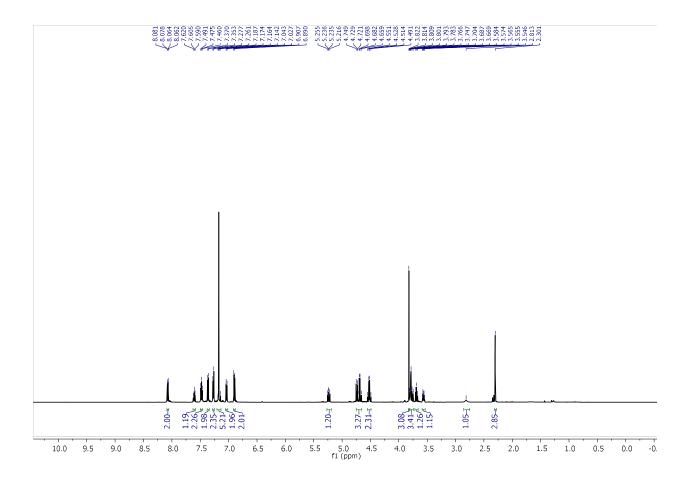


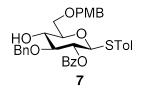

 $^{13}\text{C-NMR}$ (CDCl₃, 126 MHz) of $\mathbf{6}$

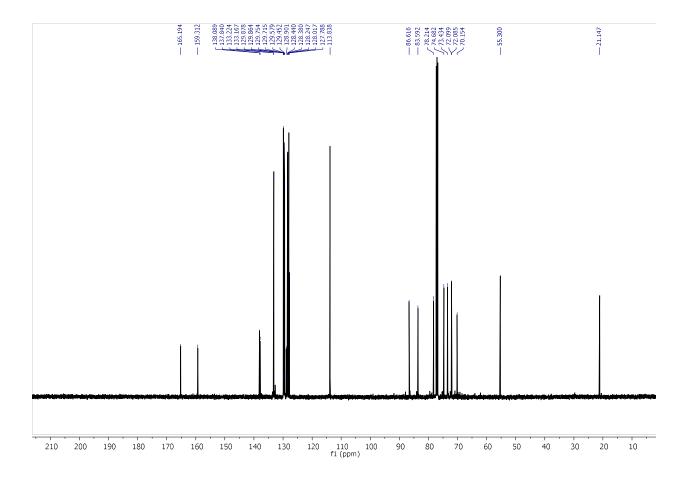


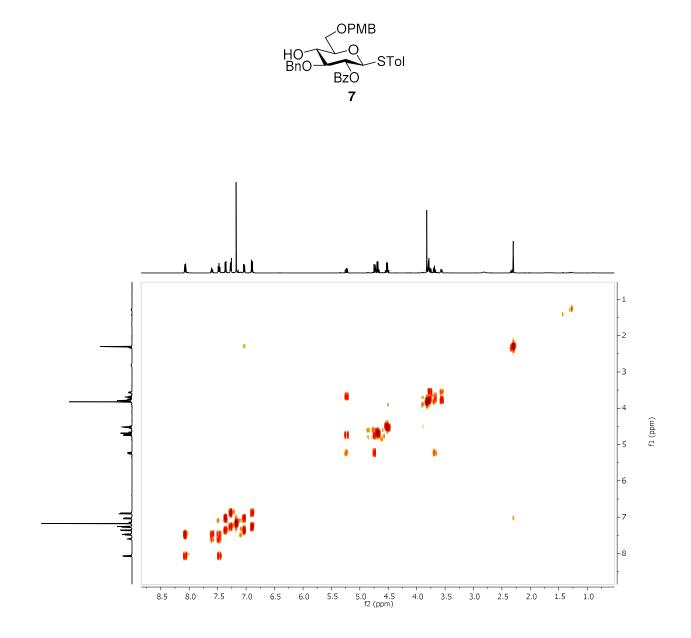

gCOSY (CDCl₃, 500 MHz) of 6



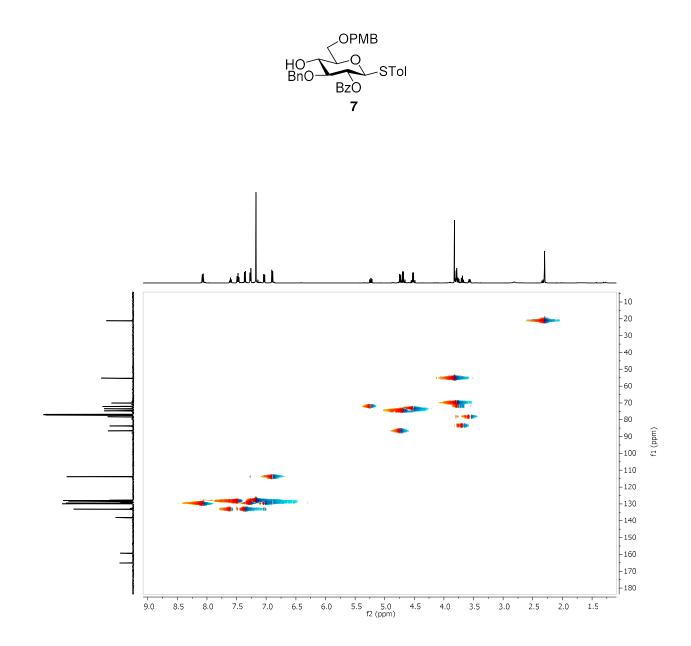

gHSQC (CDCl₃, 500 MHz) of 6

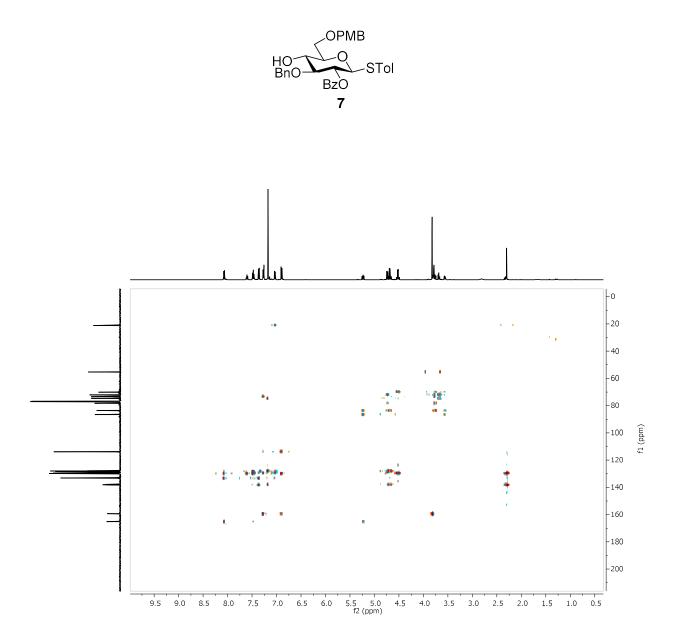


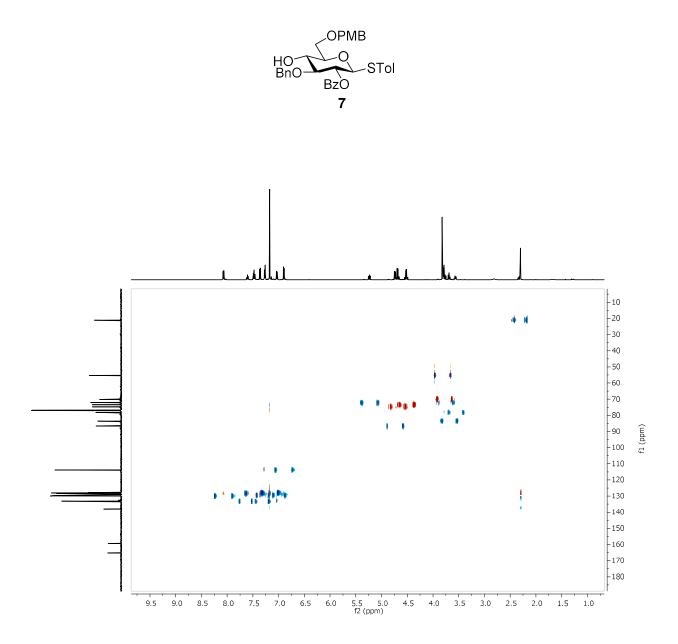

¹H-NMR (CDCl₃, 500 MHz) of 7

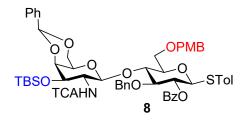


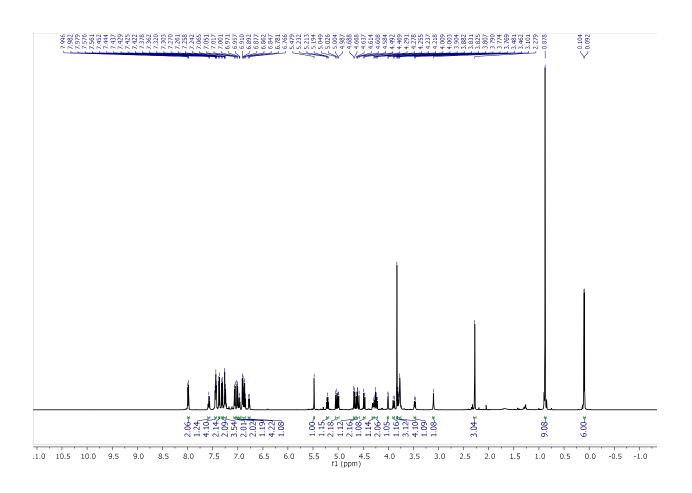
¹³C-NMR (CDCl₃, 126 MHz) of 7

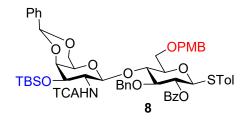


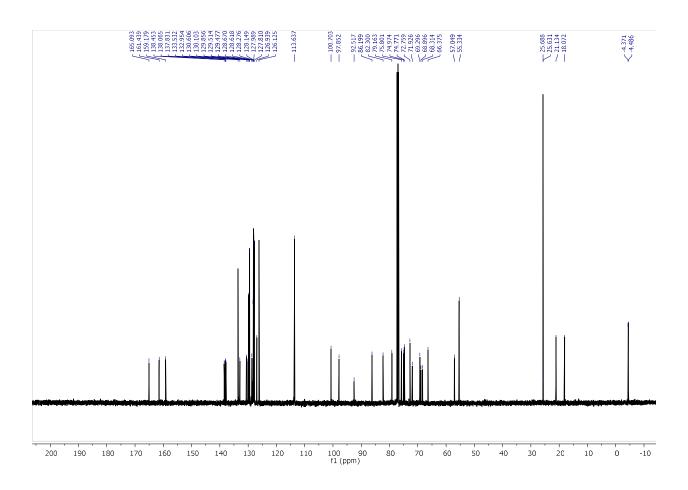

gCOSY (CDCl₃, 500 MHz) of 7

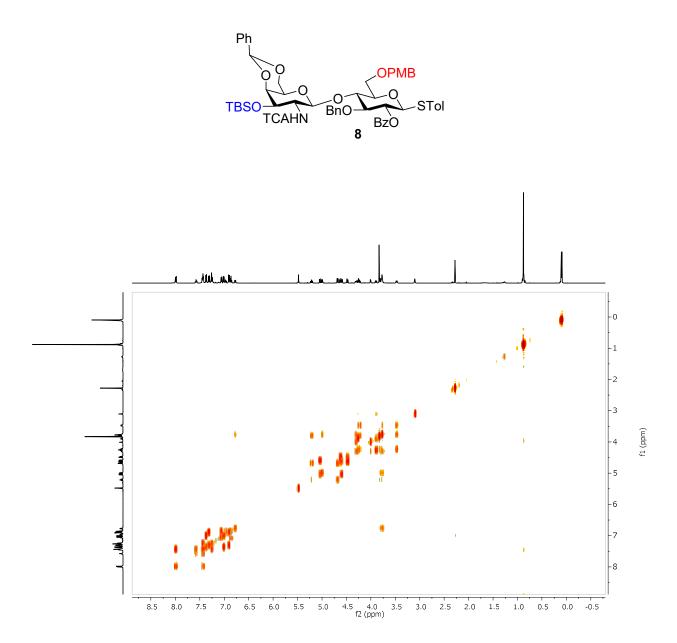

bsgHSQC (CDCl₃, 500 MHz) of 7

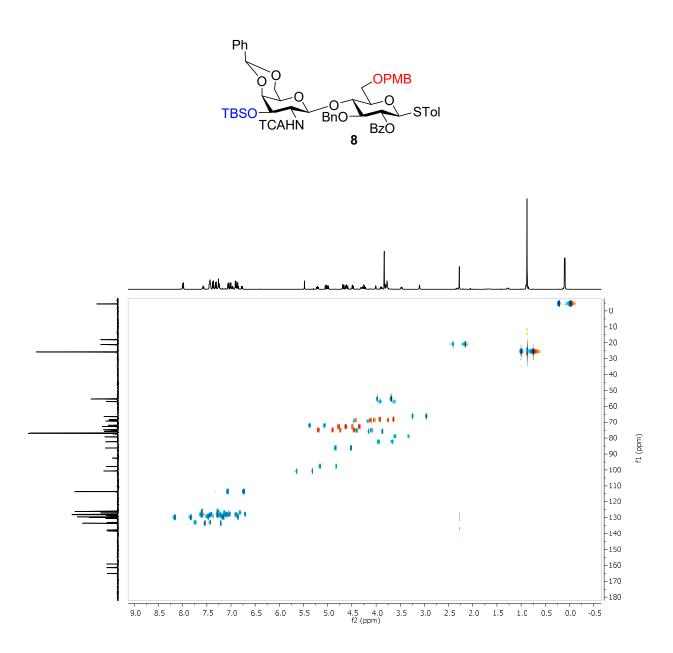


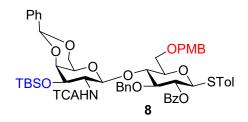

gHMBC (CDCl₃, 500 MHz) of 7

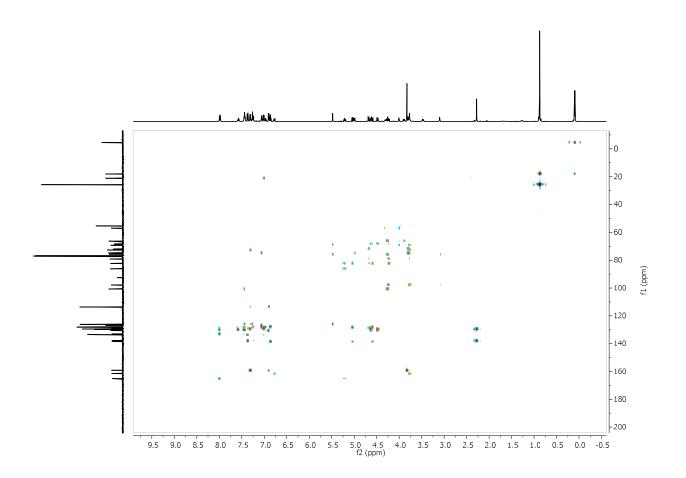



gHSQC (CDCl_3, 500 MHz) of 7

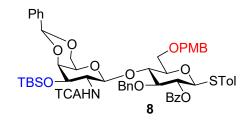


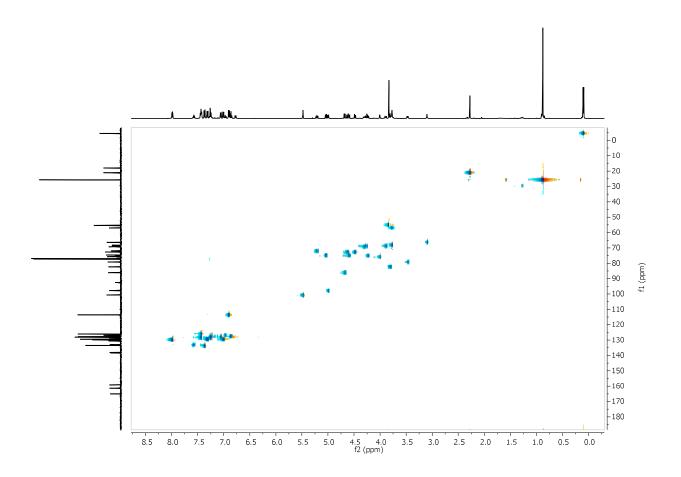


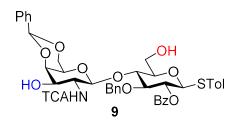

gCOSY (CDCl₃, 500 MHz) of 8

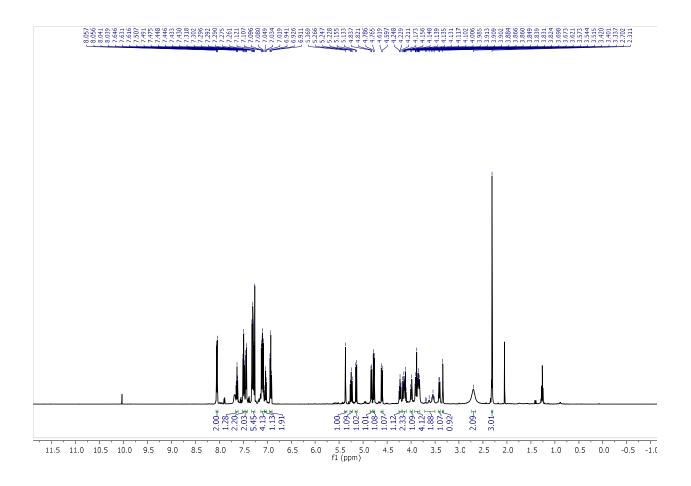


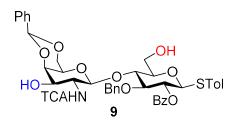
gHSQC (CDCl₃, 500 MHz) of ${f 8}$

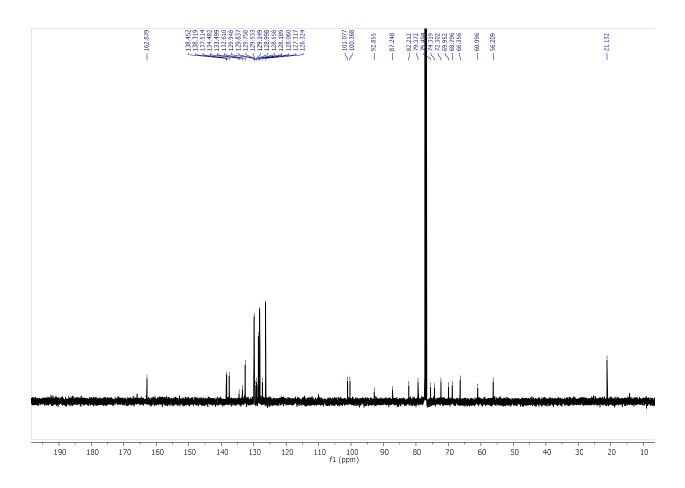


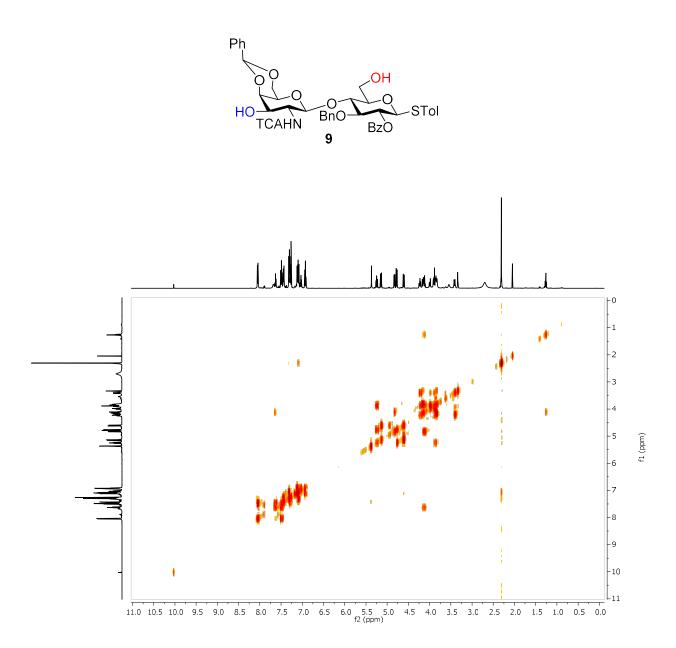

gHMBC (CDCl₃, 500 MHz) of 8

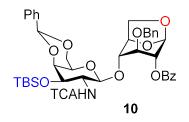


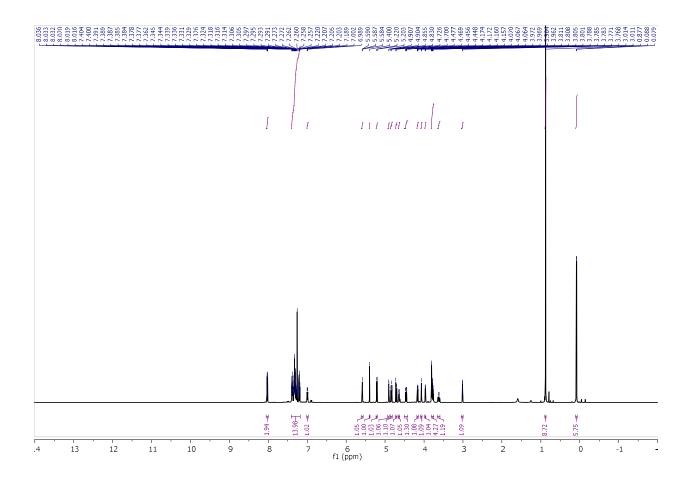


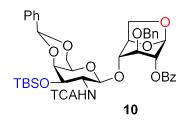

bsgHSQC (CDCl₃, 500 MHz) of 8

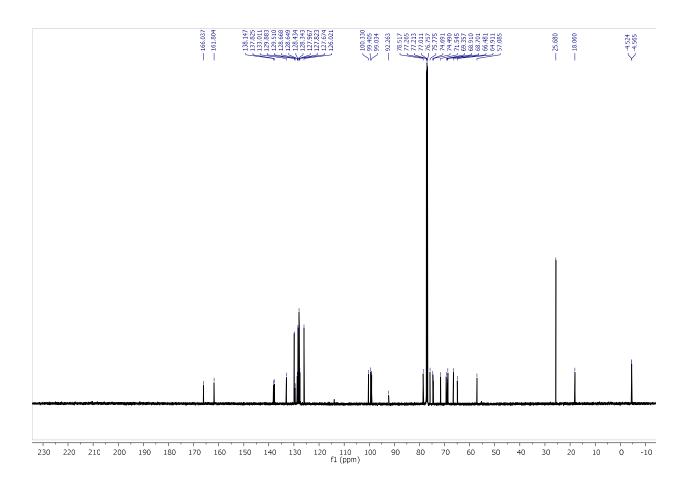


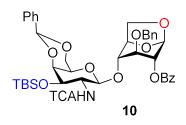


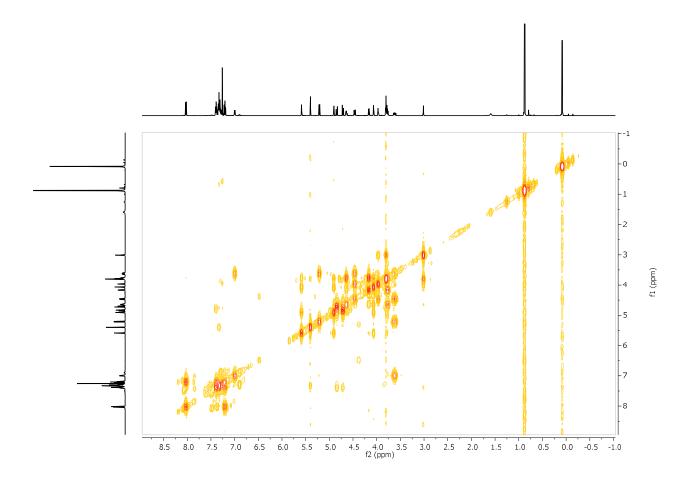


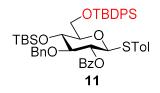


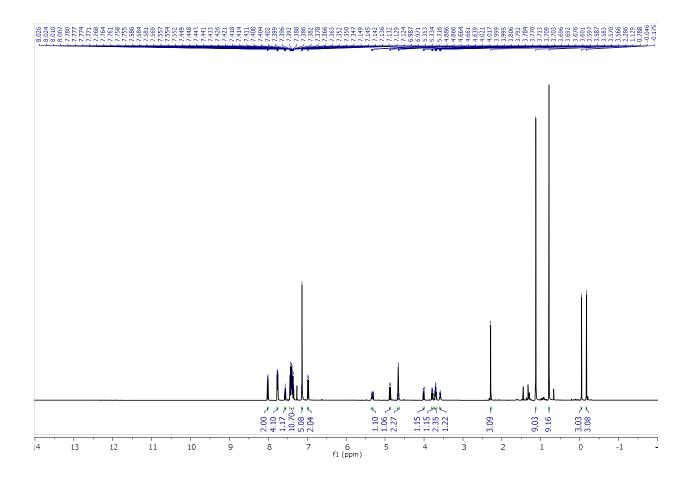


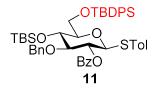

gCOSY (CDCl₃, 500 MHz) of 9

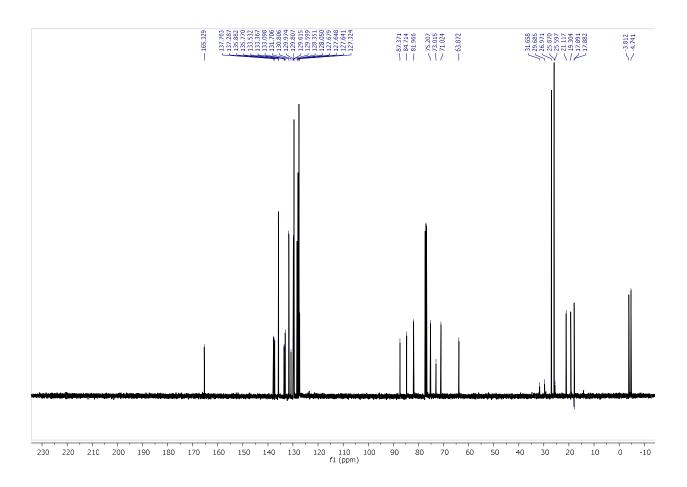


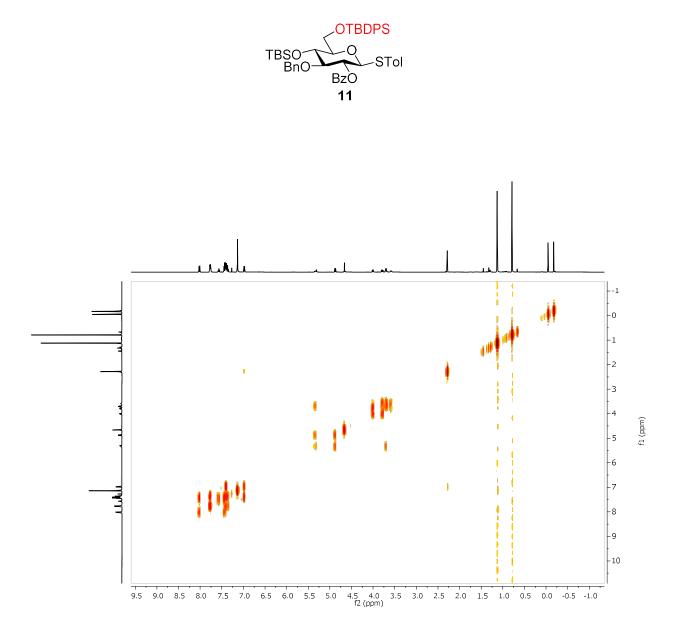


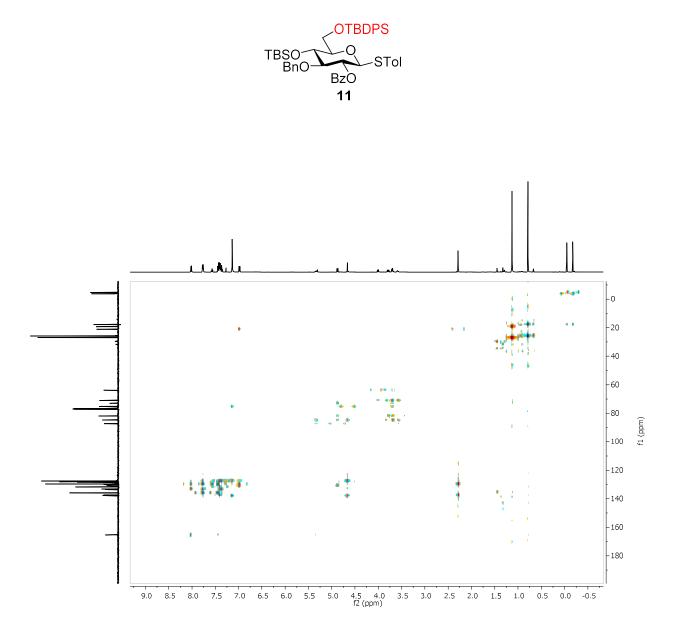


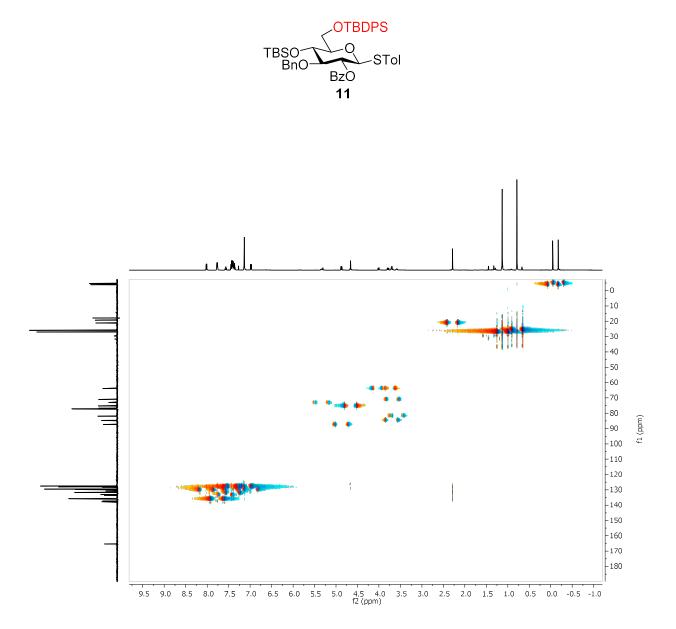


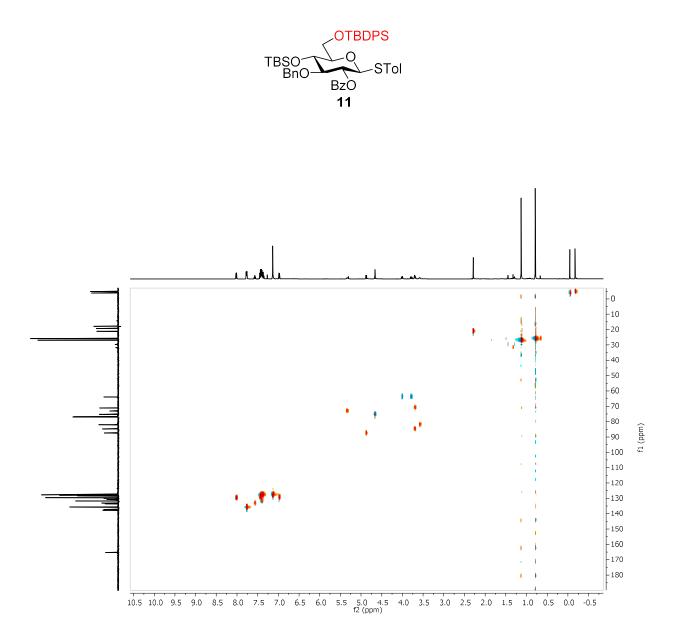

gCOSY (CDCl₃, 500 MHz) of **10**

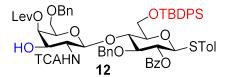


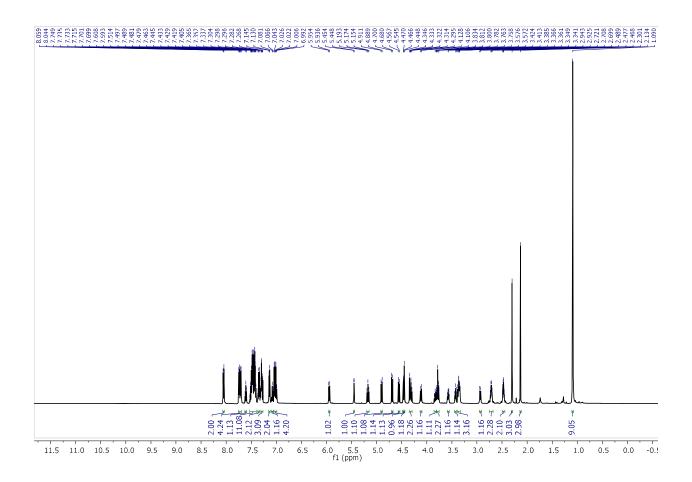




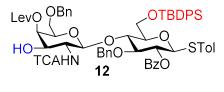

gCOSY (CDCl₃, 500 MHz) of 11

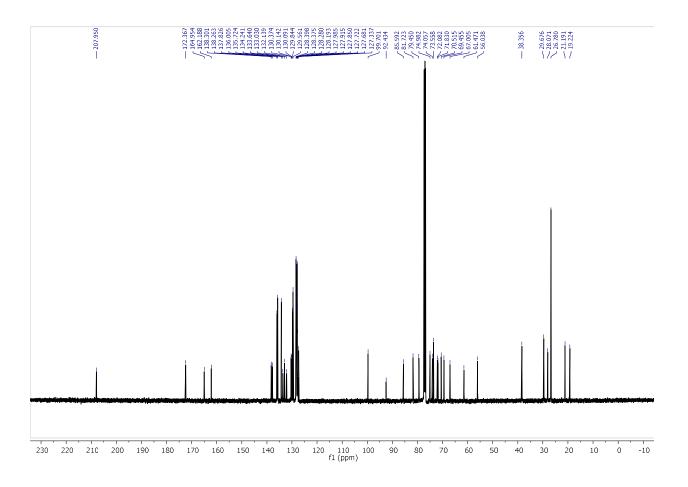


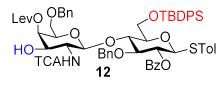

gHMBC (CDCl₃, 500 MHz) of 11



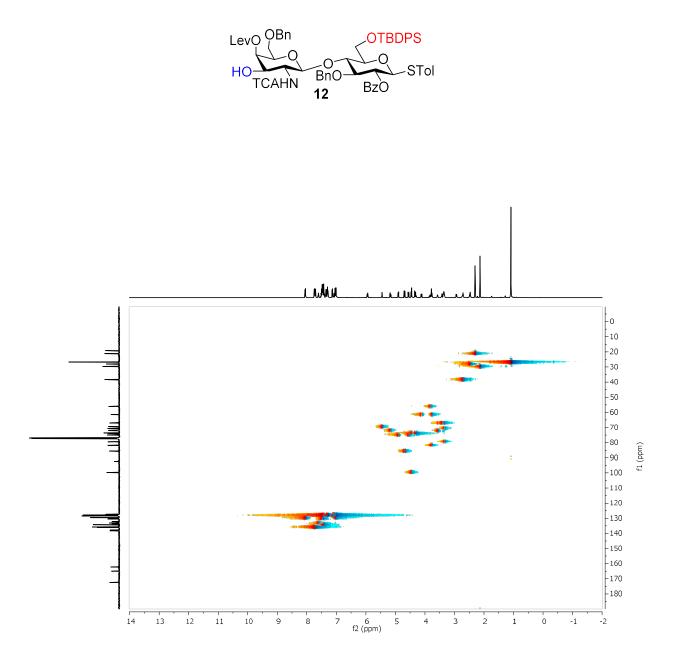
gHSQC (CDCl₃, 500 MHz) of 11

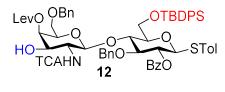


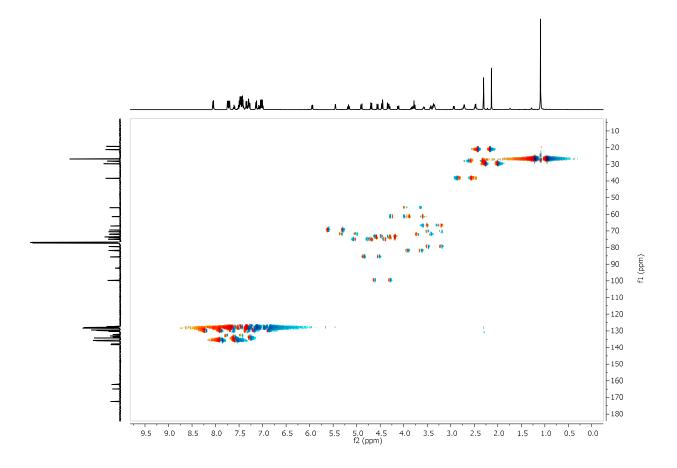


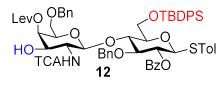


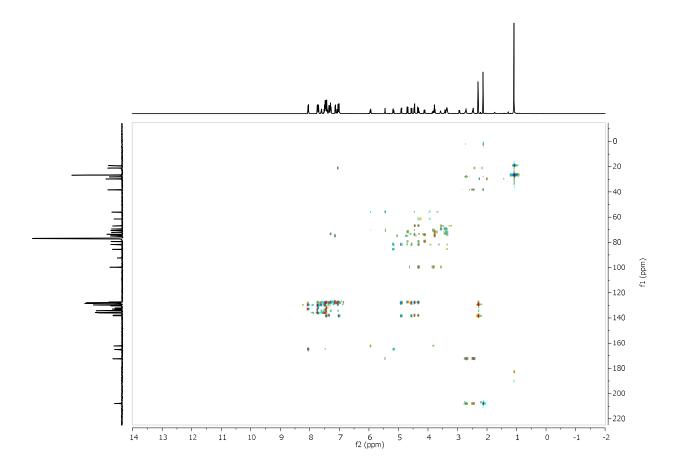
$^{13}\text{C-NMR}$ (CDCl₃, 126 MHz) of 12

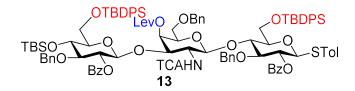


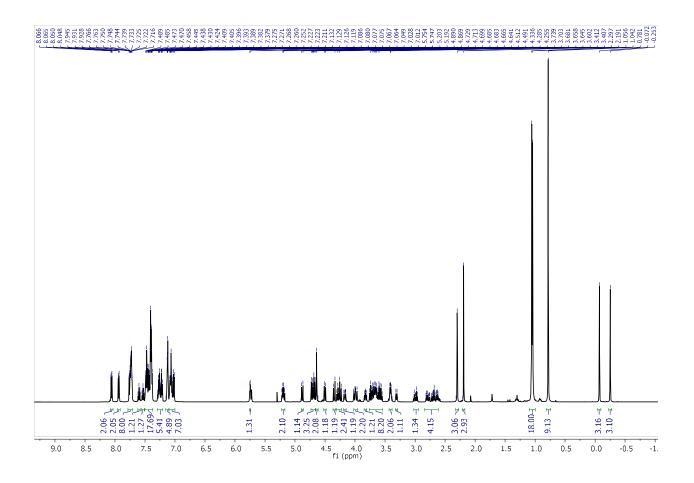


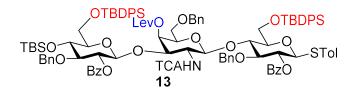

$gCOSY (CDCl_3, 500 \text{ MHz}) \text{ of } 12$

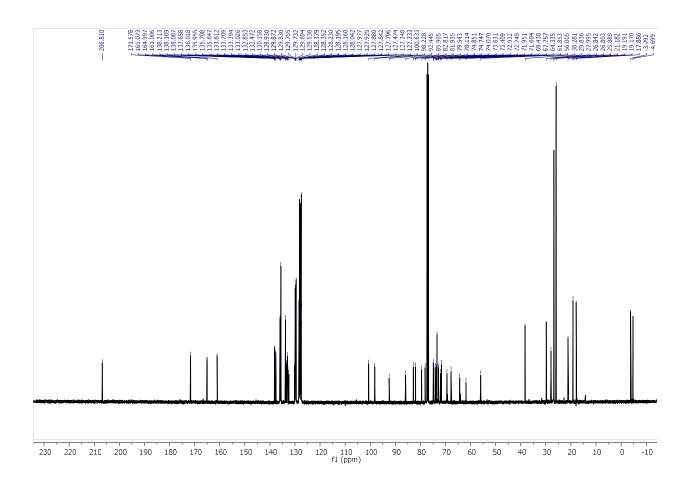


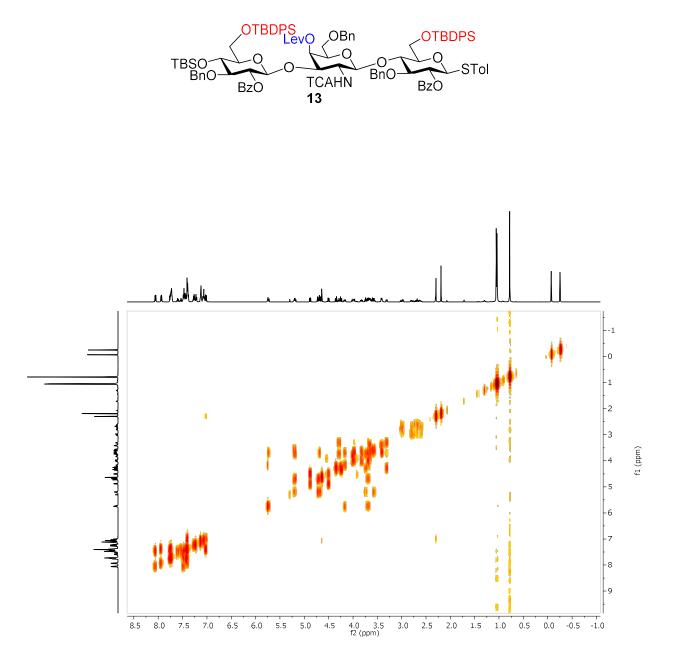


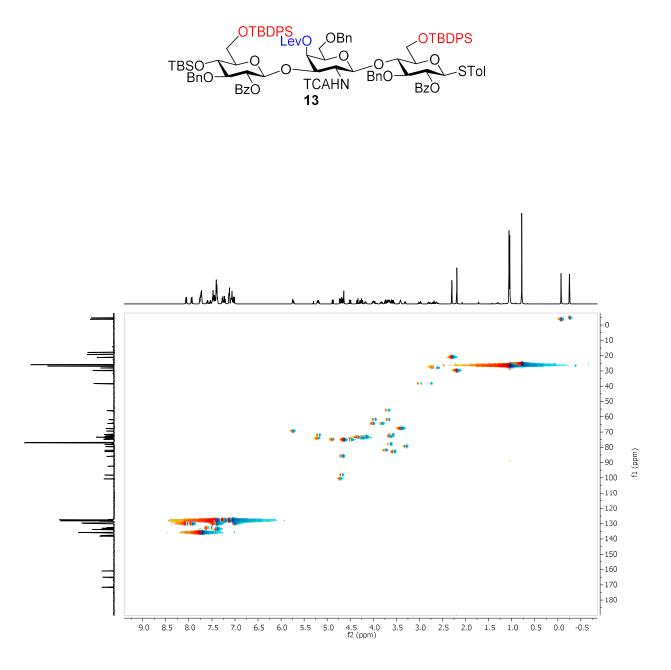


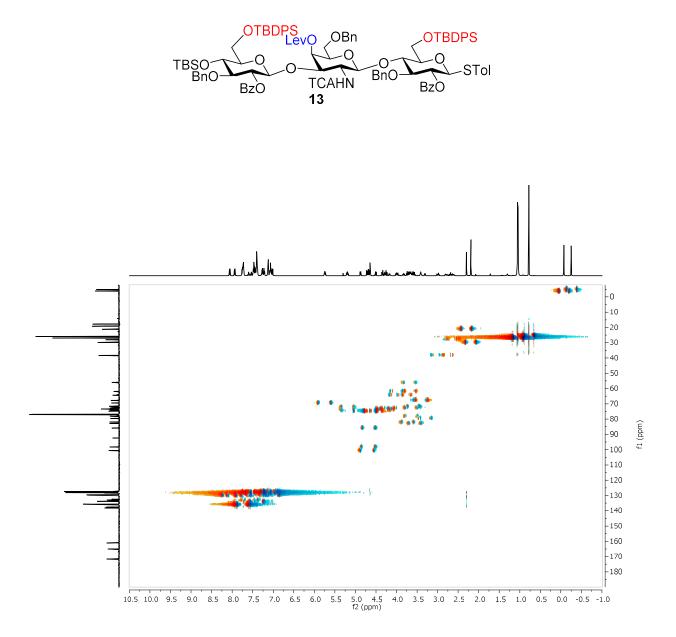


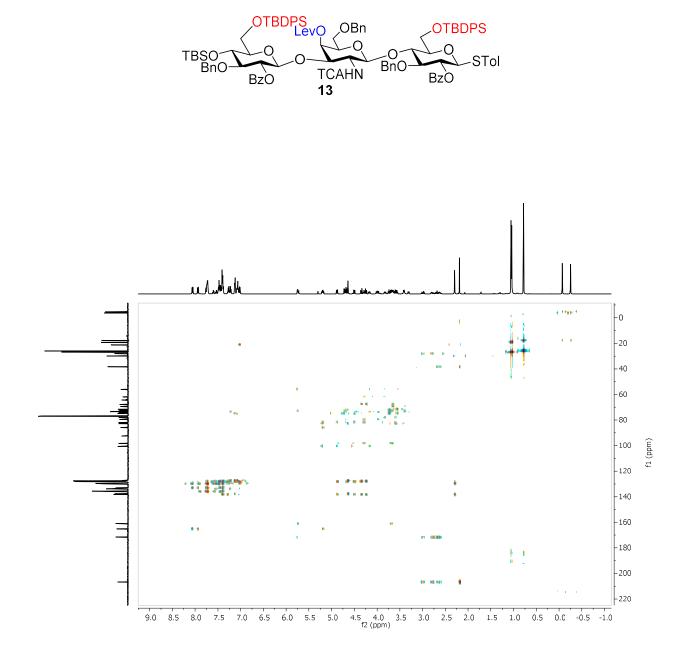


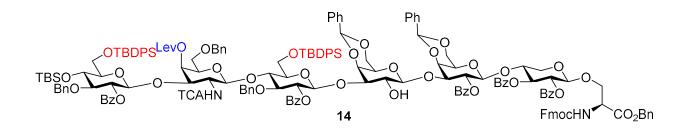


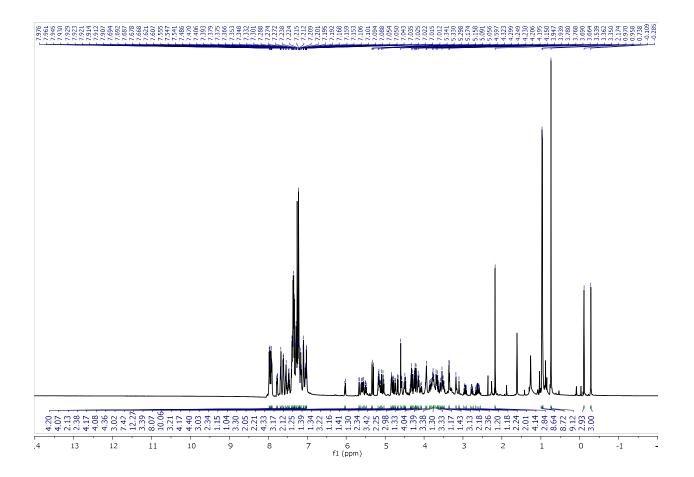


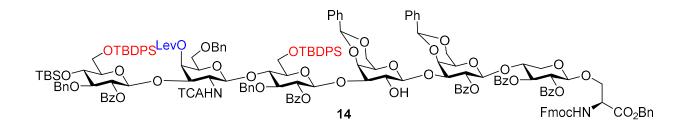


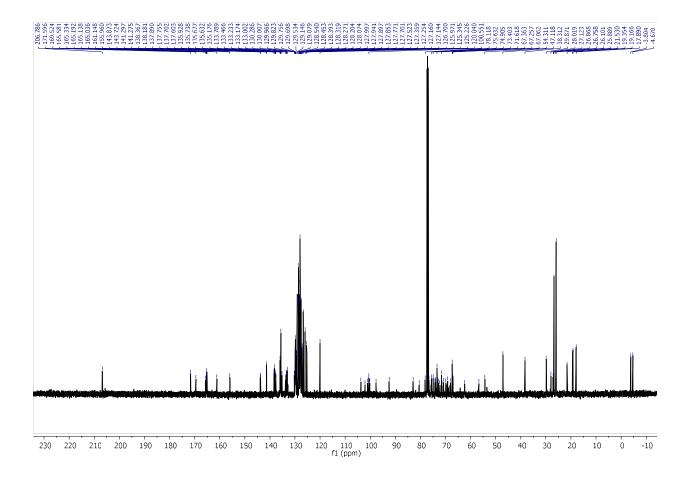


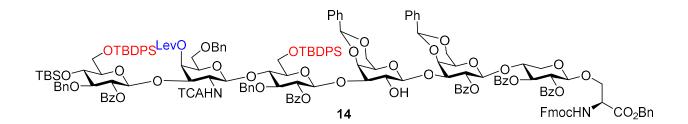


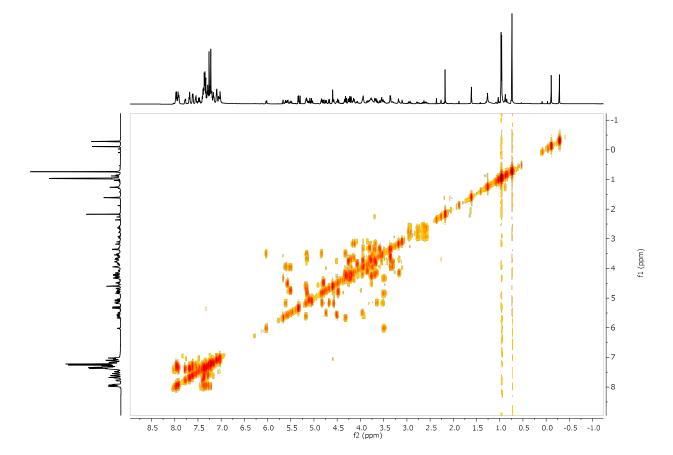


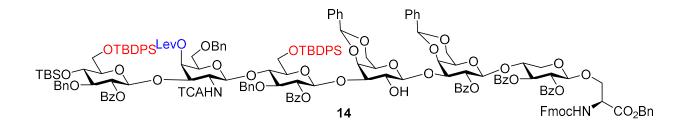


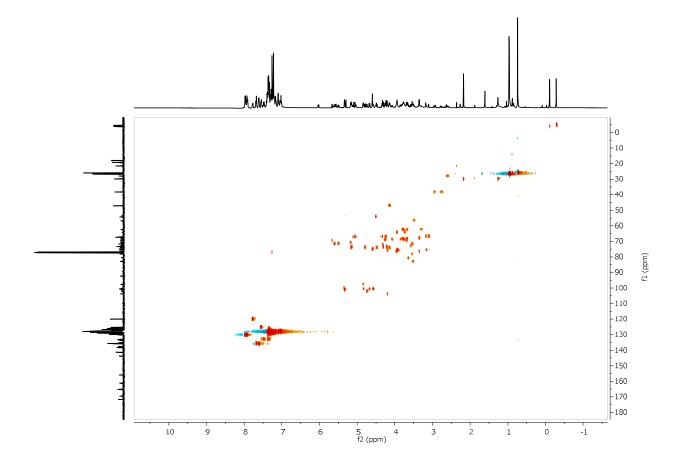


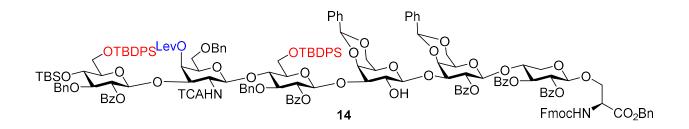


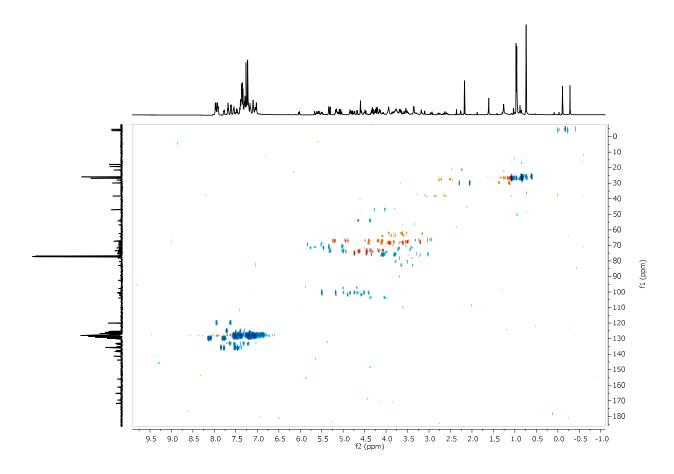


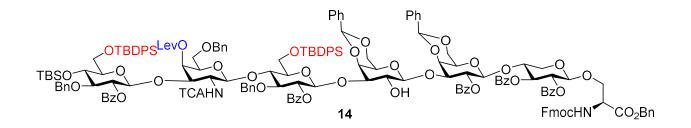


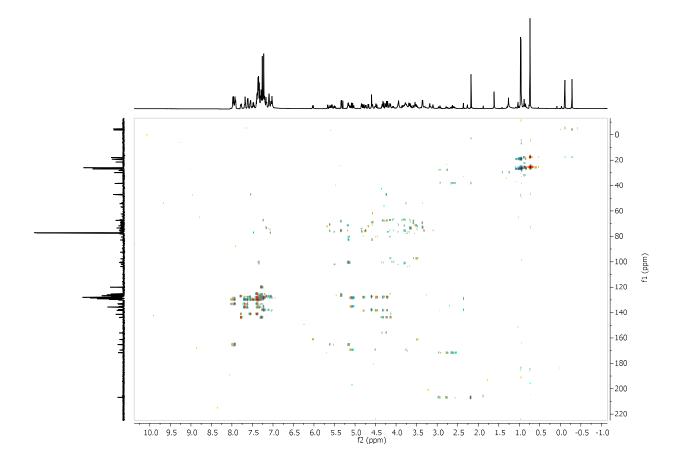


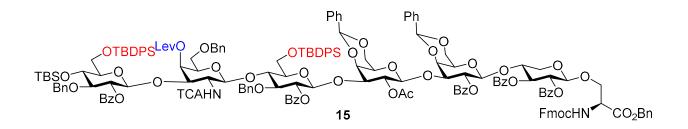


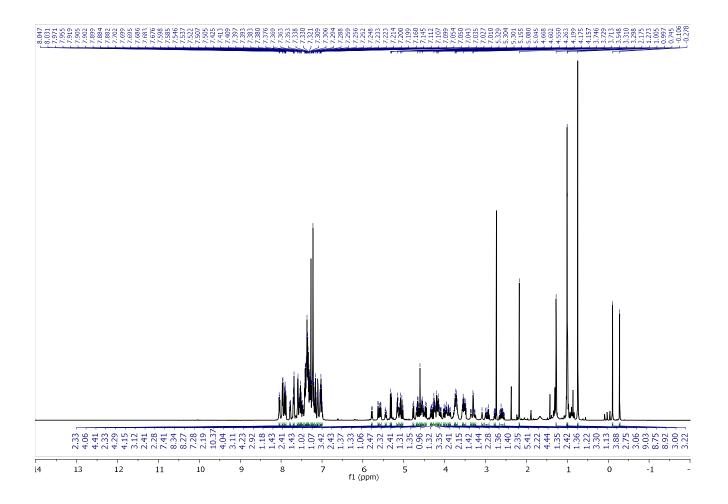


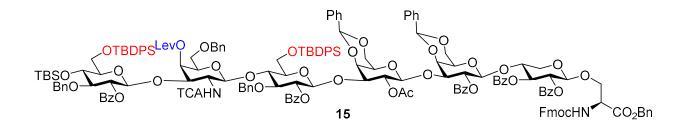


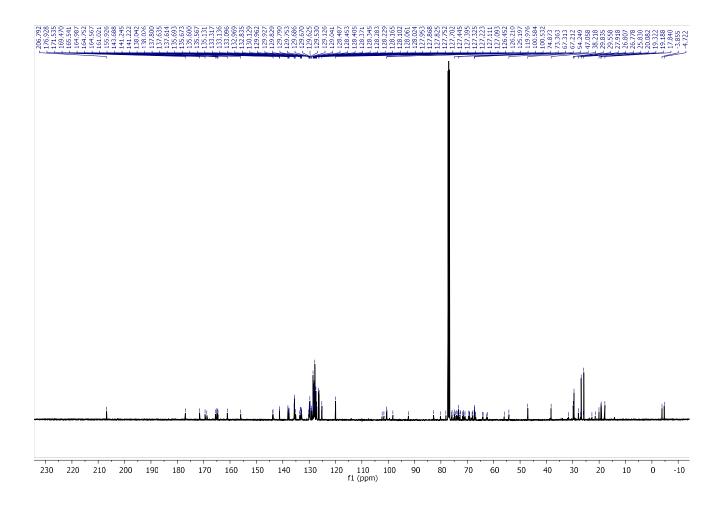


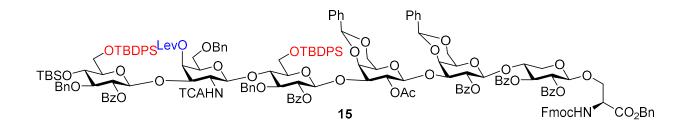


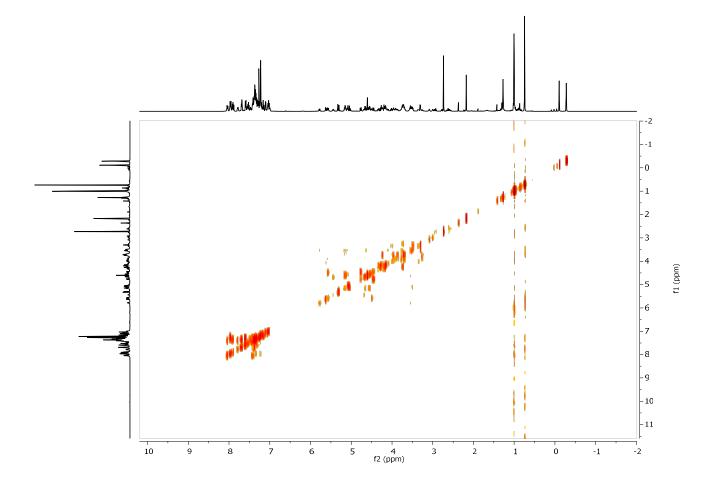


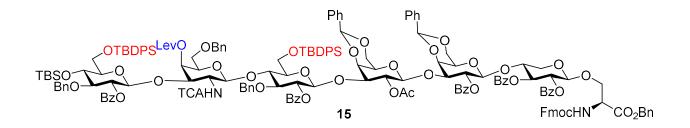


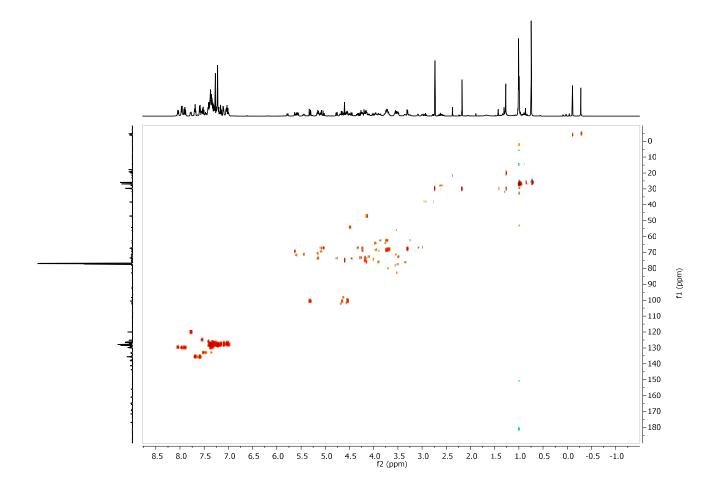


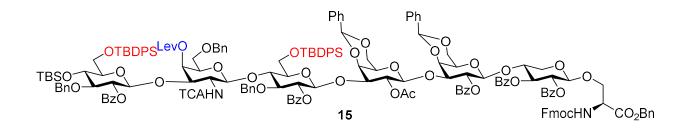


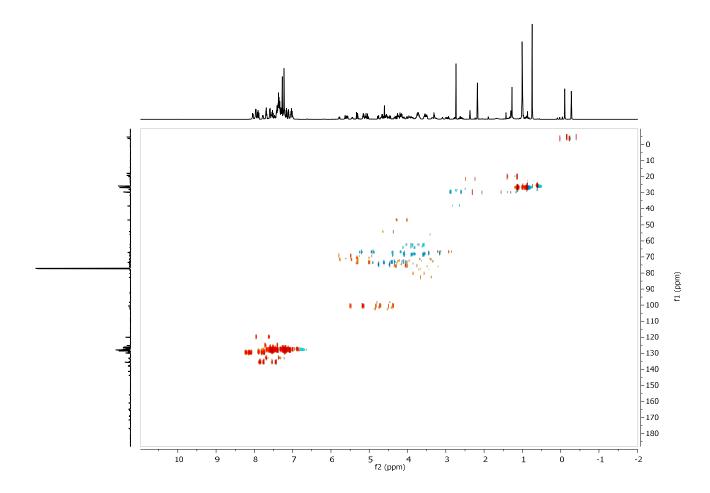


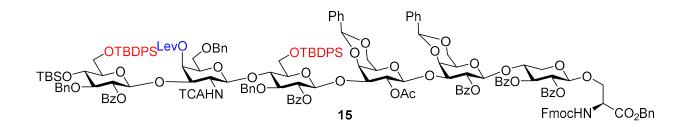


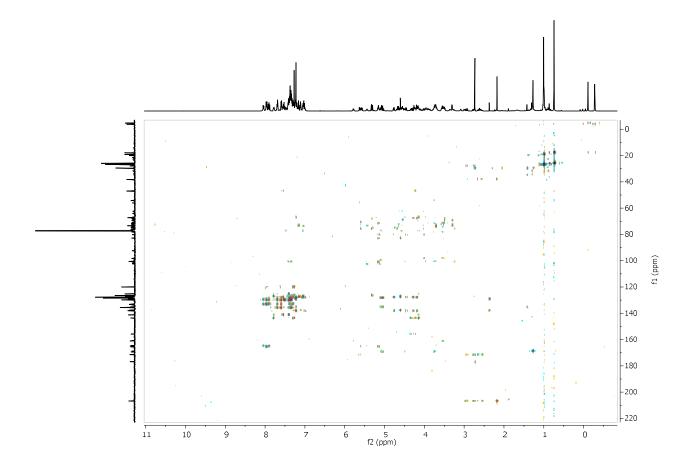


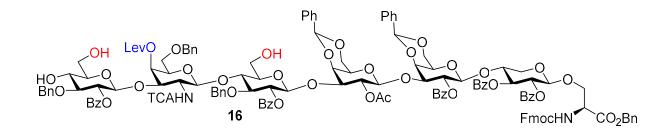


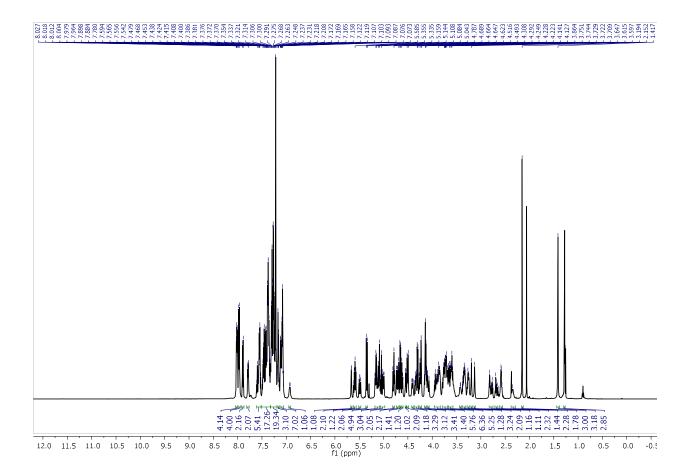


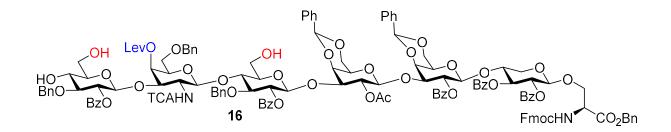


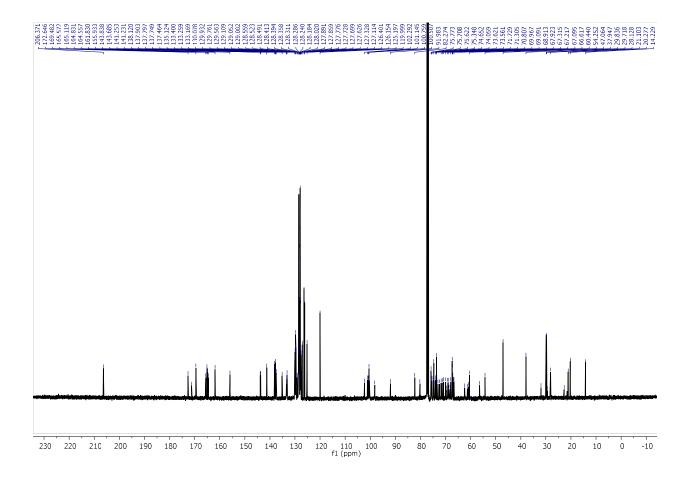


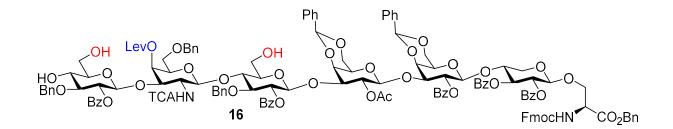


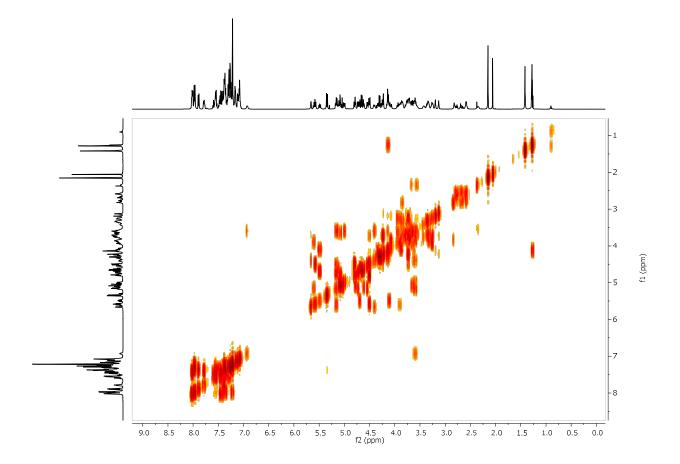


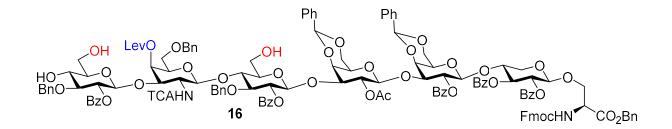


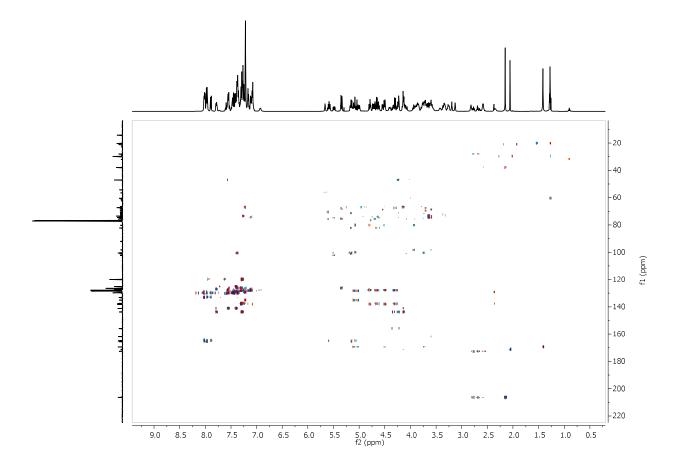


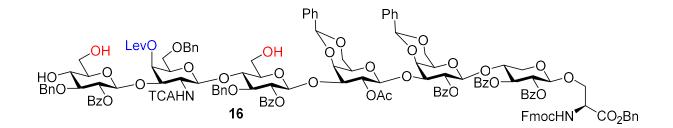


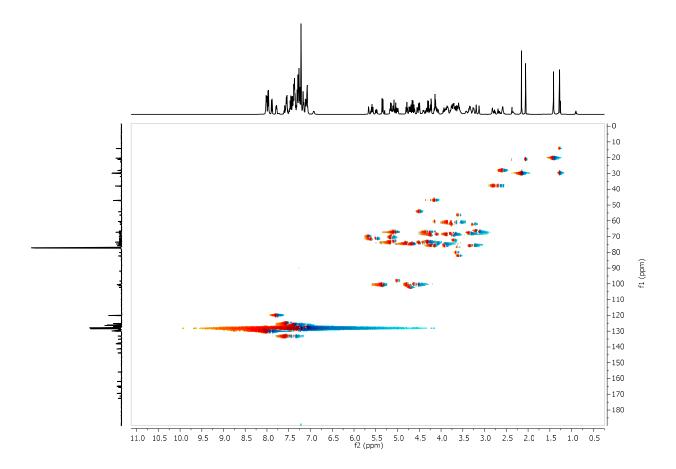


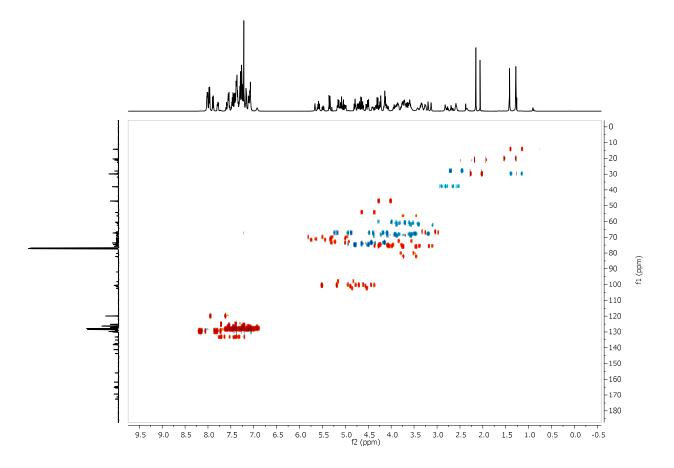


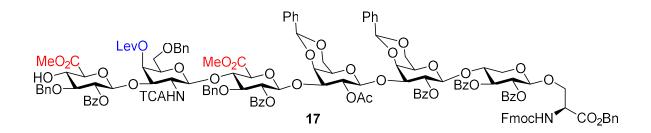


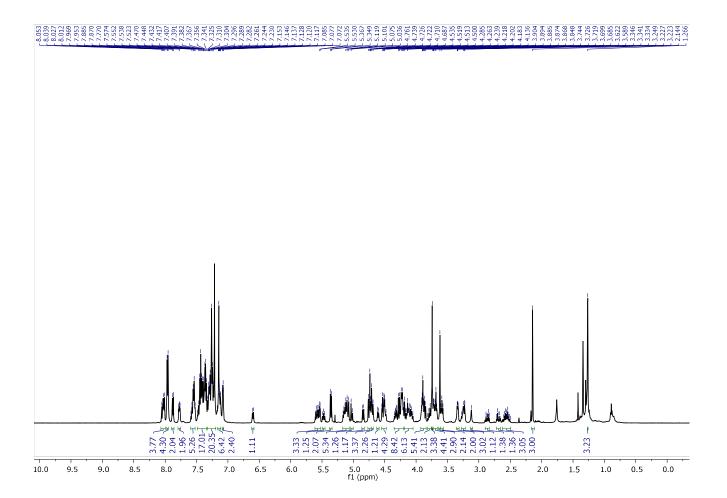


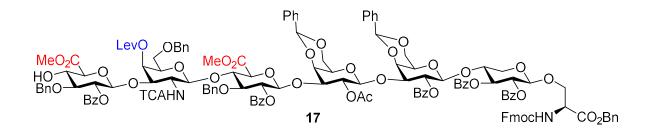


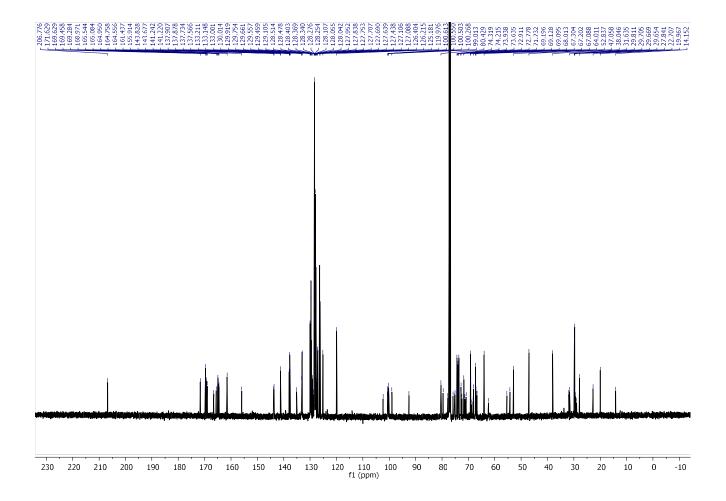


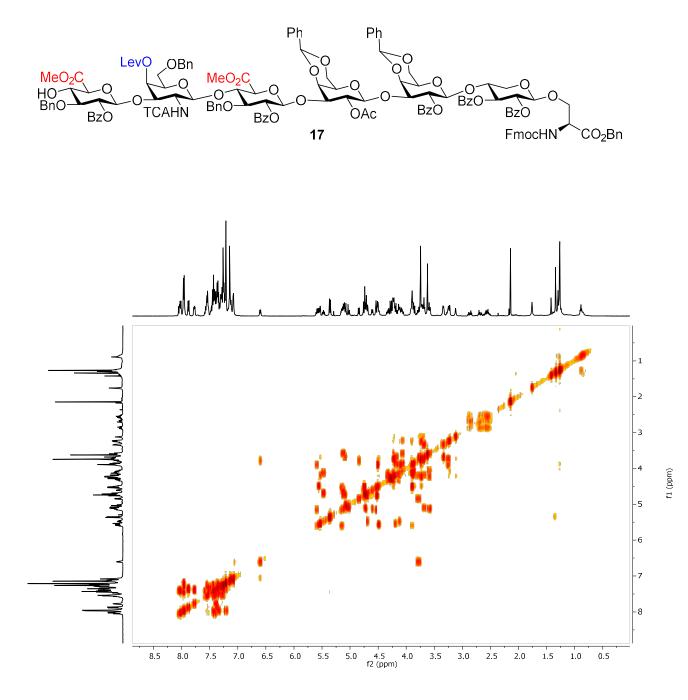


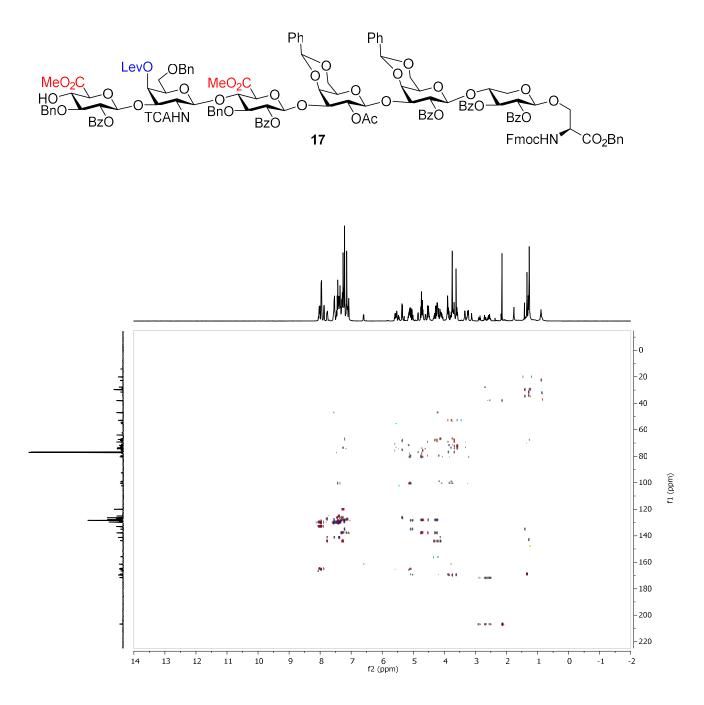


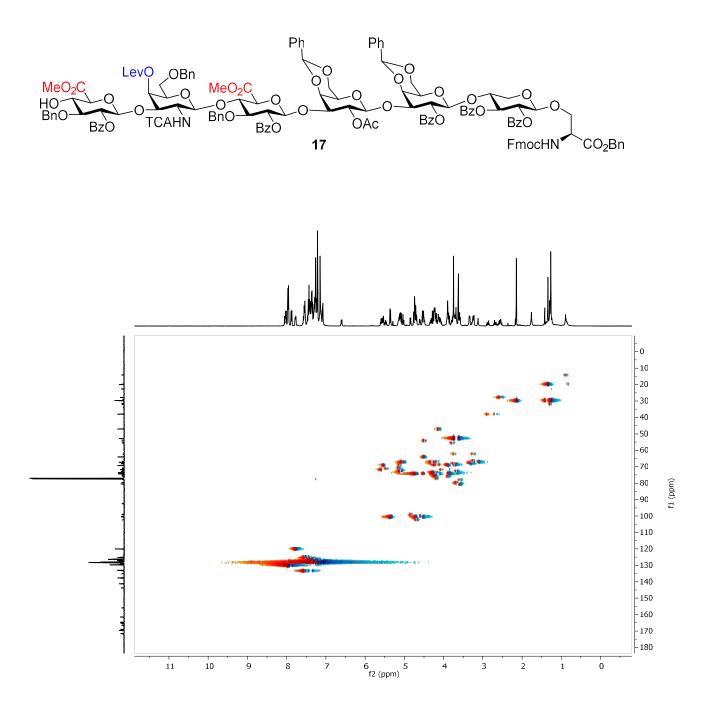


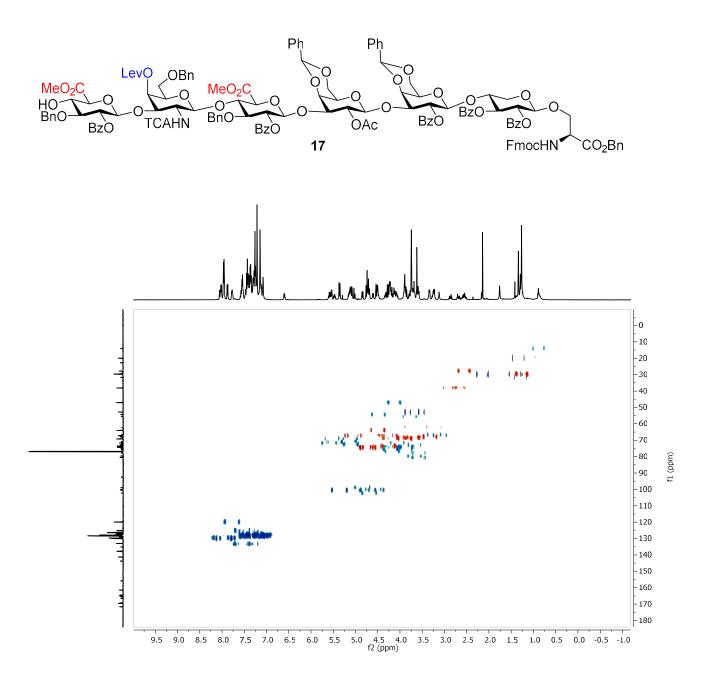


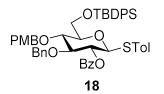


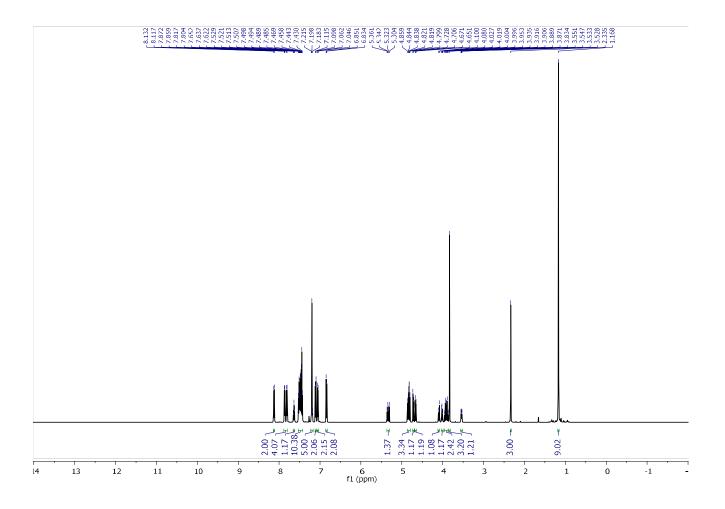


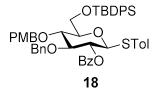


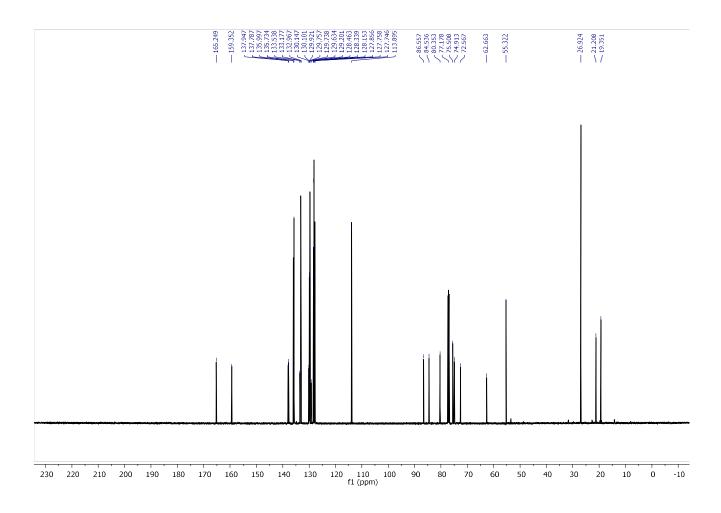


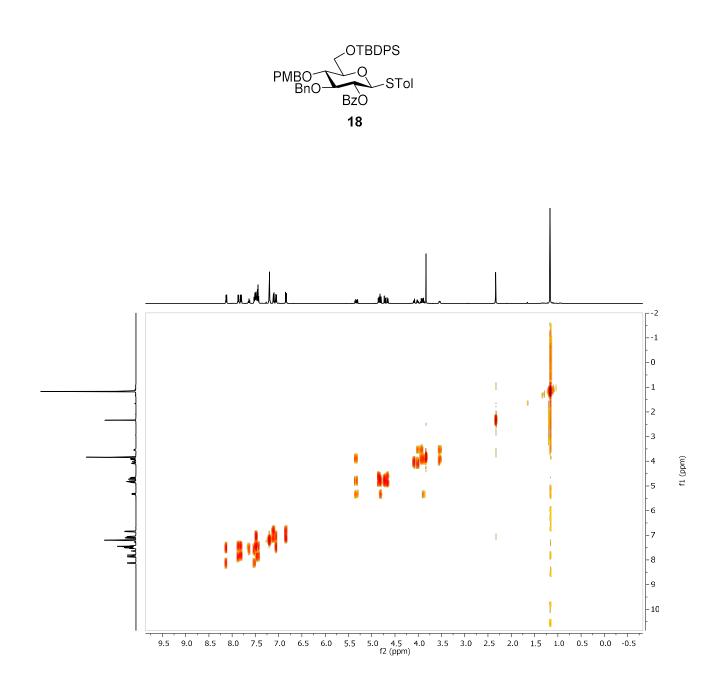


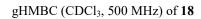




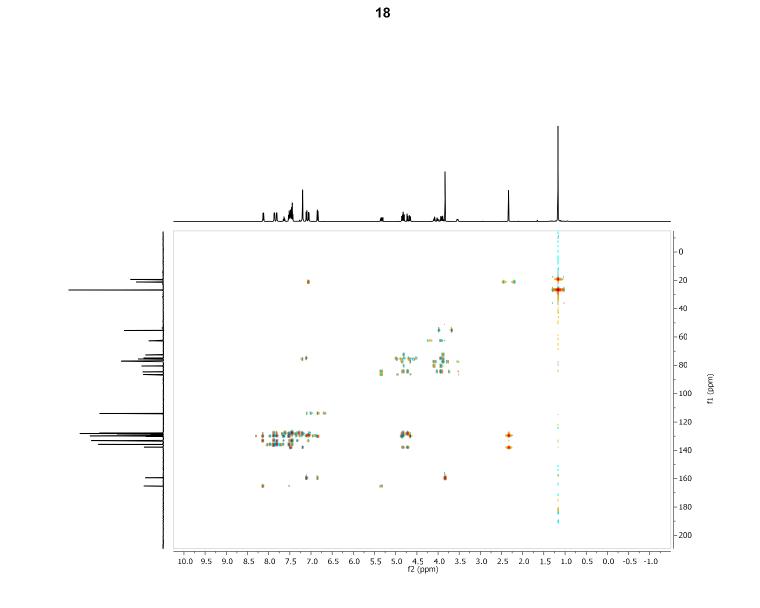


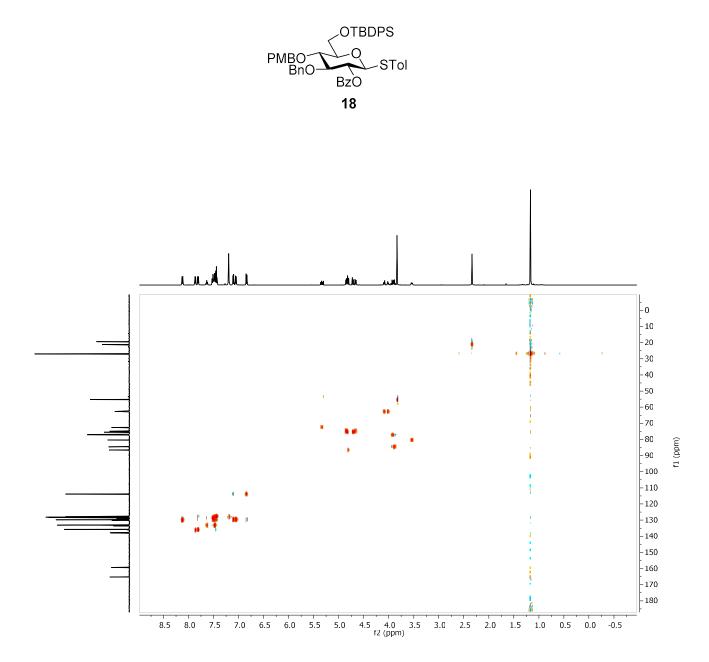


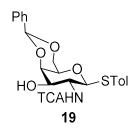


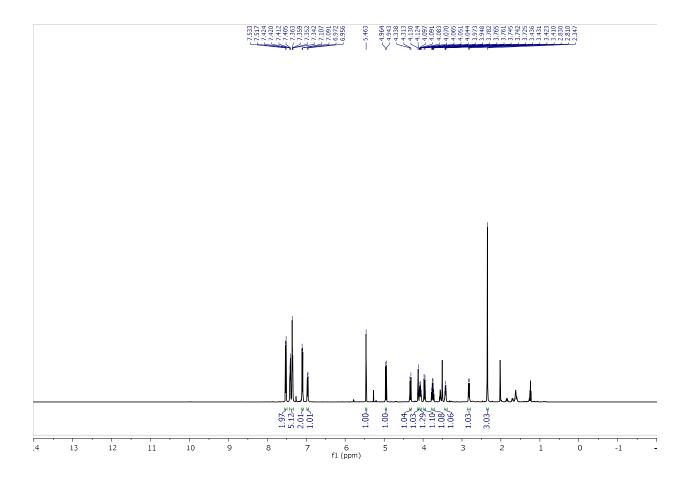


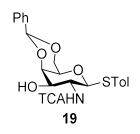
gCOSY (CDCl₃, 500 MHz) of 18

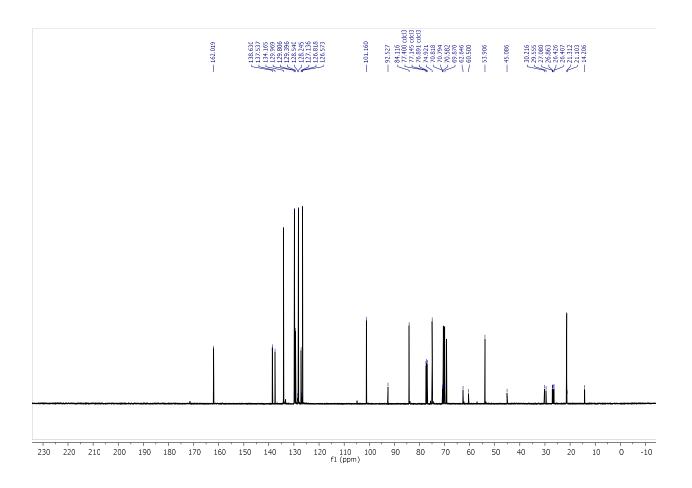


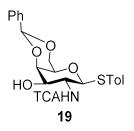


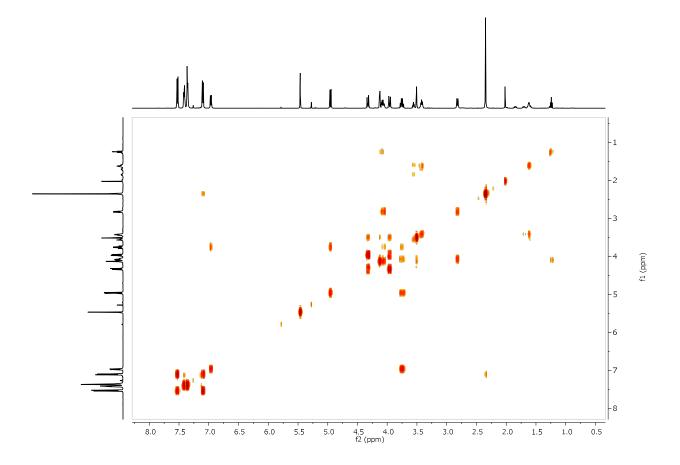

PMBO BnO OTBDPS

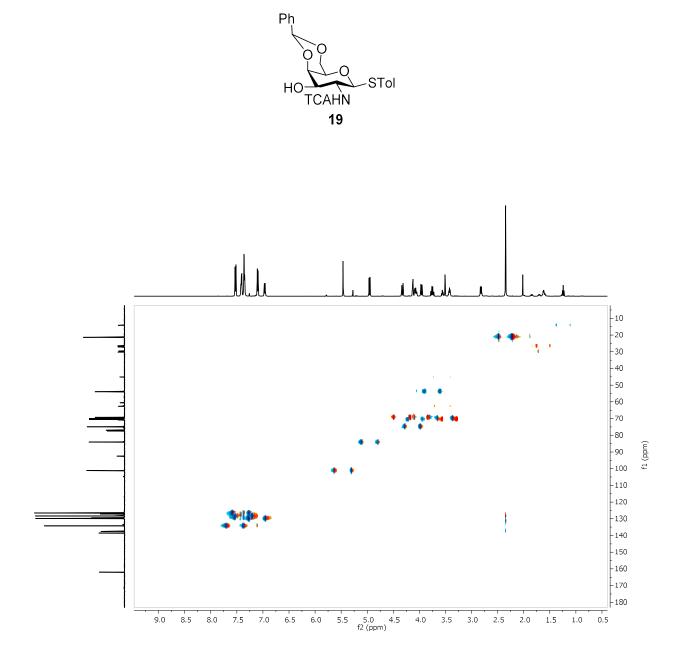

BzO


-STol

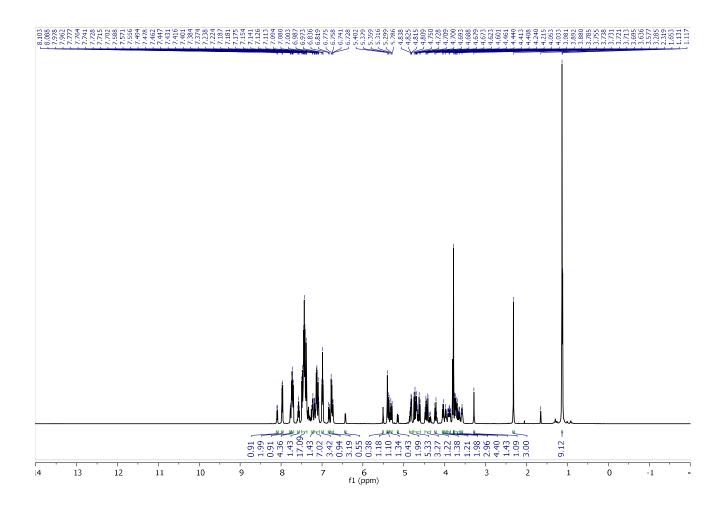


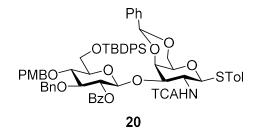


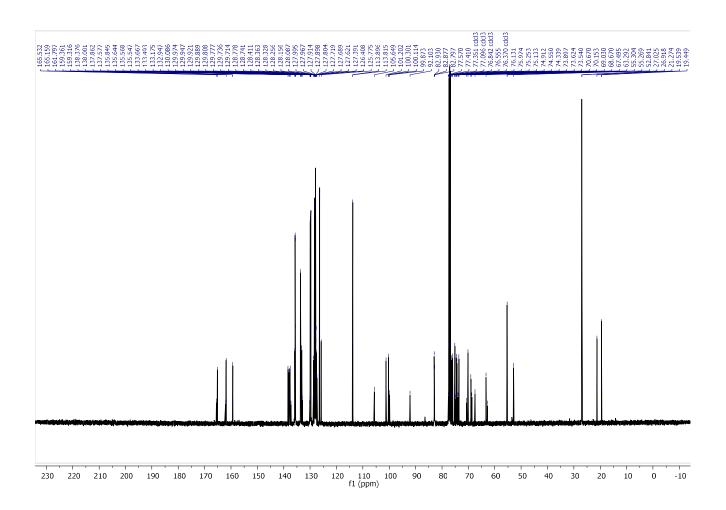


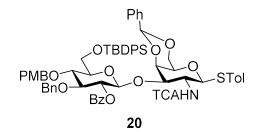


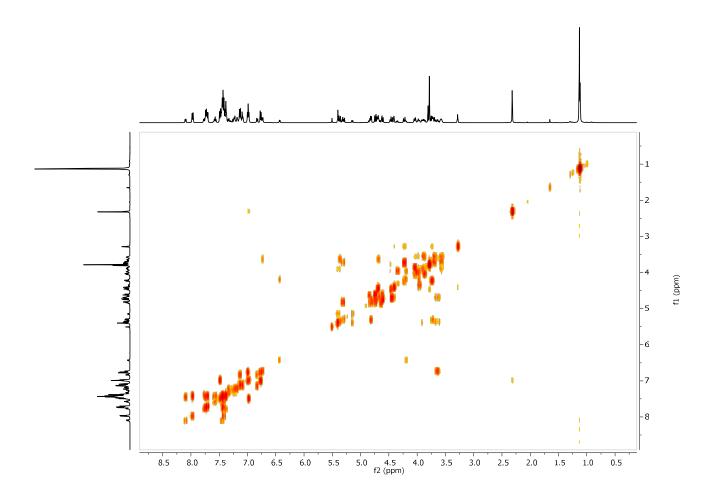

gCOSY (CDCl₃, 500 MHz) of 19

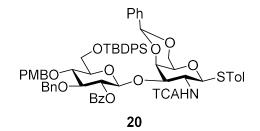


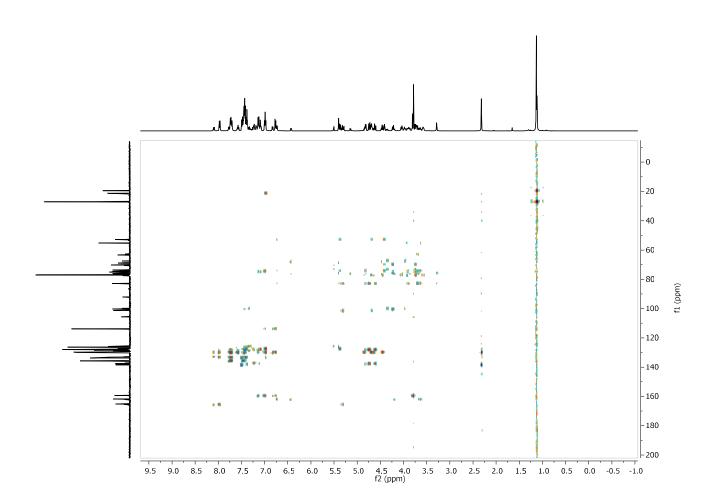


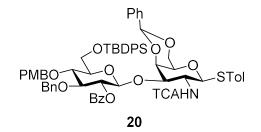

gHSQC (CDCl₃, 500 MHz) of 19

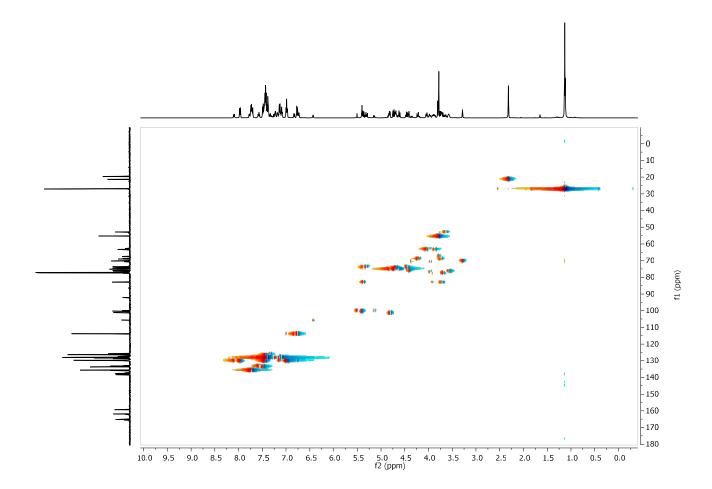


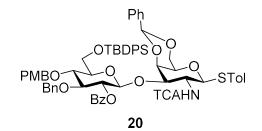


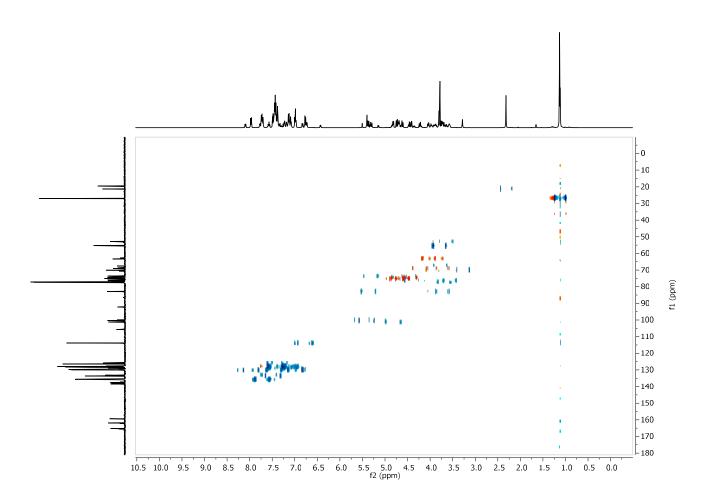


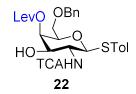

gCOSY (CDCl₃, 500 MHz) of $\mathbf{20}$

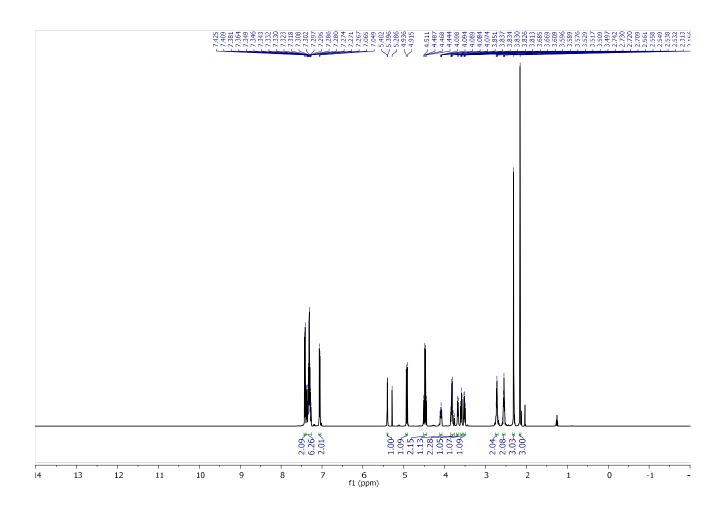



gHMBC (CDCl₃, 500 MHz) of ${f 20}$

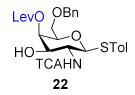


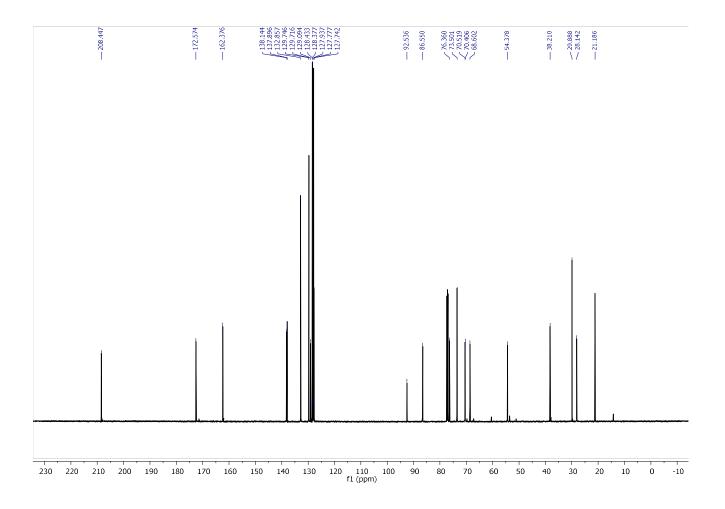

bsgHSQC (CDCl₃, 500 MHz) of 20



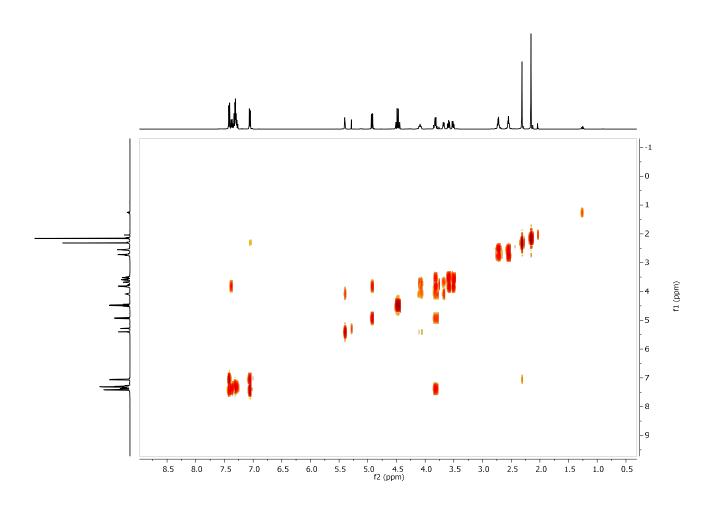


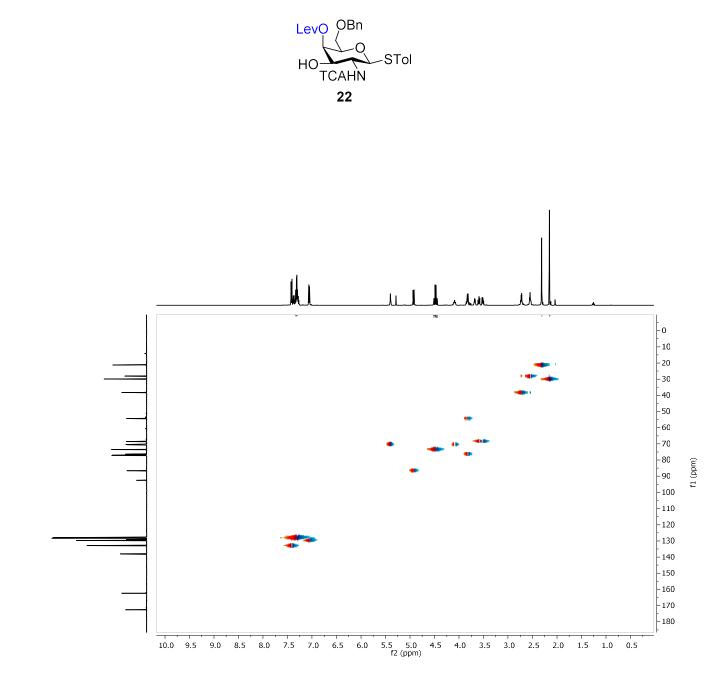
gHSQC (CDCl₃, 500 MHz) of $\mathbf{20}$



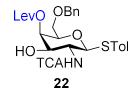


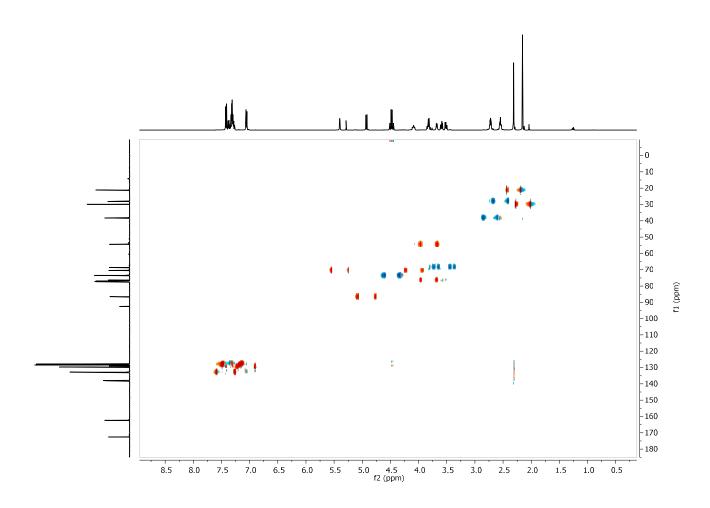



$^{13}\text{C-NMR}$ (CDCl₃, 126 MHz) of 22

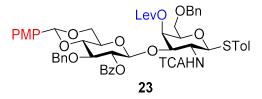


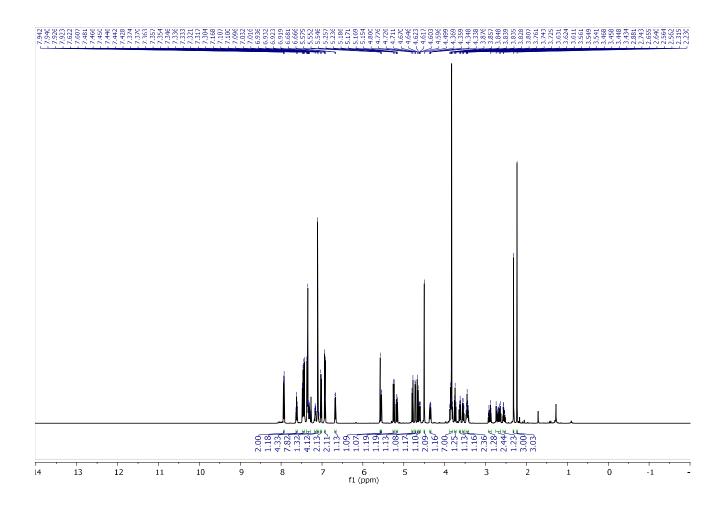
gCOSY (CDCl₃, 500 MHz) of **22**

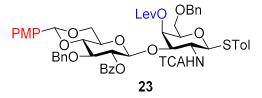


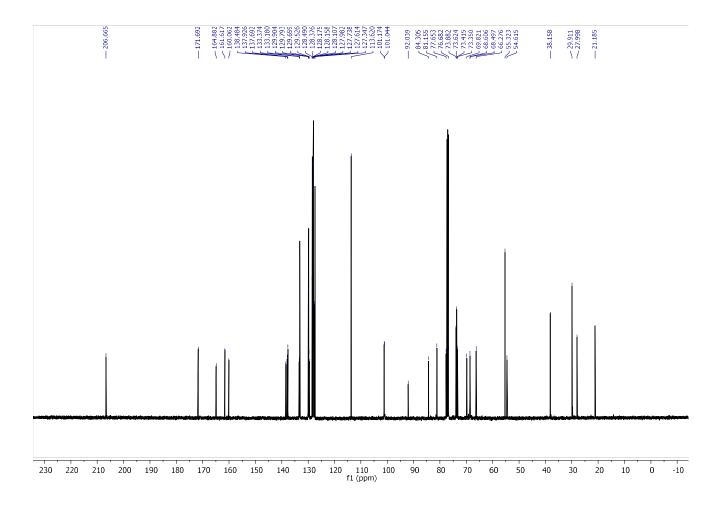


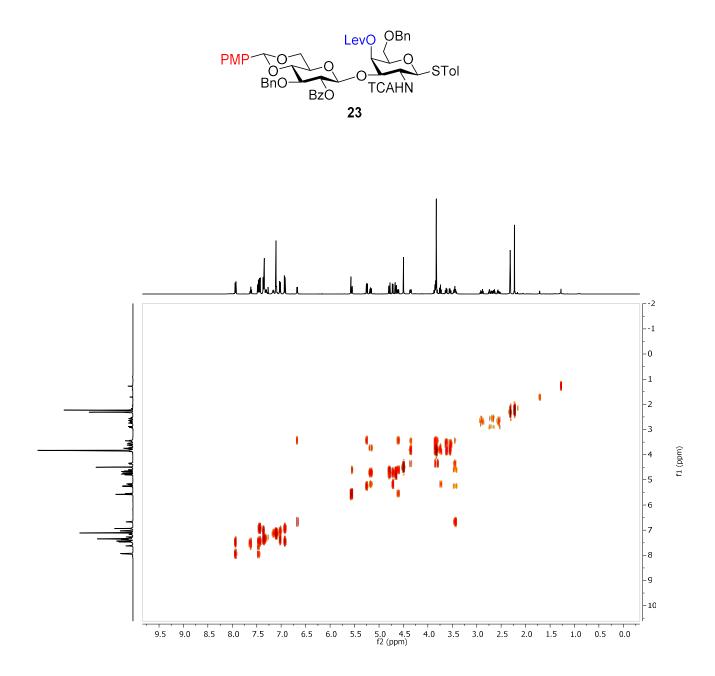
bsgHSQC (CDCl₃, 500 MHz) of $\mathbf{22}$

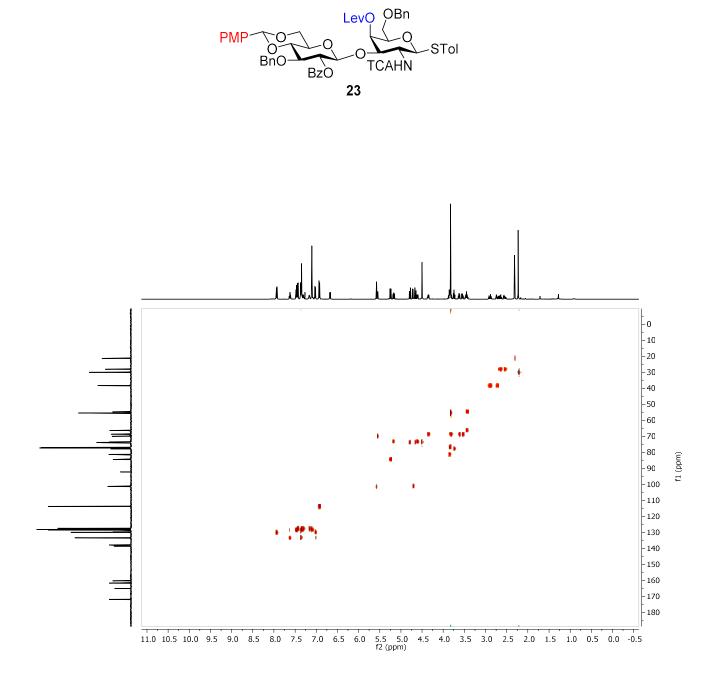


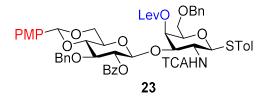

gHSQC (CDCl₃, 500 MHz) of ${f 22}$

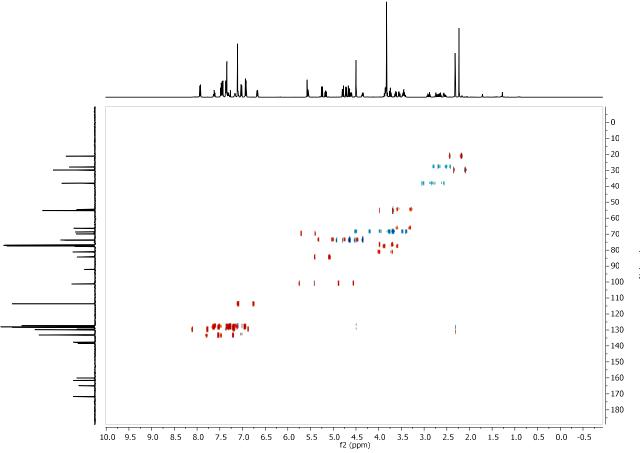


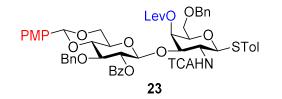

¹H-NMR (CDCl₃, 500 MHz) of **23**

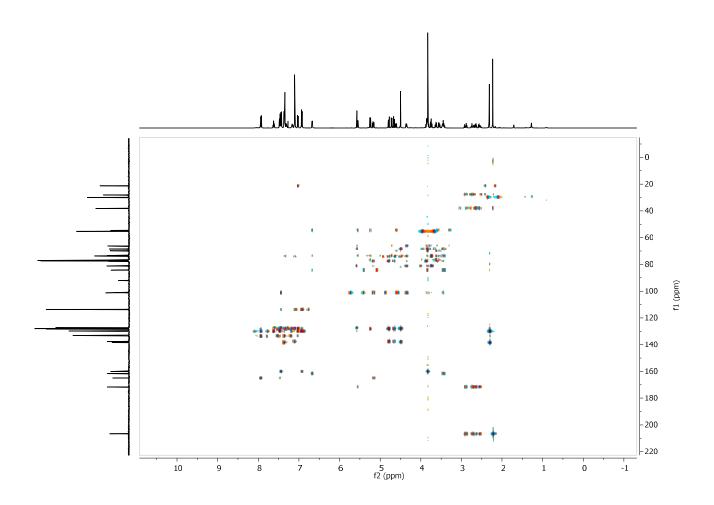


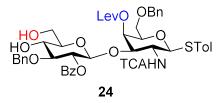


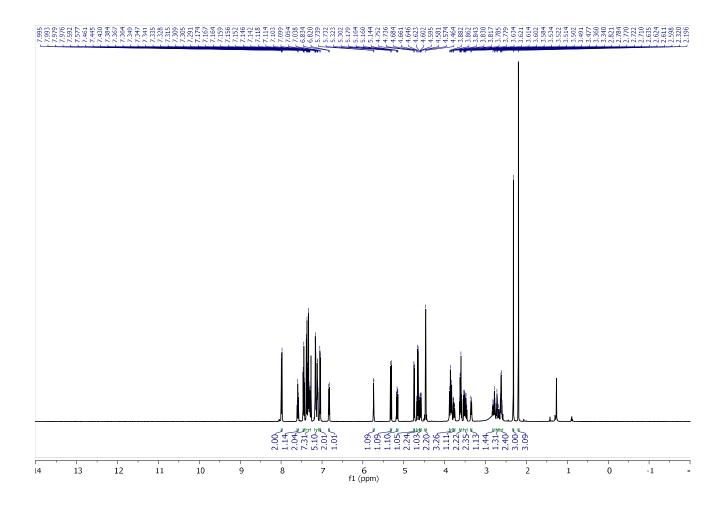

¹³C-NMR (CDCl₃, 126 MHz) of **23**

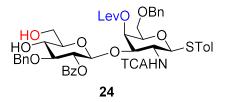


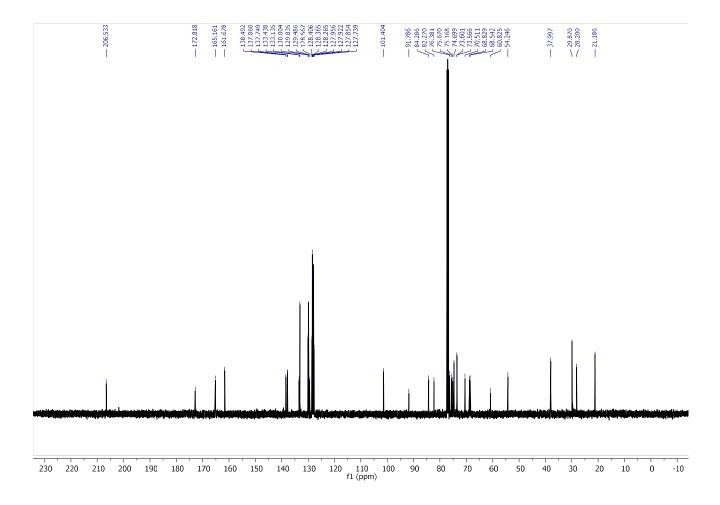


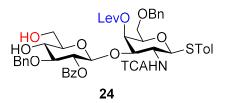


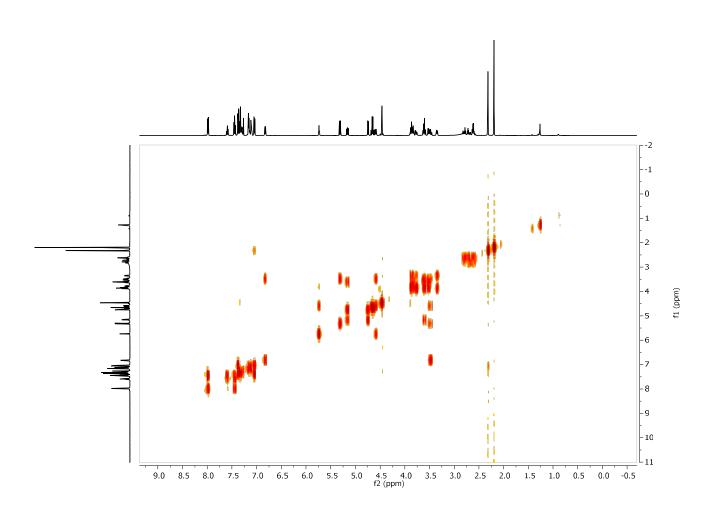


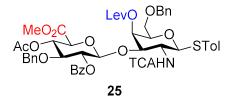

f1 (ppm)

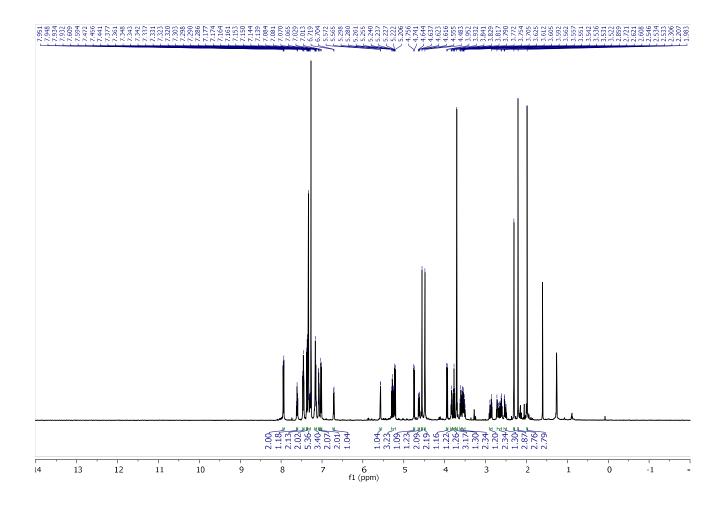


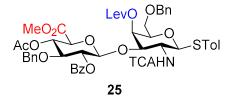

1 H-NMR (CDCl₃, 500 MHz) of **24**

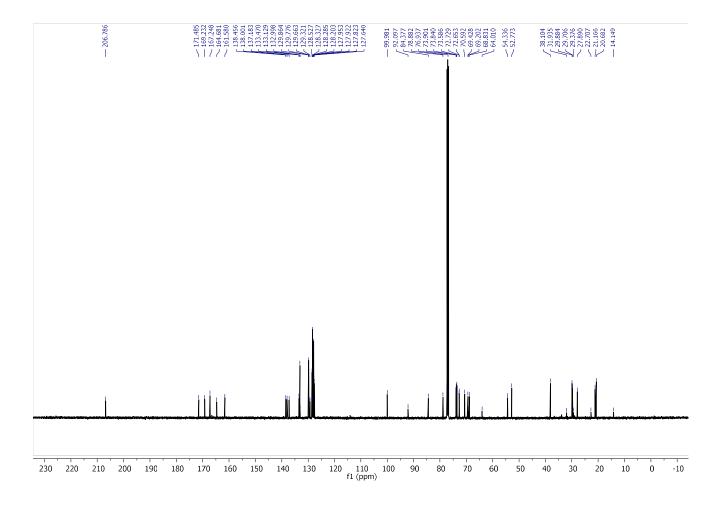


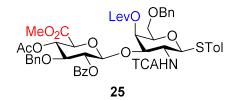

¹³C-NMR (CDCl₃, 126 MHz) of **24**

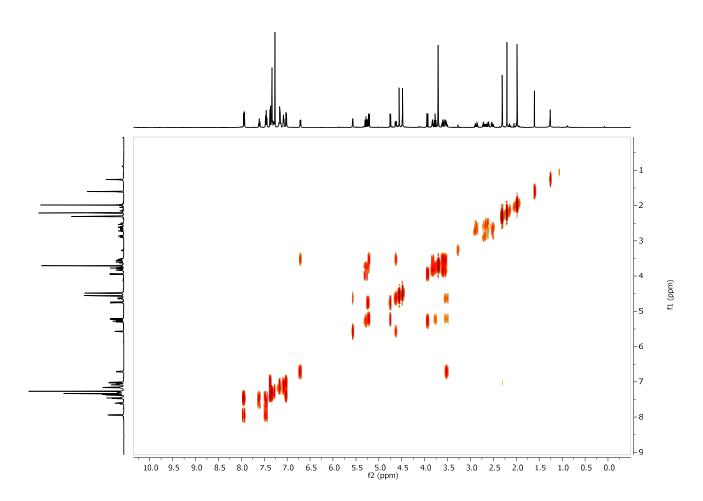


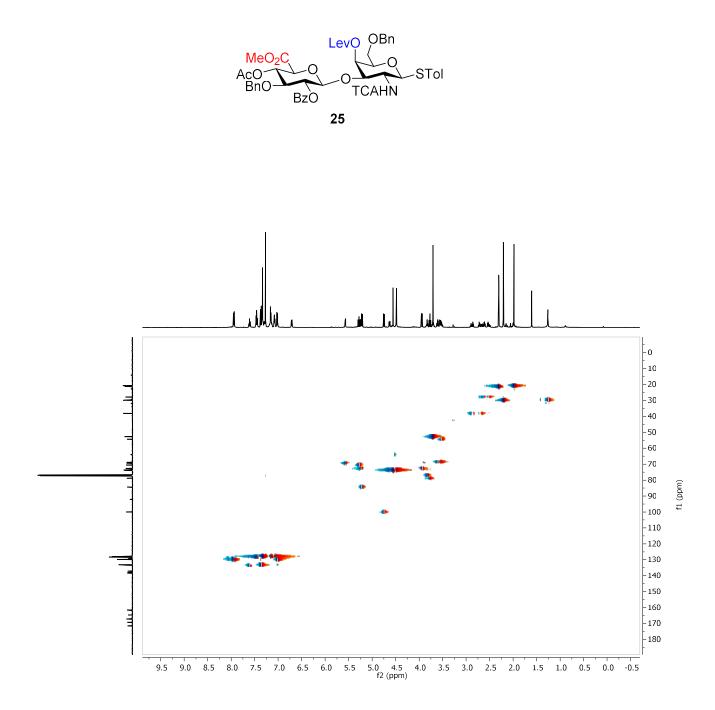

gCOSY (CDCl₃, 500 MHz) of ${f 24}$

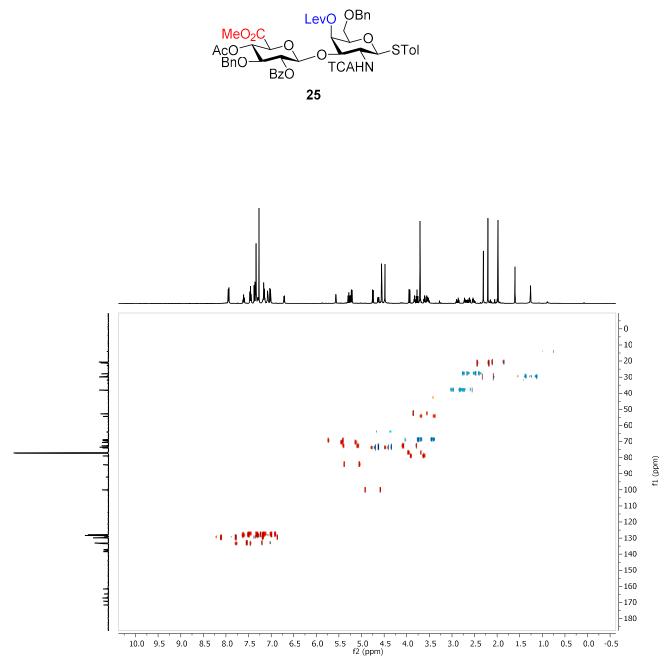


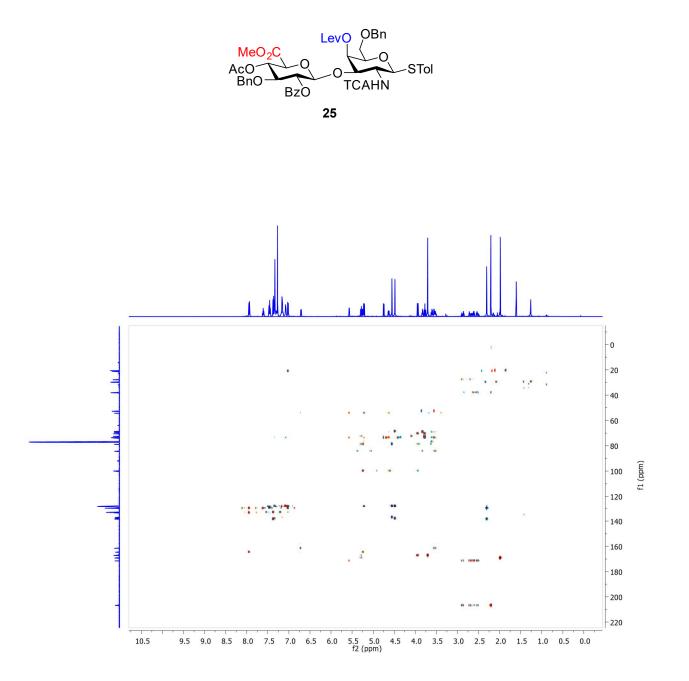

1 H-NMR (CDCl₃, 500 MHz) of **25**

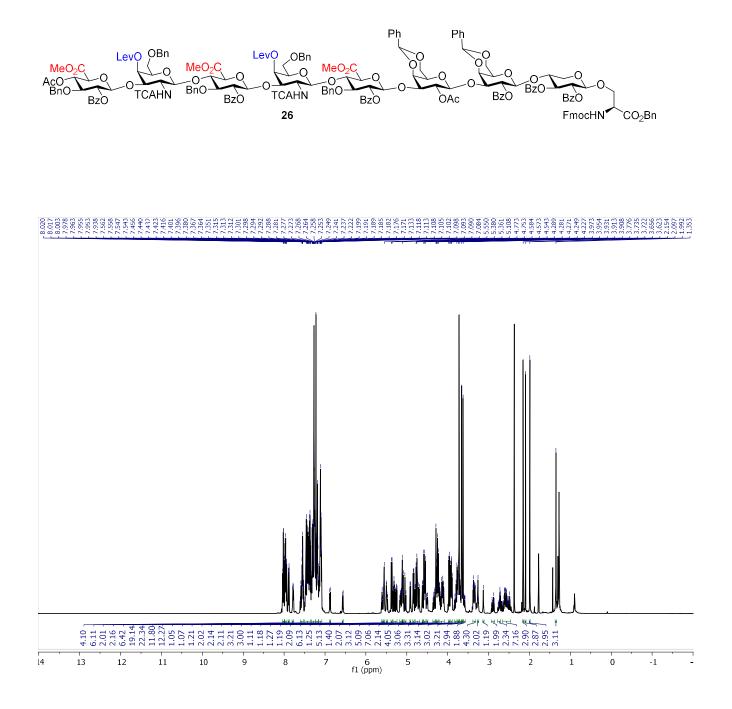


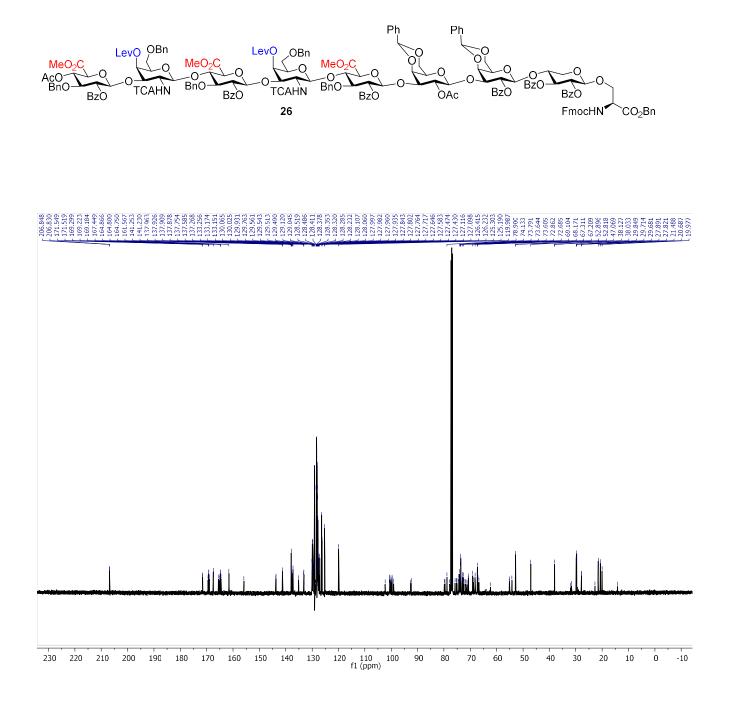

$^{13}\text{C-NMR}$ (CDCl₃, 126 MHz) of 25

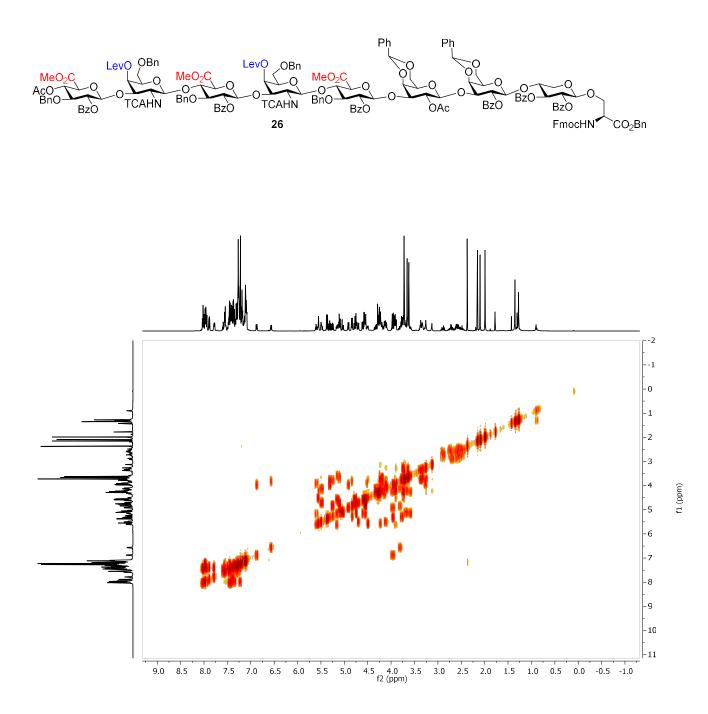




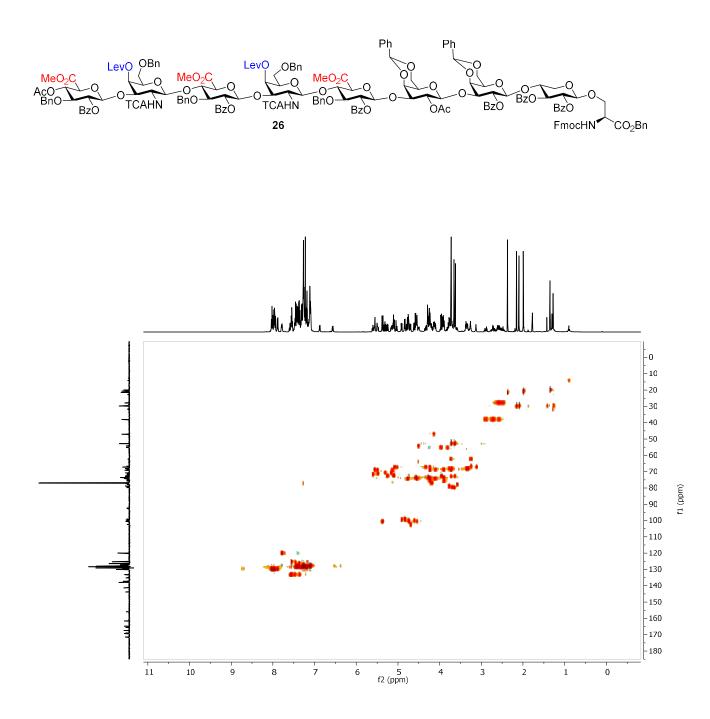

gCOSY (CDCl₃, 500 MHz) of $\mathbf{25}$

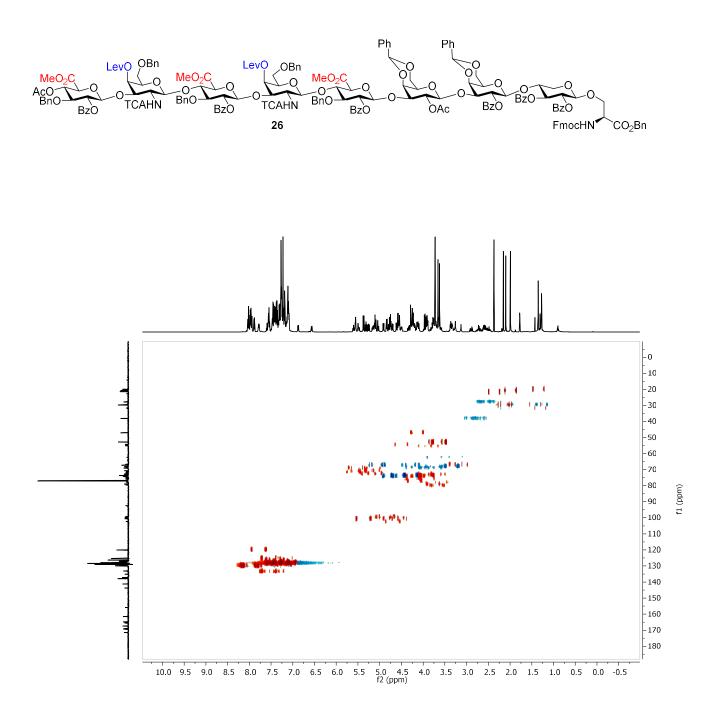


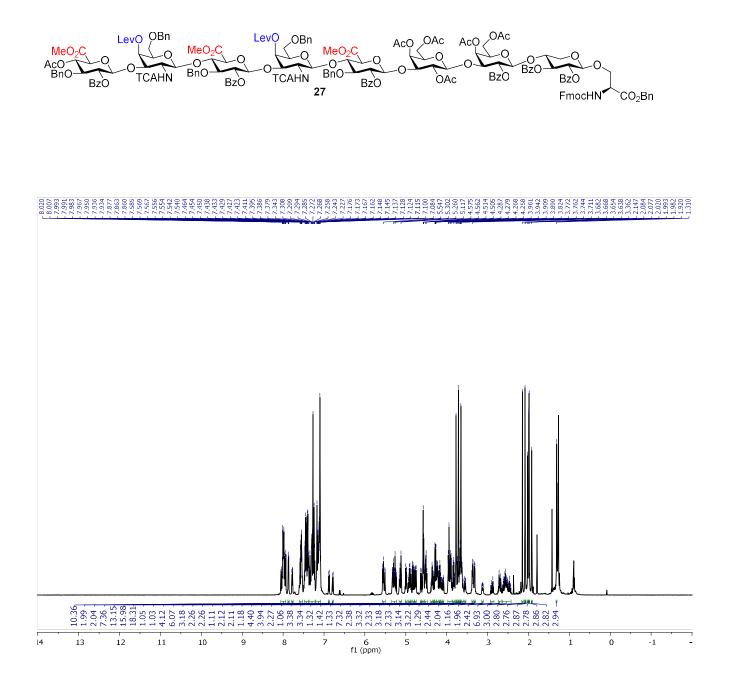


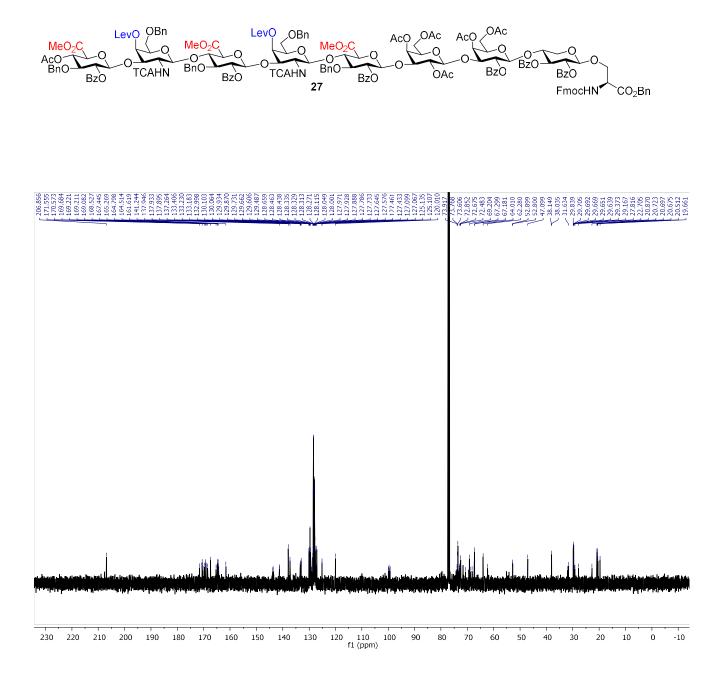


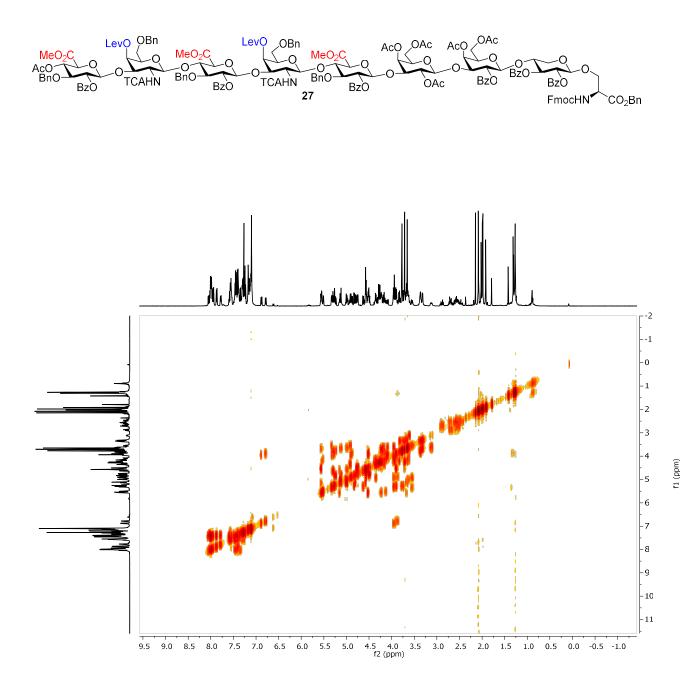


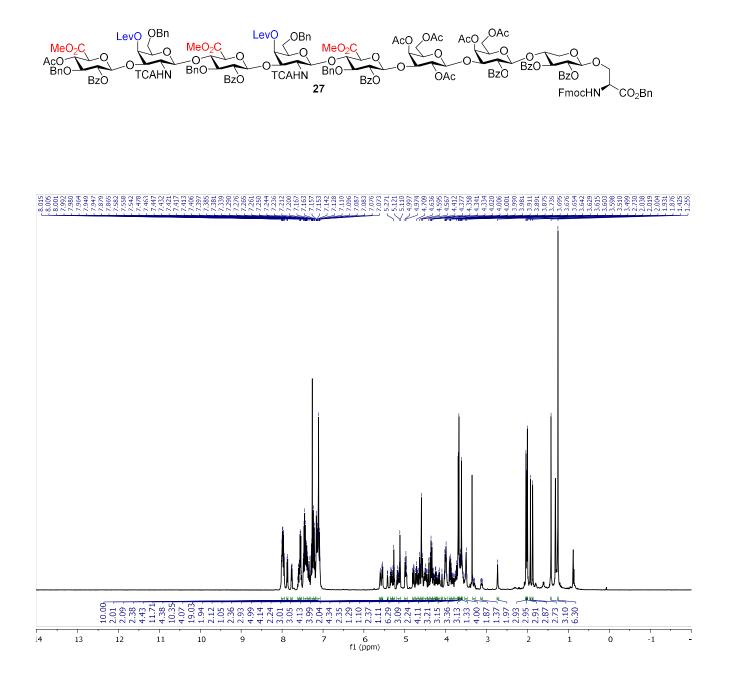


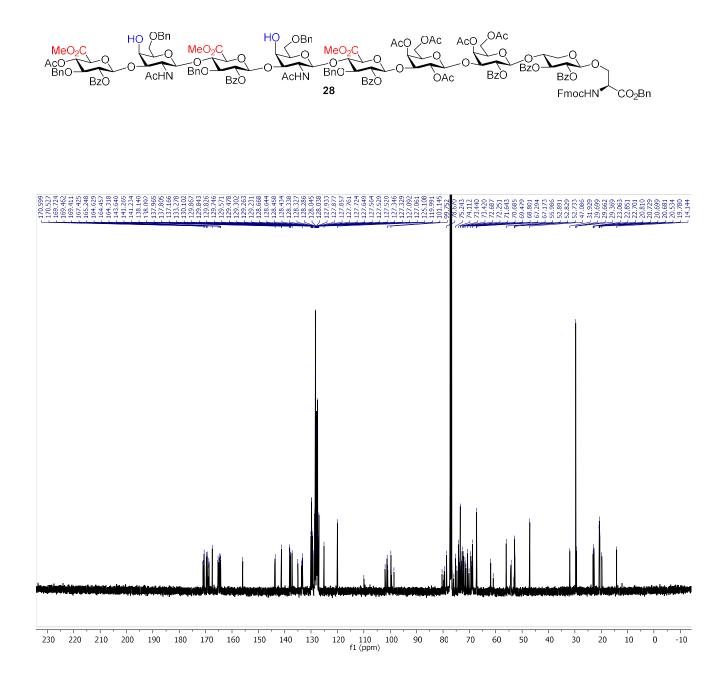


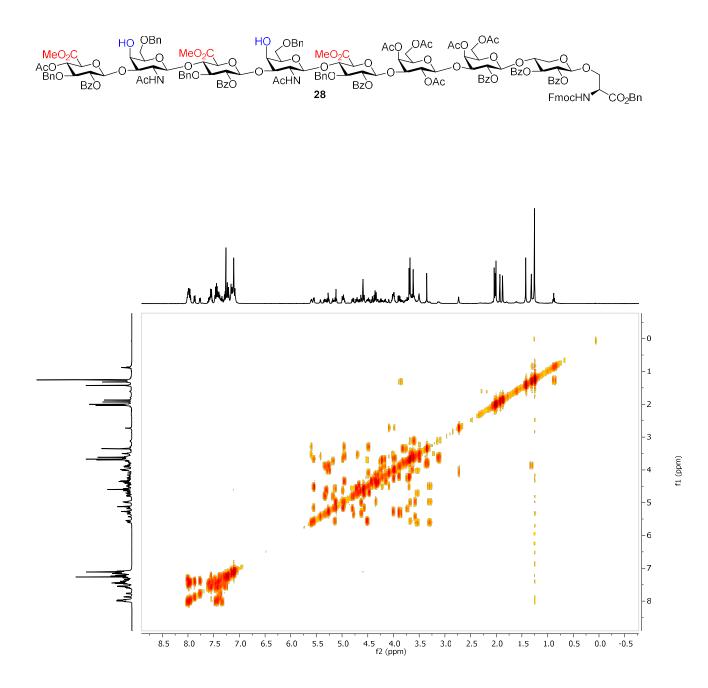


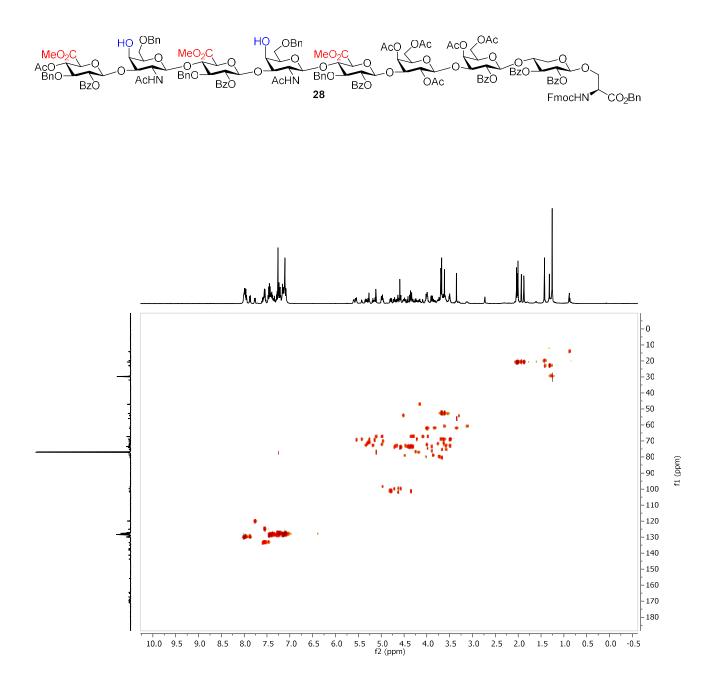


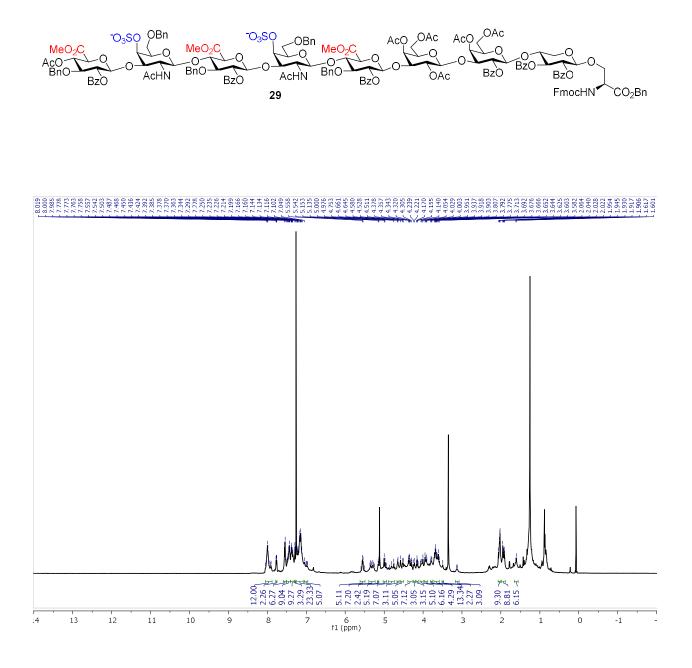


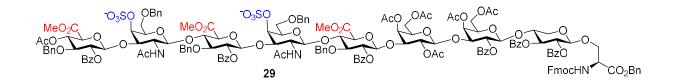


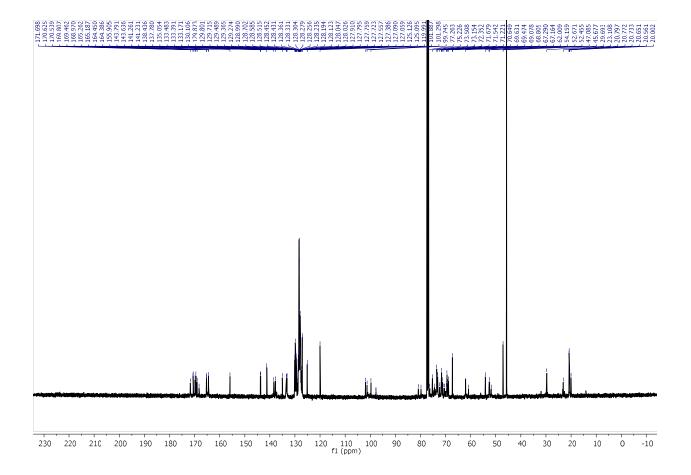


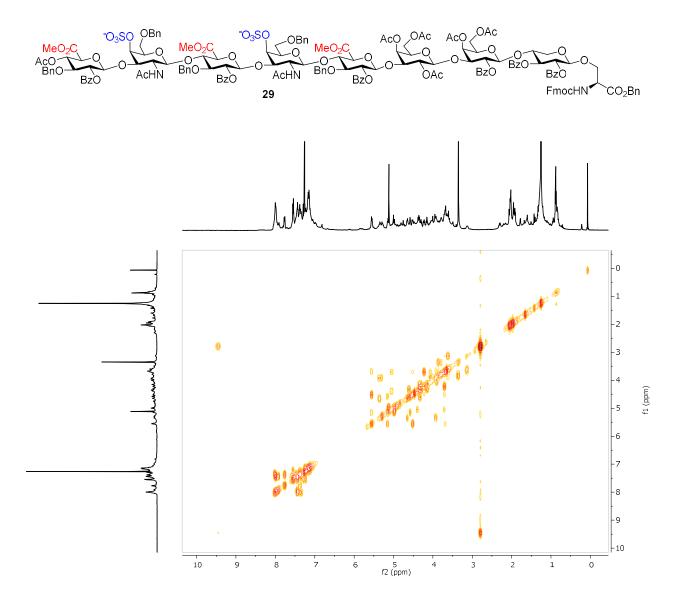


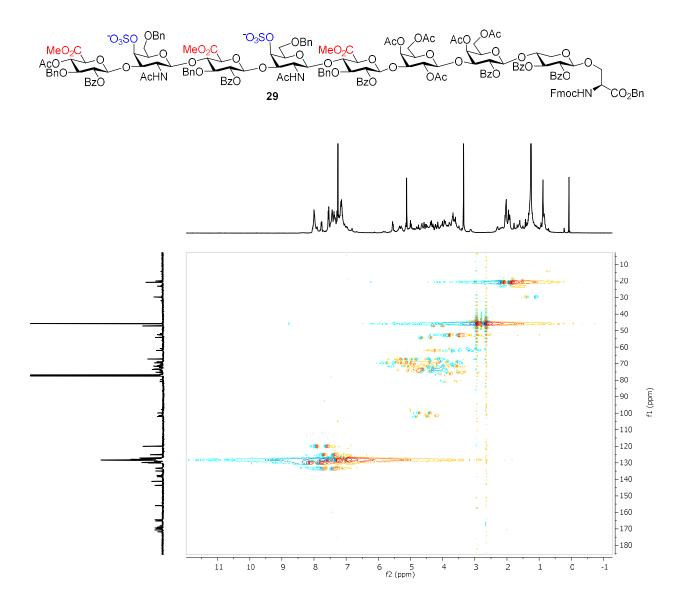


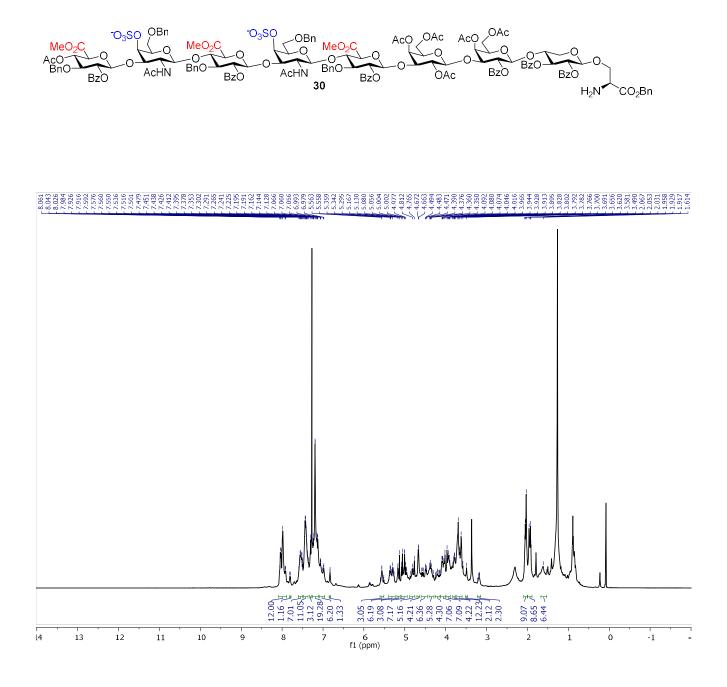


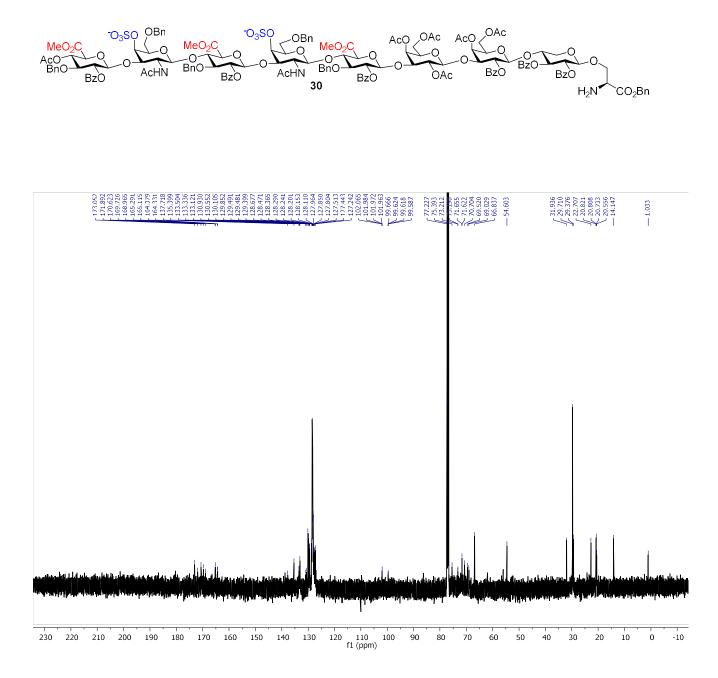


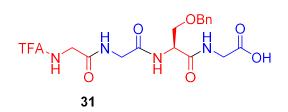


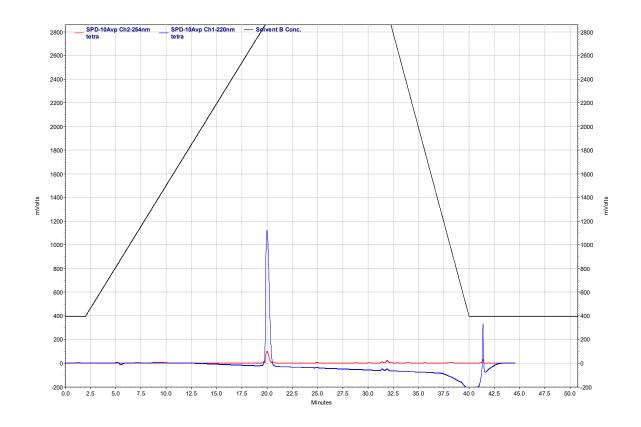


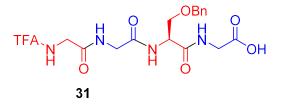


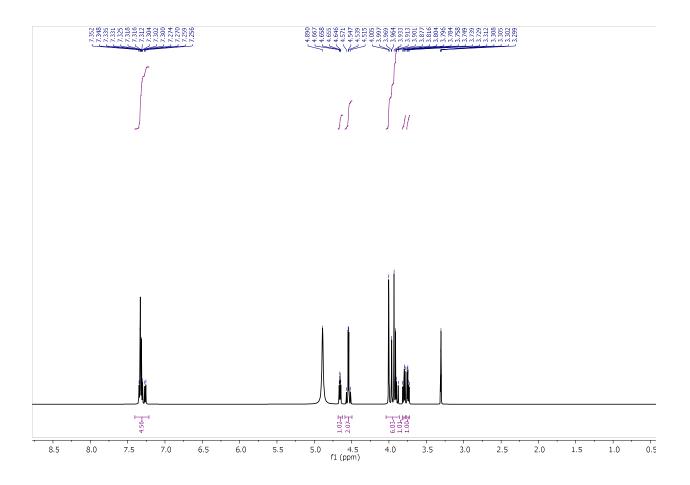


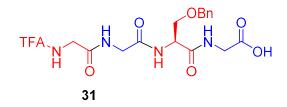


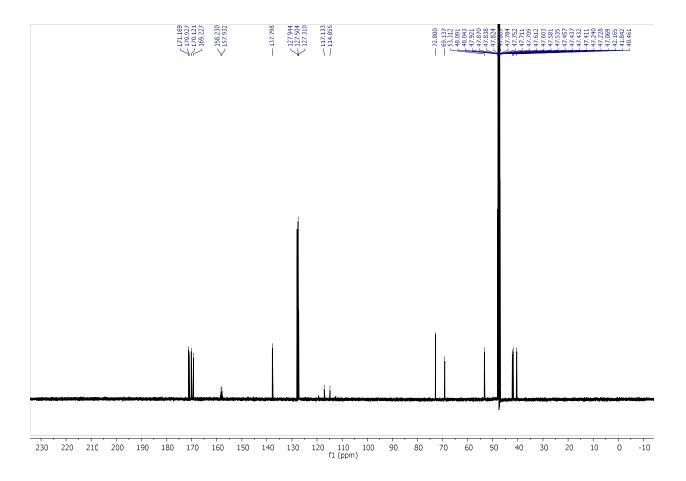


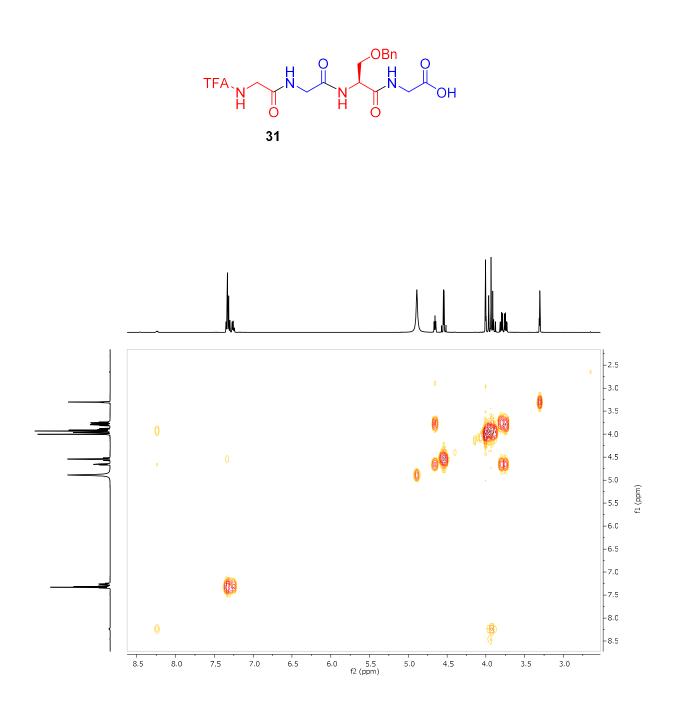


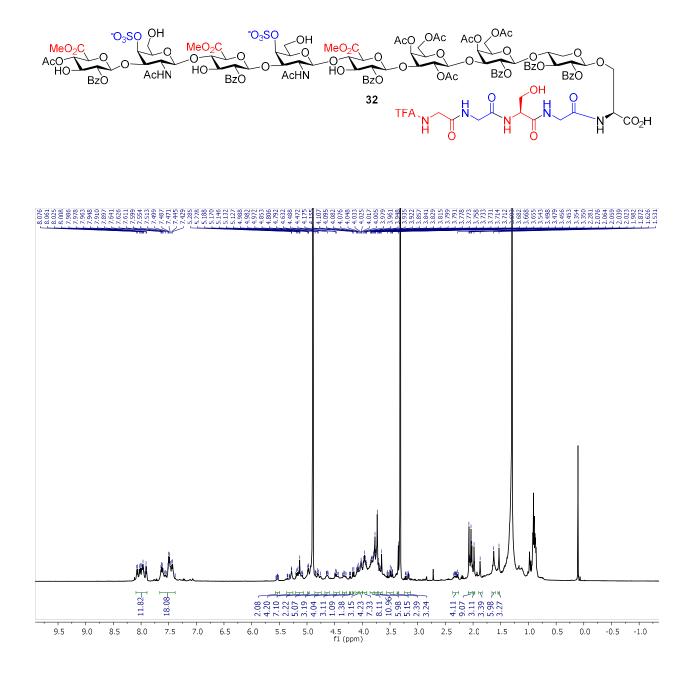


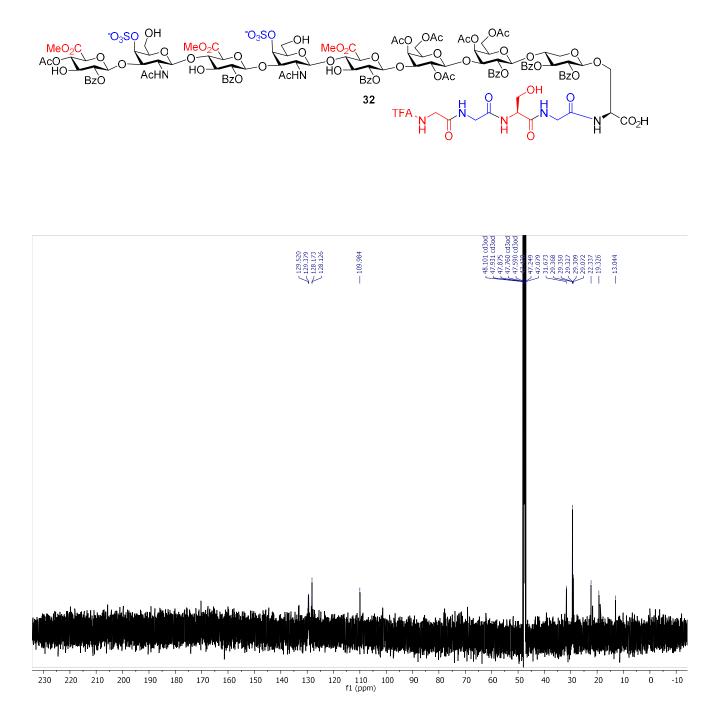

HPLC Chromatogram of peptide 31

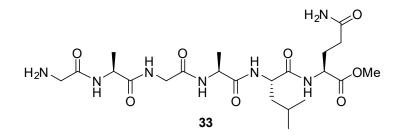


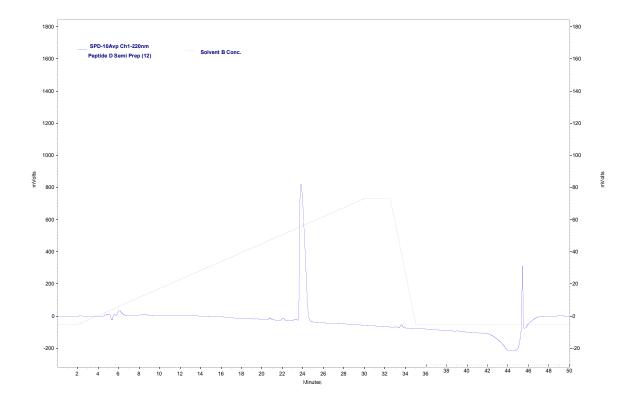

¹H-NMR (CD₃OD, 500 MHz) of **31**

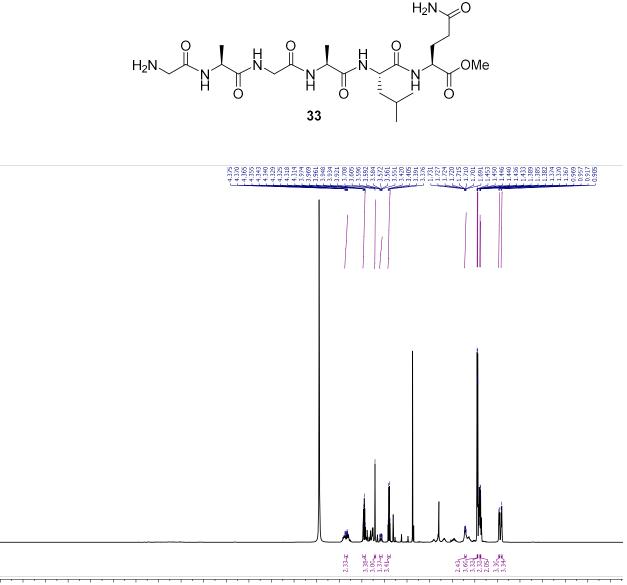



¹³C-NMR (CD₃OD, 126 MHz) of **31**

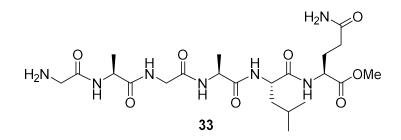


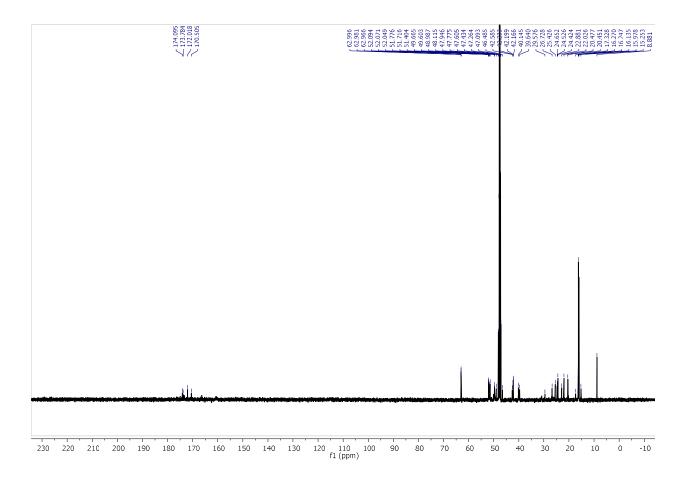

gCOSY (CD₃OD, 500 MHz) of **31**



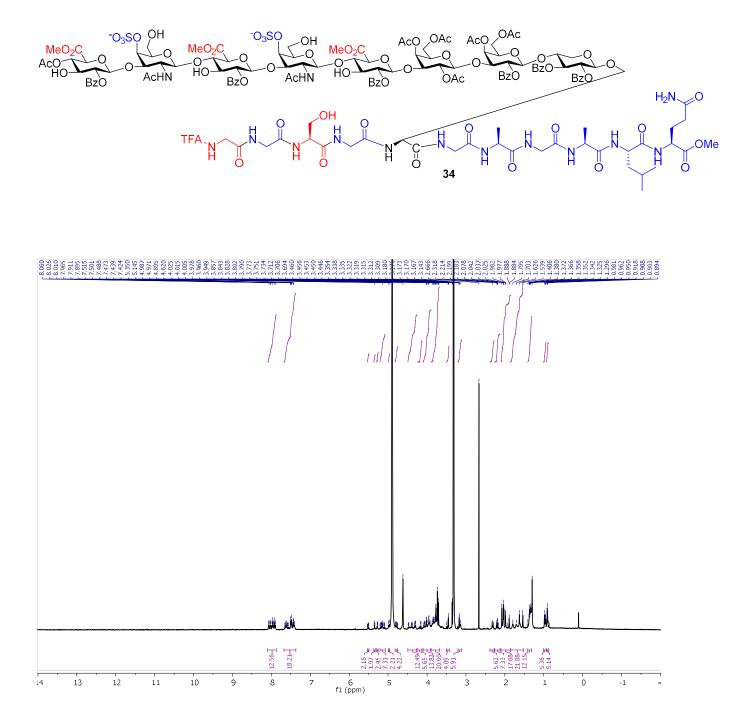


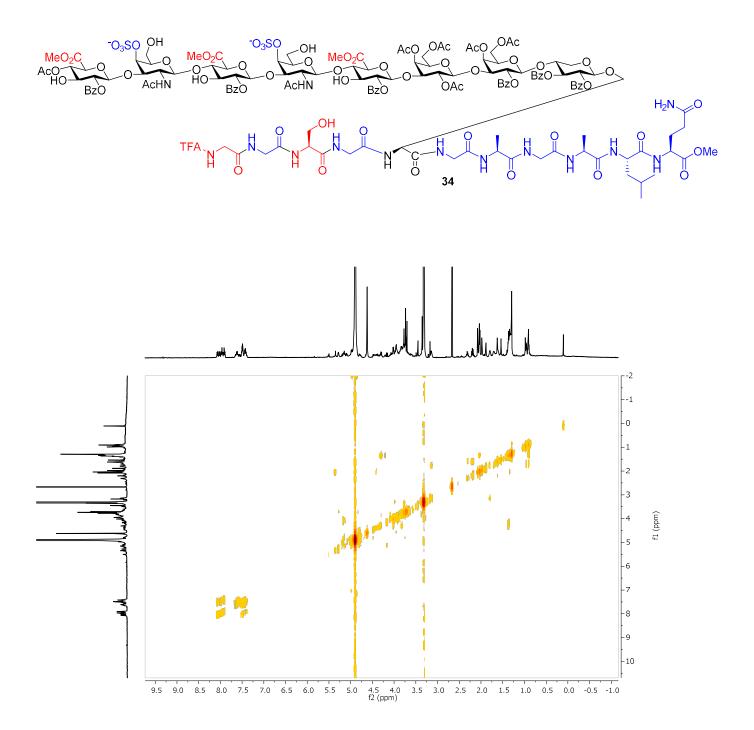
HPLC Chromatogram of glycopeptide 33

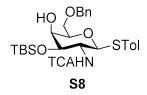


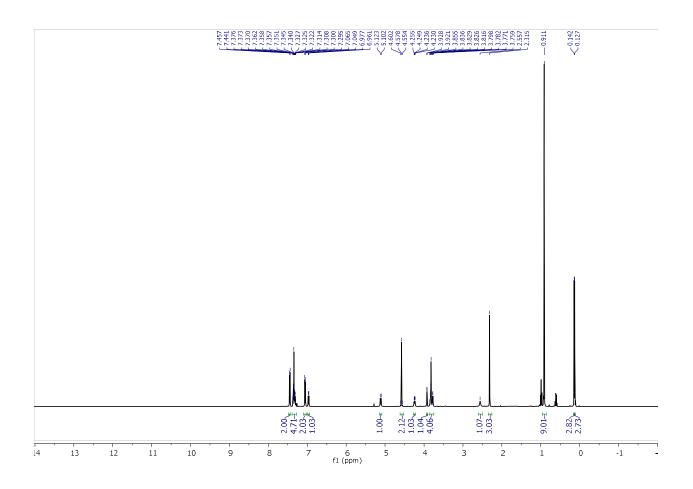

¹H-NMR (CD₃OD, 500 MHz) of **33**

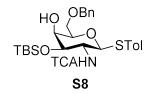
2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 fl (ppm)

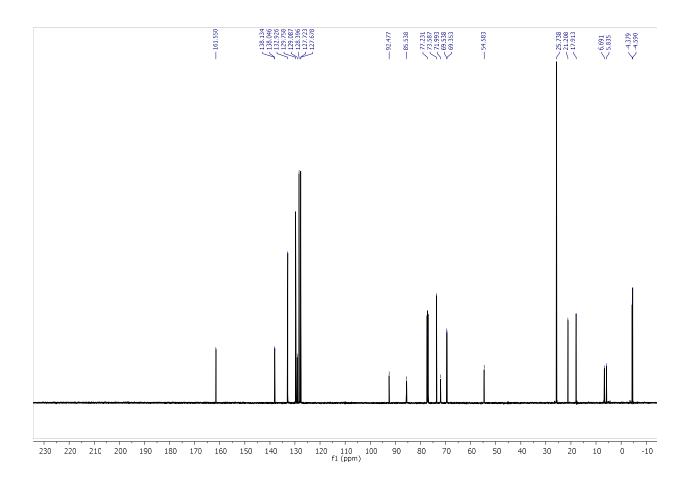

¹³C-NMR (CD₃OD, 126 MHz) of **33**

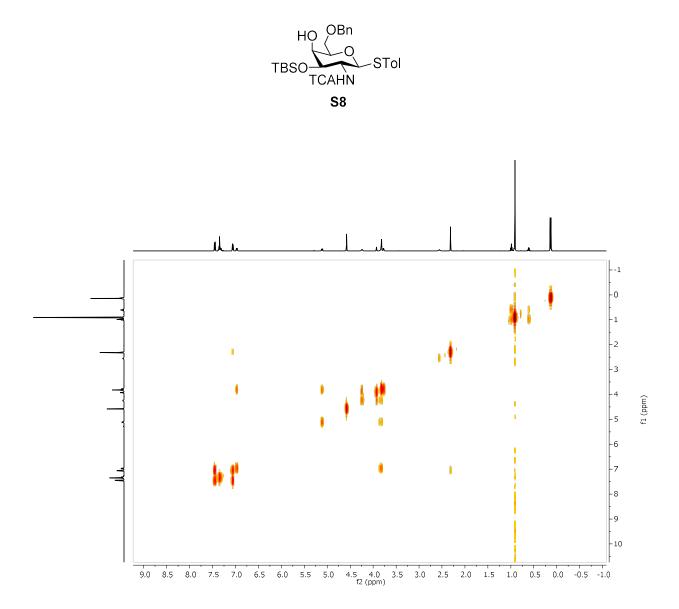



gCOSY (CD₃OD, 500 MHz) of 33

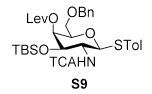


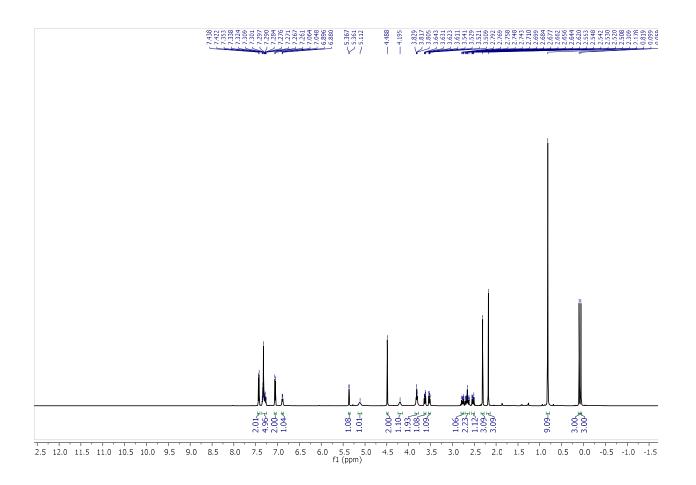



H-NMR (CDCl₃, 500 MHz) of S8

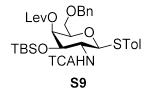


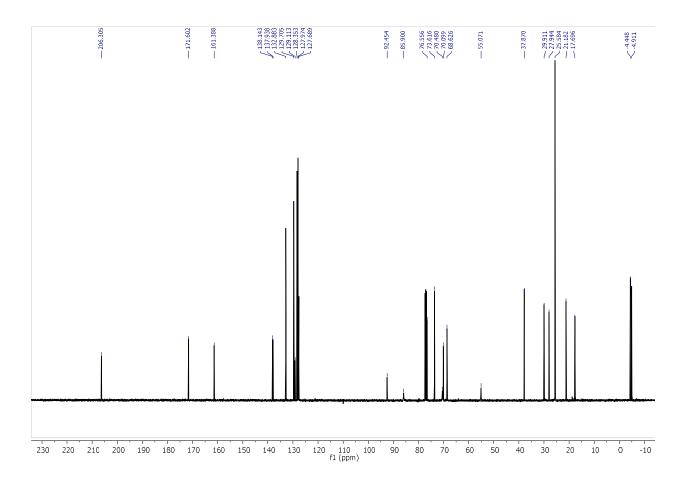
 $^{13}\text{C-NMR}$ (CDCl₃, 126 MHz) of S8

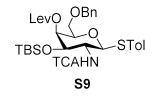


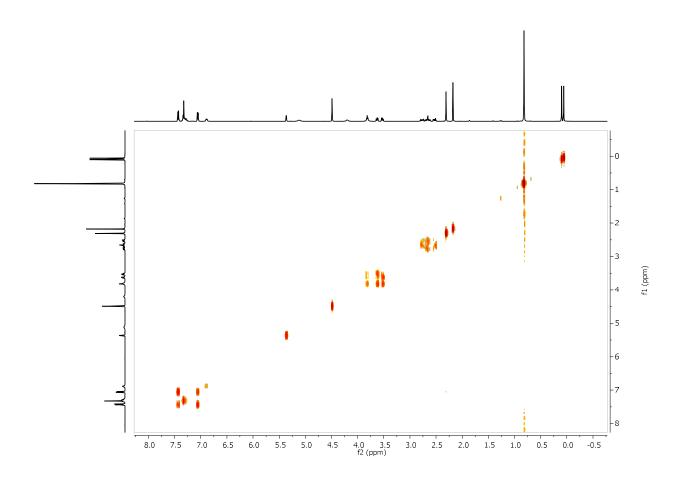


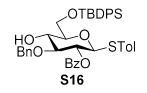
gCOSY (CDCl₃, 500 MHz) of S8

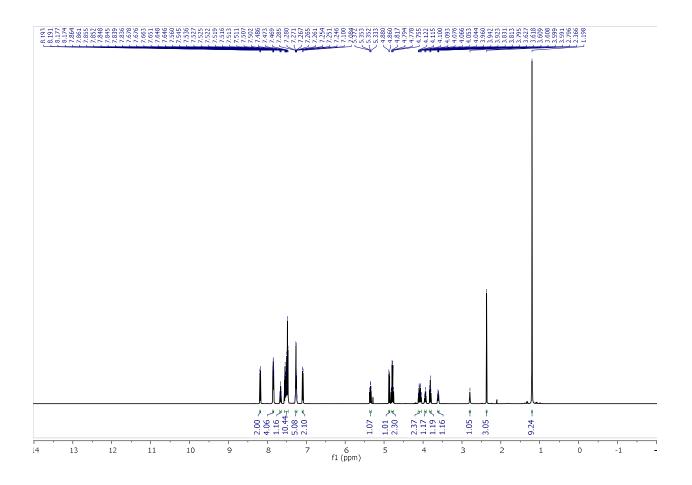


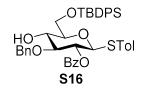

¹H-NMR (CDCl₃, 500 MHz) of **S9**

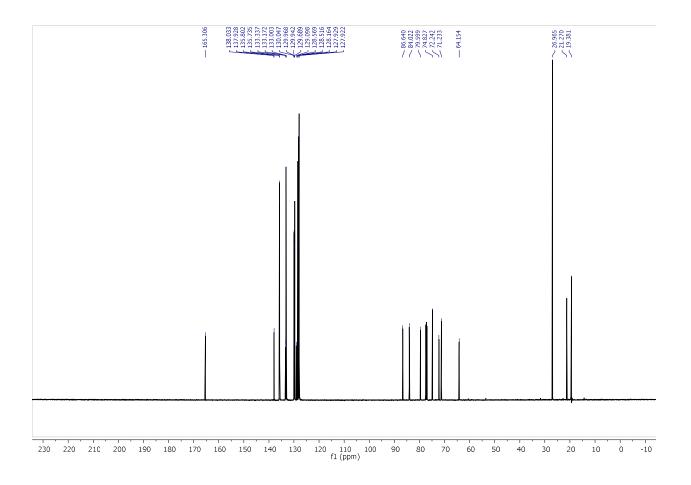


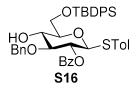

¹³C-NMR (CDCl₃, 126 MHz) of **S9**

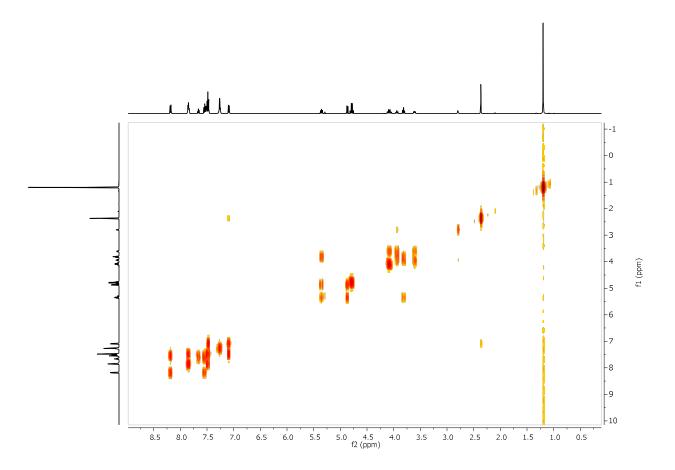


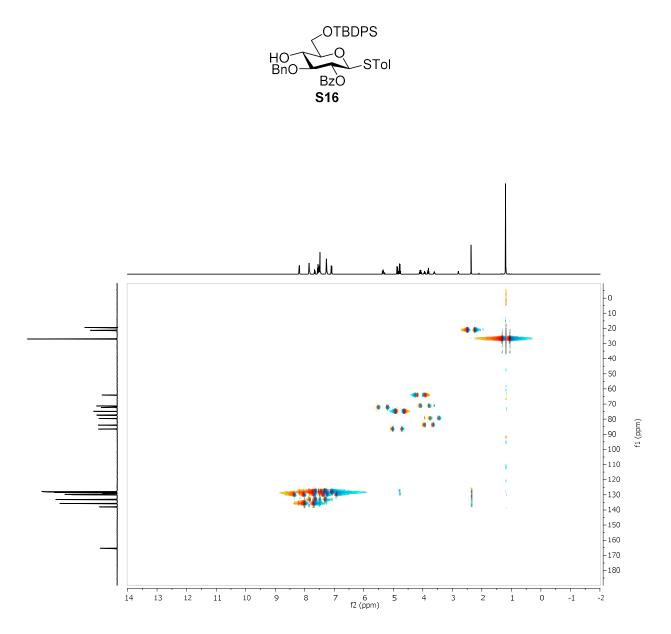

gCOSY (CDCl₃, 500 MHz) of **S9**



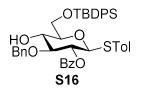

¹H-NMR (CDCl₃, 500 MHz) of **S16**

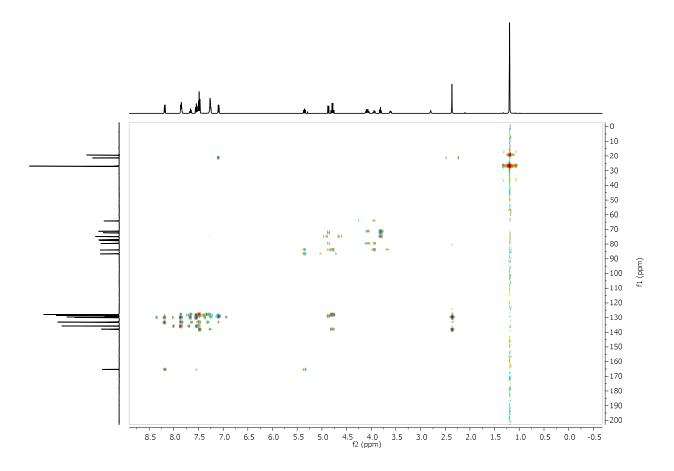



¹³C-NMR (CDCl₃, 126 MHz) of **S16**

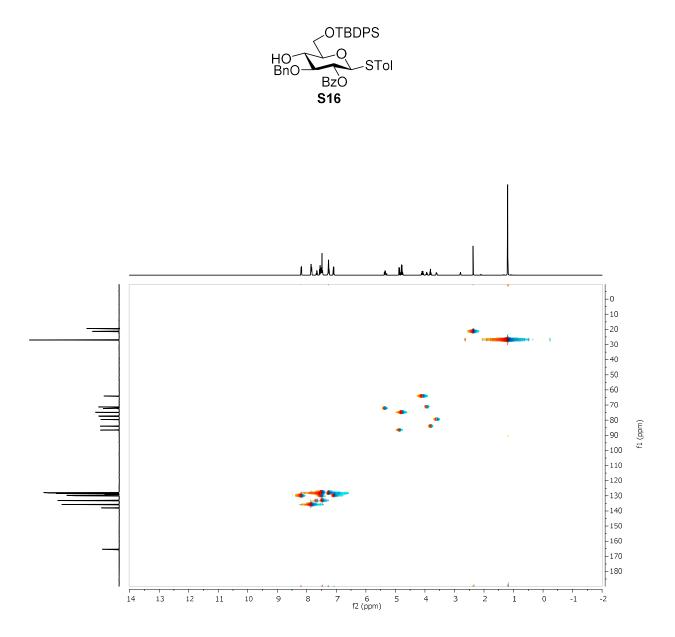


gCOSY (CDCl₃, 500 MHz) of **S16**

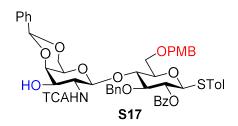


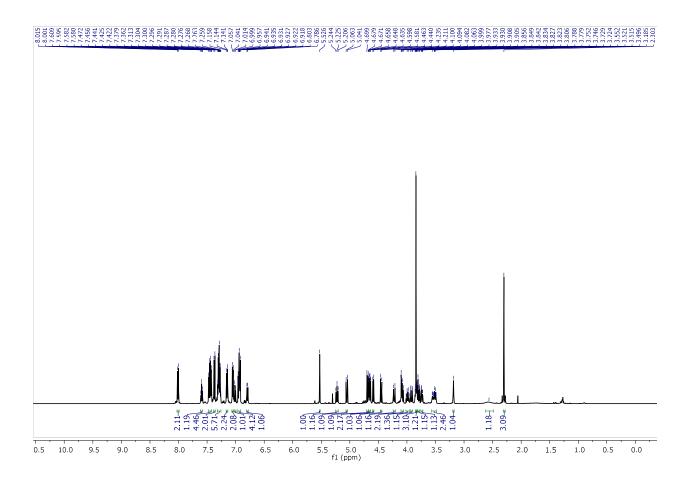


gHSQC (CDCl₃, 500 MHz) of $\mathbf{S16}$

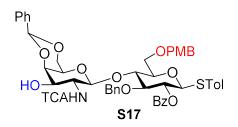


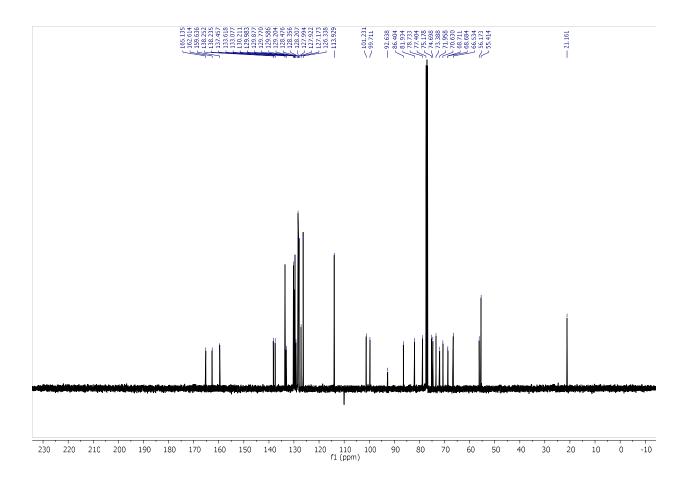
gHMBC (CDCl₃, 500 MHz) of S16

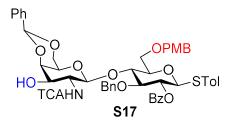


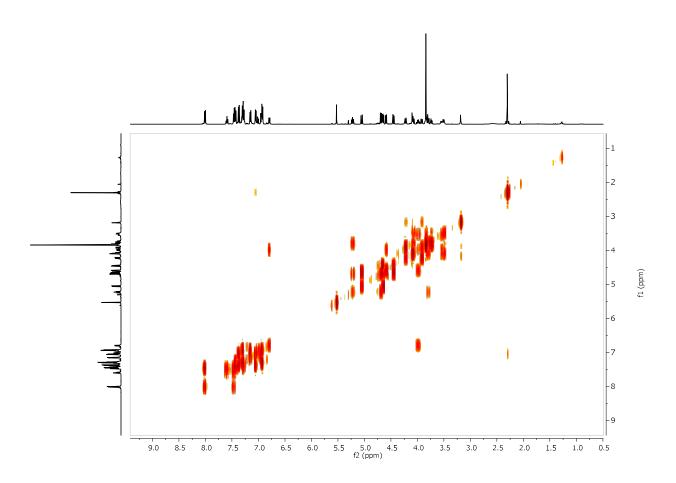


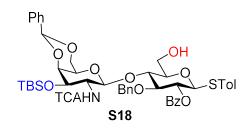
bsgHSQC (CDCl₃, 500 MHz) of $\mathbf{S16}$

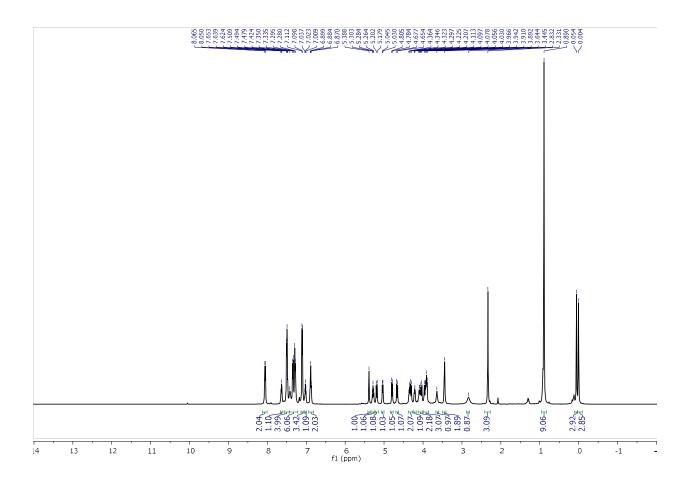


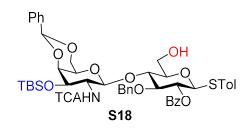

¹H-NMR (CDCl₃, 500 MHz) of **S17**

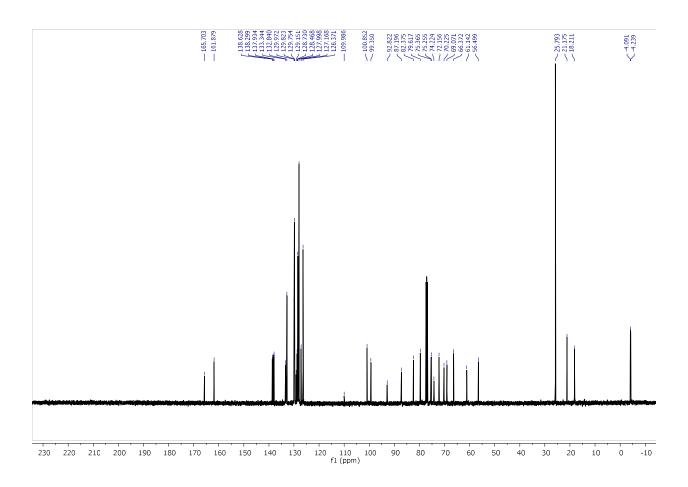


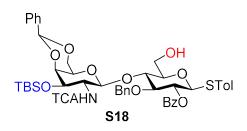

$^{13}\text{C-NMR}$ (CDCl₃, 126 MHz) of **S17**

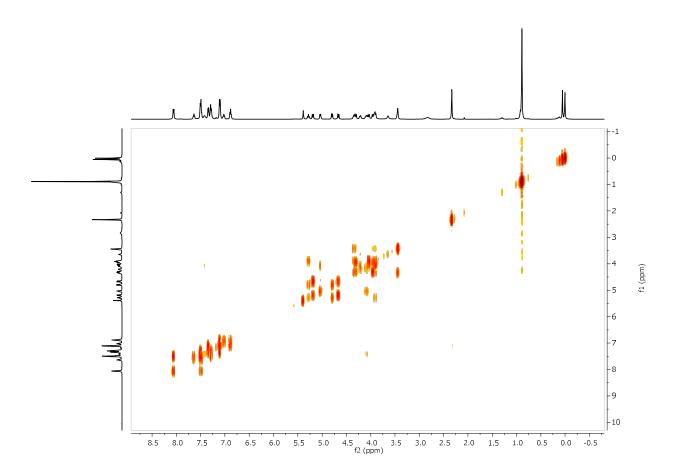


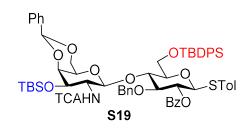

gCOSY (CDCl₃, 500 MHz) of $\mathbf{S17}$

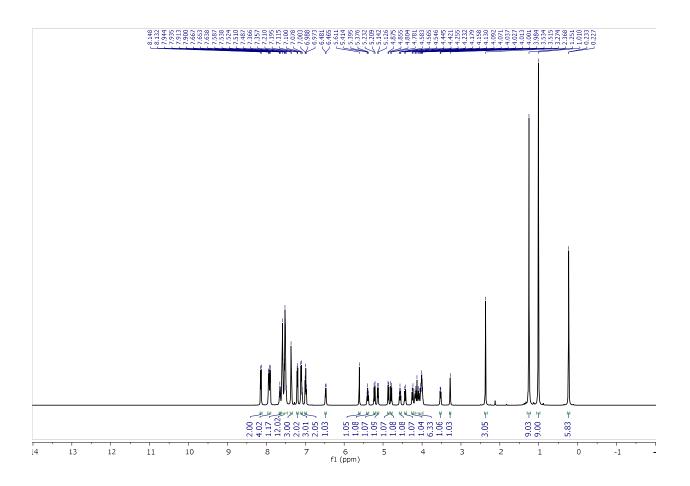


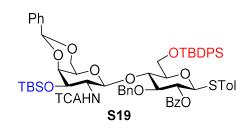

¹H-NMR (CDCl₃, 500 MHz) of **S18**

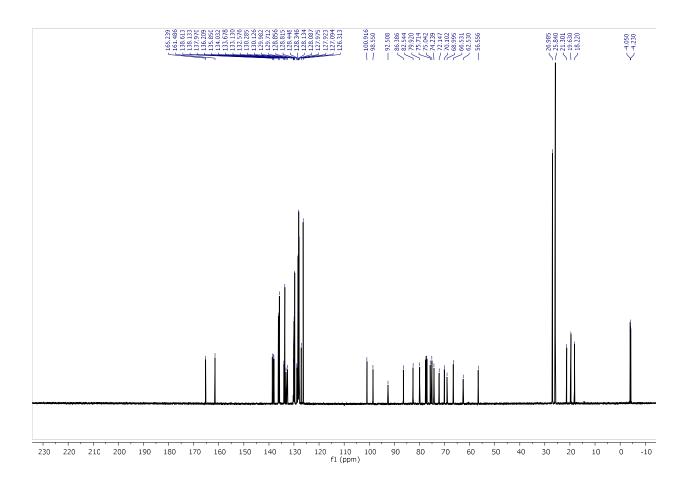


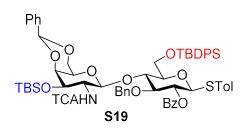

¹³C-NMR (CDCl₃, 126 MHz) of **S18**

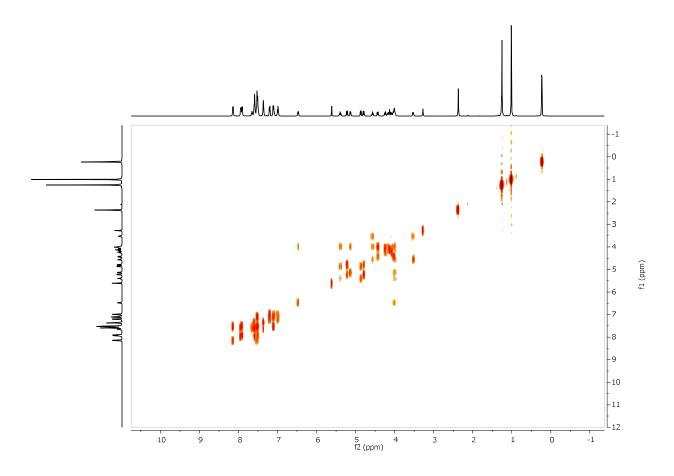


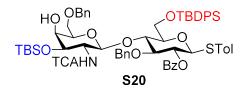

gCOSY (CDCl₃, 500 MHz) of **S18**

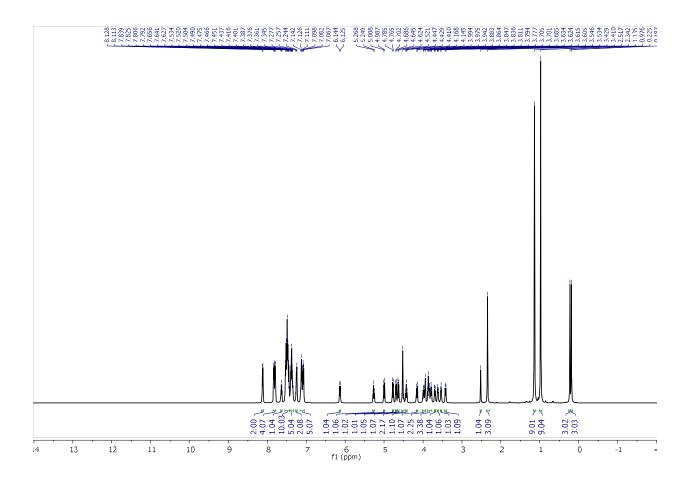



¹H-NMR (CDCl₃, 500 MHz) of **S19**

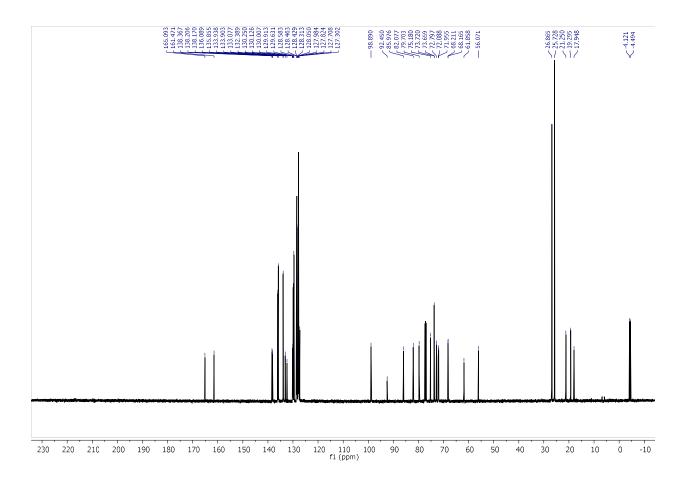


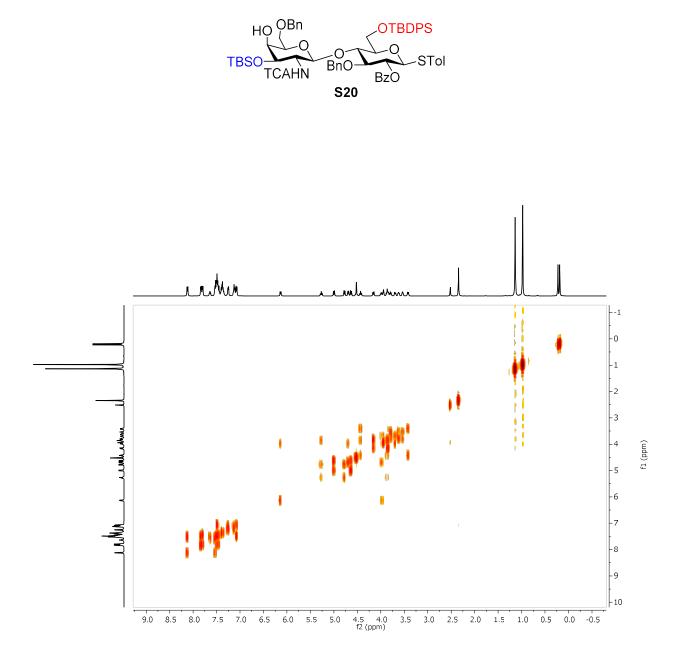

¹³C-NMR (CDCl₃, 126 MHz) of **S19**

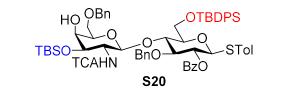


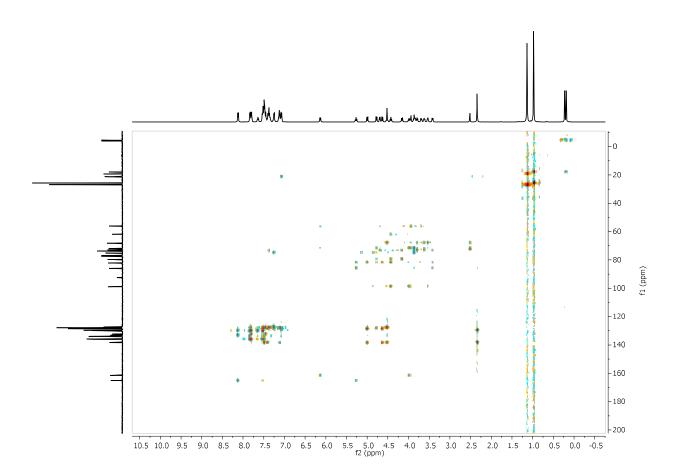


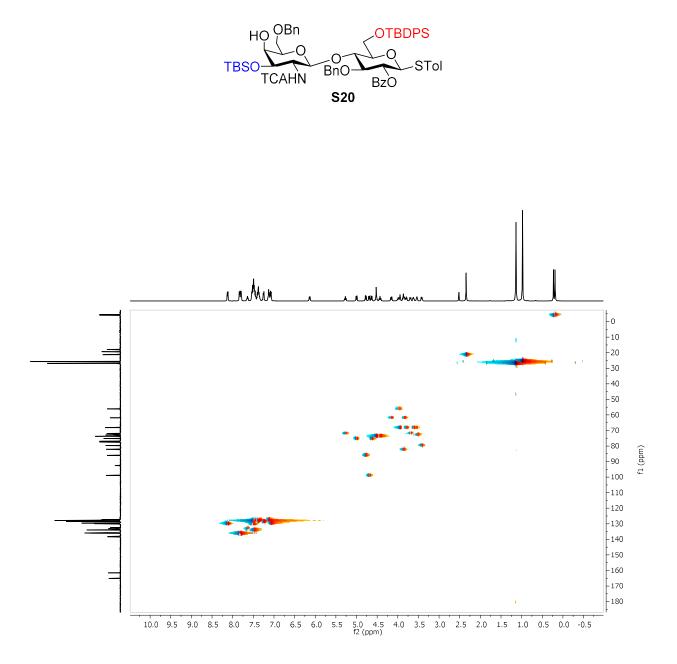

gCOSY (CDCl₃, 500 MHz) of **S19**

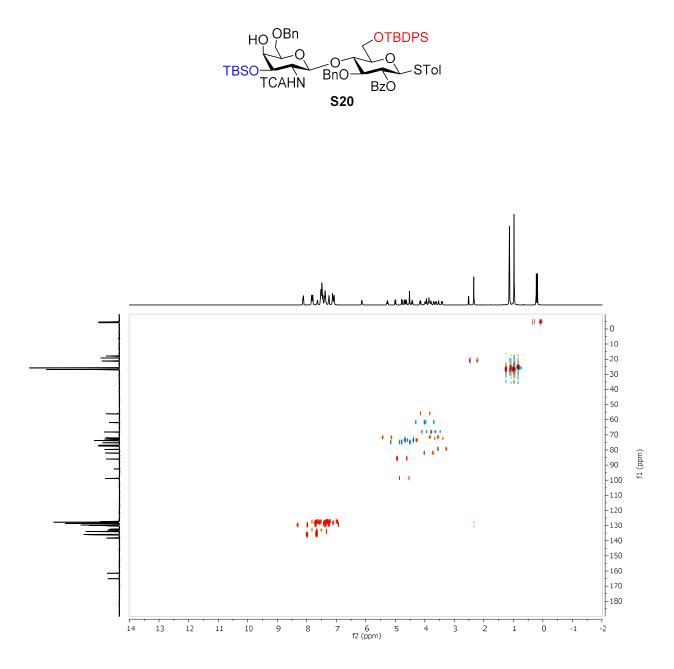


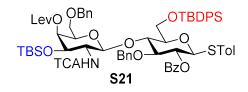


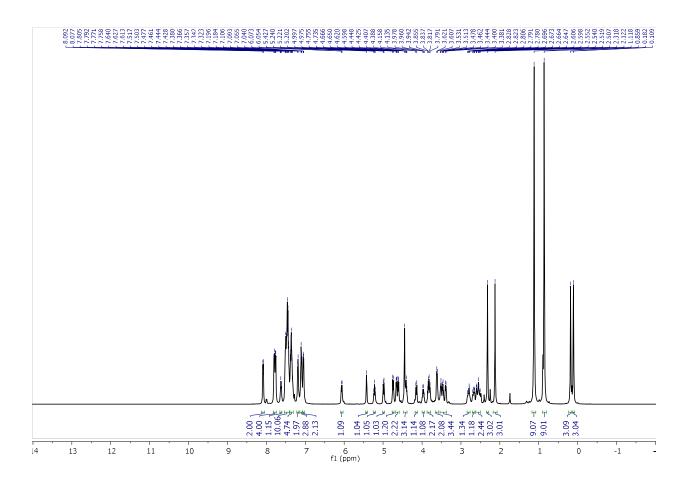


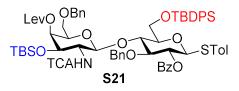


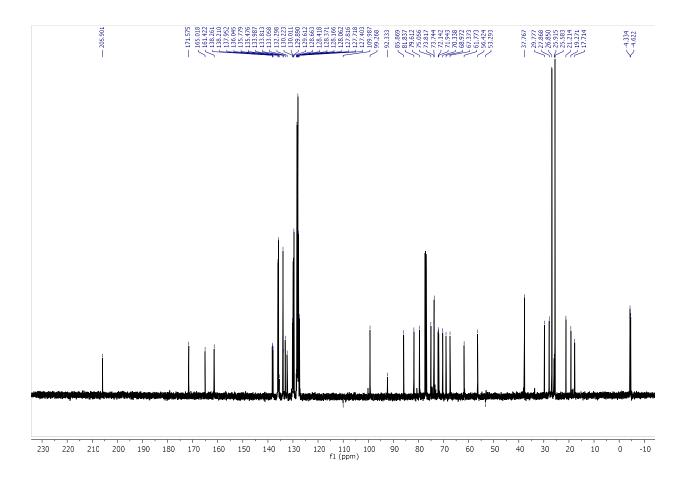


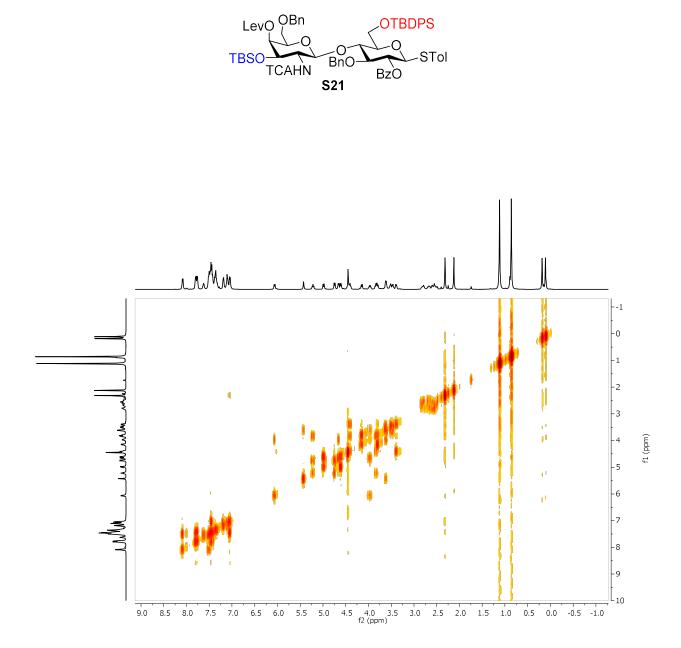


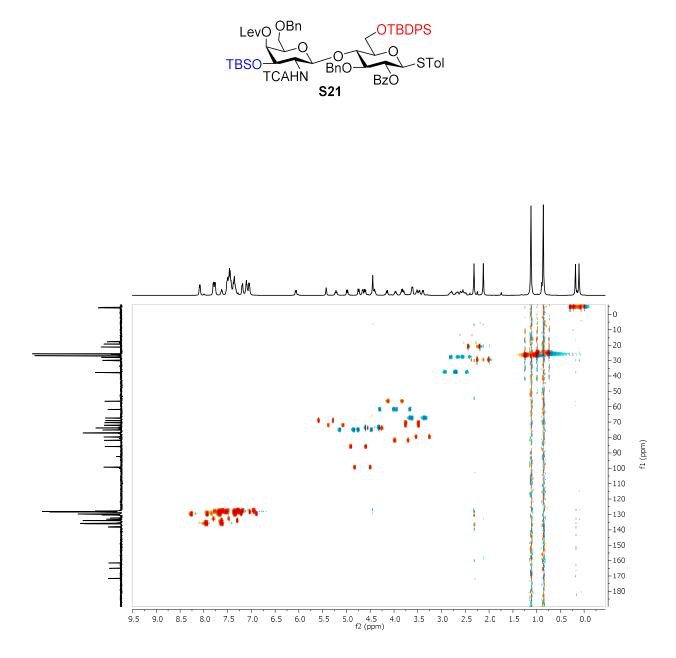


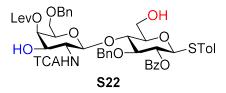


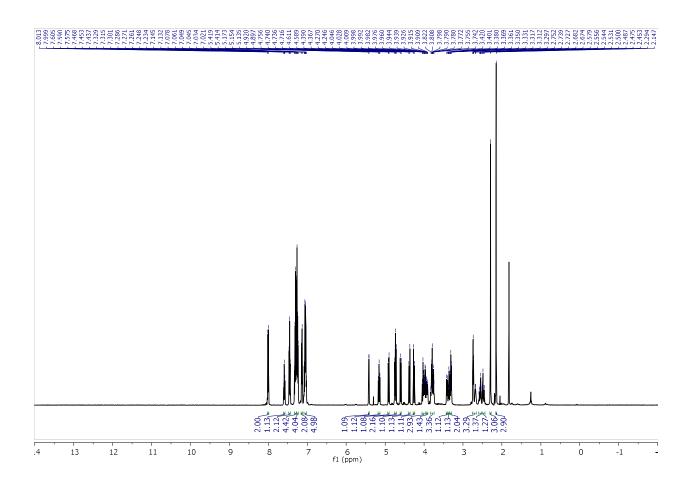


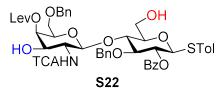


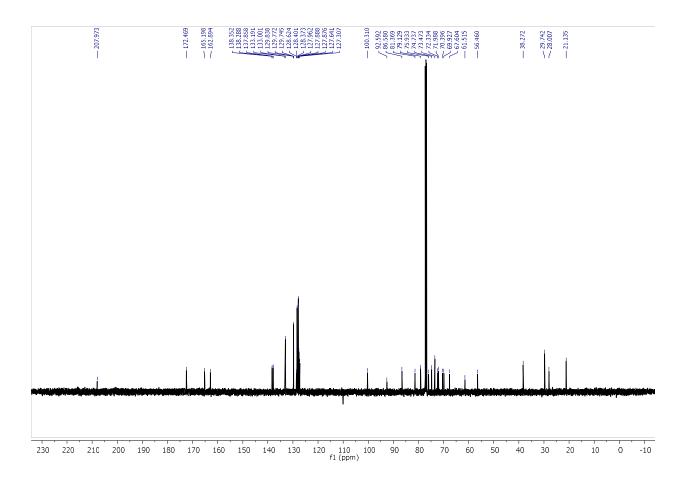




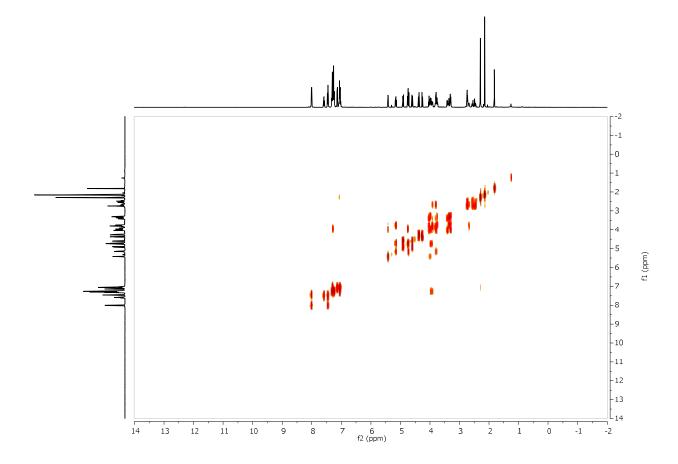




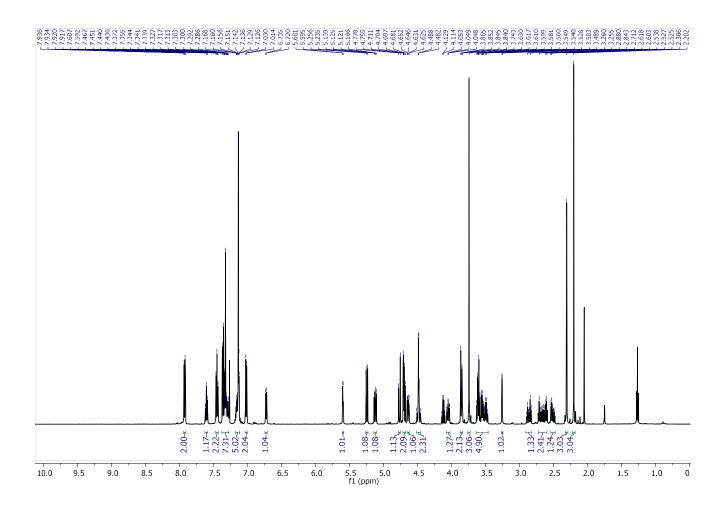


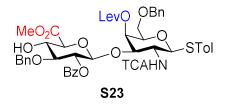


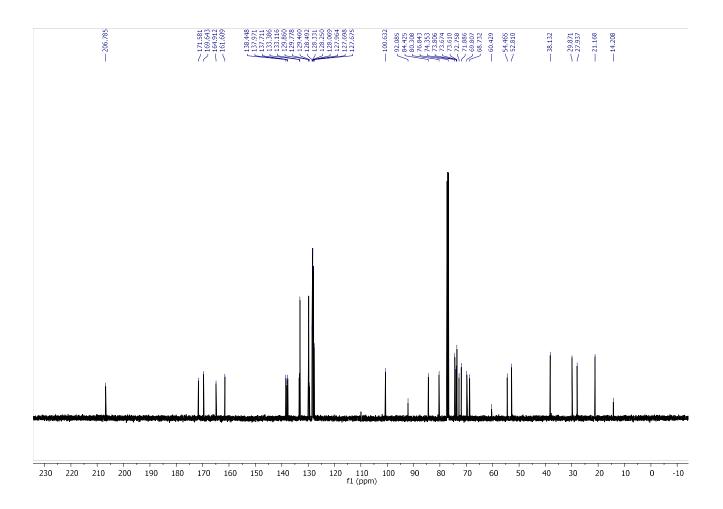


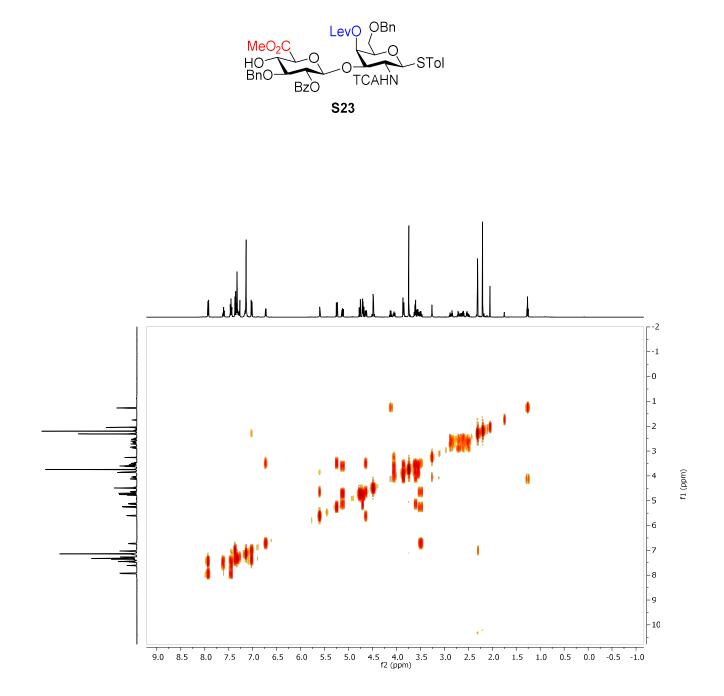












gCOSY (CDCl₃, 500 MHz) of $\mathbf{S23}$

