Supporting Information

Magnetically Aligned Co-C/MWCNTs Composite Derived from

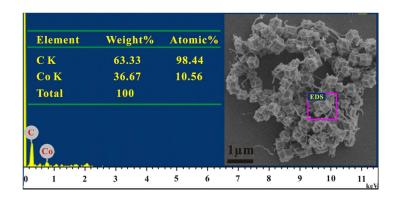
MWCNTs Interconnected Zeolitic Imidazolate Frameworks for

Lightweight and Highly Efficient Electromagnetic Wave

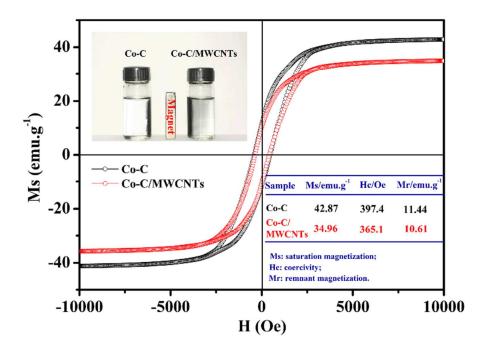
Absorber

Yichao Yin, [†] Xiaofang Liu, ^{*,†} Xiaojun Wei, [‡] Ya Li, [†] Xiaoyu Nie, [†] Ronghai Yu, ^{*, †} Jianglan Shui[†]

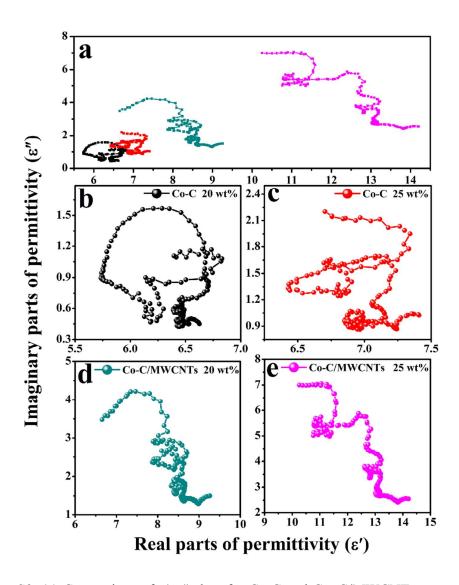
[†] School of Materials Science and Engineering, Beihang University, Beijing 100191, China

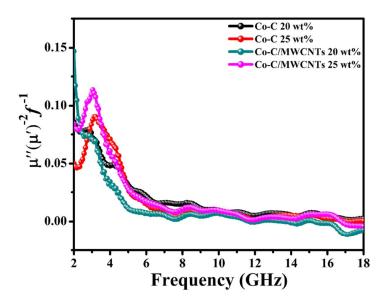

[‡]Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

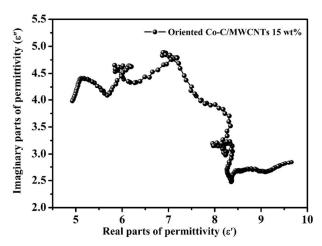
Corresponding Authors


*E-mail: <u>liuxf05@buaa.edu.cn</u>.

*E-mail: rhyu@buaa.edu.cn


S-1


Figure S1. SEM image and EDS result of Co–C/MWCNTs composite.


Figure S2. Room-temperature magnetization curves of Co-C and Co-C/MWCNTs composites. Inset: photograph of magnetic separation for Co-C and Co-C/MWCNTs composites.

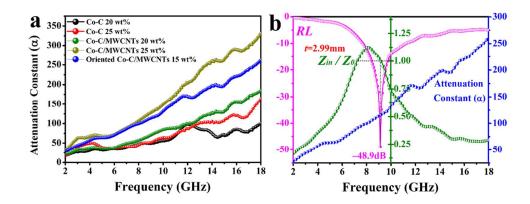

Figure S3. (a) Comparison of ε' – ε'' plots for Co-C and Co–C/MWCNTs composites. Enlarged ε' – ε'' plots for (b) Co-C (20 wt%), (c) Co-C (25 wt%), (d) Co–C/MWCNTs (20 wt%), and (e) Co–C/MWCNTs (25 wt%).

Figure S4. Frequency dependences of $\mu''(\mu')^{-2}f^{-1}$ values for Co-C and Co-C/MWCNTs composites in 2–18 GHz.

Figure S5. ε' – ε'' plot of oriented Co-C/MWCNTs composite (15 wt%).

Figure S6. Frequency dependences of (a) attenuation constant for all samples and (b) optimum RL value, relative input impedance ($|Z_{in}/Z_0|$), attenuation constant of oriented Co-C/MWCNTs composites (15 wt%).

Table S1. Comparison of EMW absorbing properties of various MOF-derived composite absorbers.

Sample	Filler loading (wt%)	Matching thickness (mm)	Matching frequency (GHz)	Minimum RL value (dB)	Ref.
Fe-Co/ ^a NPC	50	1.2	~15	-21.7	[67]
Fe/C	40	2.0	15.0	-22.6	[26]
ZnO/NPC@Co/NPC	50	1.9	~16	-28.8	[68]
NiO/Ni/GN@Air@NiO/Ni/GN	50	1.7	17.2	-34.5	[74]
CoFe@C	50	2.5	9.92	-43.5	[71]
Co/C- ^b 500	40	2.5	5.8	-35.3	[25]
^c CNCo	50	1.65	3.36	-51	[73]
C-ZIF-67@ TiO_2	50	1.65	13.8	-51.7	[13]
CuO@NPC	50	1.55	14.9	-57.5	[69]
Co/NPC@Void@ ^d CI	40	2.2	13.68	-49.2	[27]
Co/C- ^e 800	30	2.55	9.60	-39.6	[31]
fMOF (Fe)/PANI	30	2.0	11.6	-41.4	[70]
Co ₃ O ₄ /Co/RGO	20	2.0	13.12	-52.8	[72]
CNTs/Co	20	1.81	15.04	-60.4	[53]
Co-C/MWCNTs	15	2.99	9.12	-48.9	This work

^aNPC: nanoporous carbon composite, ^b500: calcined at 500 °C, ^cCN: carbon-nanopolyhedron, ^dCI: carbonyl iron, ^e800: calcined at 800 °C, ^fMOF (Fe): Fe-based MOF.