## Supporting Information for

## The electronic structure of transition-metal based $Cu_2GeTe_3$ phase change material: Revealing the key role of Cu d electrons

Yuta Saito<sup>1\*</sup>, Yuji Sutou<sup>2\*\*</sup>, Paul Fons<sup>1</sup>, Satoshi Shindo<sup>2</sup>, Xeniya Kozina<sup>3</sup>, Jonathan M. Skelton<sup>4</sup>, Alexander V. Kolobov<sup>1</sup> and Keisuke Kobayashi<sup>5</sup>

<sup>1</sup> Nanoelectronics Research Institute, National Institute of Advanced Industrial Science

and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan

<sup>2</sup> Department of Materials Science, Graduate School of Engineering, Tohoku University,

6-6-11, Aoba-yama, Aoba-ku, Sendai 980-8579, Japan

<sup>3</sup> Helmholtz - Zentrum Berlin für Materialien und Energie GmbH, 15 Albert - Einstein -

Straße, Berlin 12489, Germany

- <sup>4</sup> Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
- <sup>5</sup> SPring-8/JASRI, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan

\* yuta-saito@aist.go.jp, \*\* ysutou@material.tohoku.ac.jp

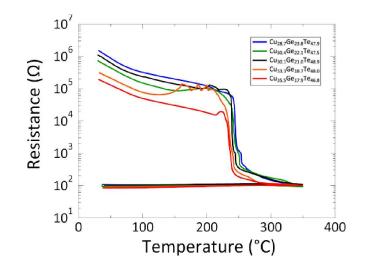



Figure S1. Temperature dependence of the electrical resistance of Cu-Ge-Te films measured by the two-point probe method.

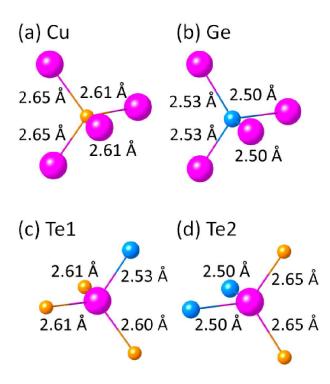



Figure S2. The four types of tetrahedral bonding in crystalline Cu<sub>2</sub>GeTe<sub>3</sub>, with bond lengths as marked (Cu - yellow, Ge - blue, Te - pink).

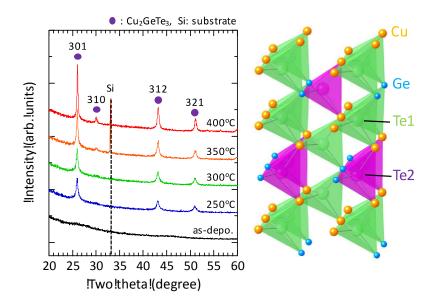



Figure S3. XRD patterns of the  $Cu_2GeTe_3$  after annealing at different temperatures (left panel). All peaks were assigned to  $Cu_2GeTe_3$  phase without any unknown peaks except for the Si substrate peak. The crystal structure of  $Cu_2GeTe_3$  in the (polyhedron) tetrahedron representation (right panel).

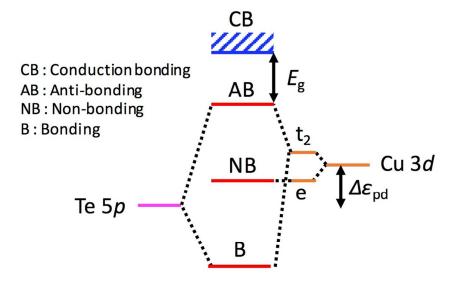



Figure S4. Schematic plot of *p*-*d* interaction [52]. In Figure 4, (A), (B), and (C) are assigned to AB, NB, B states in this Figure.