Supporting Information for

Characteristic Features of CO_{2} and $\mathbf{C O}$ Adsorptions to Paddle-Wheel-type Porous Coordination Polymer

 Shigeyoshi Sakaki** ${ }^{*}$
${ }^{\dagger}$ Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Ushinomiya cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
${ }^{\ddagger}$ Fukui Institute for Fundamental Chemistry, Kyoto University, Nishi-hiraki cho, Takano, Sakyo-ku, Kyoto 606-8103, Japan
${ }^{\S}$ Department of Chemistry and Biotechnology, School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
"Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
*E-mail: kitagawa@icems.kyoto-u.ac.jp; sakaki.shigeyoshi.47e@st.kyoto-u.ac.jp

Table of Contents

List of complete authors for ref. 54, 62, and 64 S3
Evaluation of binding energy by the ONIOM procedure S4-S5
Table S1. Geometrical parameters of Mm-R with and without gas molecules S6
Table S2. NBO charges for Mm-R S6
Table S3. Geometrical parameters of Dm-R with and without gas molecules S7
Discussion of the change in geometrical parameters by adsorption of gas molecule....S8-S9
Scheme S1. Schematic representation of Dm-Me and real Cu (aip)-PCP. S9
Table S4. NBO charges for $\mathrm{Dm}-\mathrm{R}$ S10
Table S5. LMO-EDA results of gas molecule with SM1 and SM2 in Dm-Me S10
Table S6. Substituent effect on CO binding energies at the β site of Dm-R S11
Figure S1. Structures of $\mathrm{Cu}($ aip $)$-PCP with and without CO. S12
Figure S2. Small models SM1 and SM2 used in ONIOM calculations S12
Figure S3. PESs of CO interactions with SM1 and SM2. S13
Figure S4. PESs of CO_{2} interactions with SM1 and SM2 S13
References S14

List of complete authors for ref. 54, 62, and 64

(54) Chung, L. W.; Sameera, W. M. C.; Ramozzi, R.; Page, A. J.; Hatanaka, M.; Petrova, G. P.; Harris, T. V.; Li, X.; Ke, Z.; Liu, F.; Li, H.-B.; Ding, L.; Morokuma, K. The ONIOM Method and Its Applications. Chem. Rev. 2015, 115, 5678-5796.
(62) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; , Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision D.01; Gaussian, Inc: Wallingford, CT, 2013.
(64) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupius, M.; Montgomery Jr, J. A. General Atomic and Molecular Electronic Structure System. J. Comput. Chem. 1993, 14, 1347-1363.

Evaluation of binding energy by the ONIOM procedure

The binding energy of L with $M m-R$ is represented by eq. 1 in the ONIOM scheme;

$$
\begin{equation*}
\mathrm{BE}^{\mathrm{Mm}}=\mathrm{BE}_{\mathrm{Mm}-\mathrm{R}}^{\mathrm{Low}}+\mathrm{BE}_{\mathrm{SM} 1}^{\mathrm{High}}-\mathrm{BE}_{\mathrm{SM} 1}^{\mathrm{Low}} \tag{1}
\end{equation*}
$$

where the superscripts "Low" and "High" represent the low-level and high-level calculations, respectively. Similarly, the binding energy of L at the α site with Dm-R can be calculated by eq. 2 ;

$$
\begin{equation*}
\mathrm{BE}^{\alpha}=\mathrm{BE}_{\mathrm{D} m-\mathrm{R}}^{\alpha \mathrm{L} w}+\mathrm{BE}_{\mathrm{SM} 1}^{a \mathrm{High}}-\mathrm{BE}_{\mathrm{SM} 1}^{a \mathrm{Low}} \tag{2}
\end{equation*}
$$

In evaluating the binding energy BE^{β} at the β site, we need to consider two small models SM1 and SM2 at the high level (eq. 3), because the L interacts with the Cu center and two phenyl moieties of the neighbor paddle-wheel unit;

$$
\begin{equation*}
\mathrm{BE}^{\beta}=\mathrm{BE}_{\mathrm{Dm}-\mathrm{R}}^{\beta L o w}+\left(\mathrm{BE}_{\mathrm{SM1}}^{\beta \text { High }}-\mathrm{BE}_{\mathrm{SM} 1}^{\text {BLow }}\right)+\left(\mathrm{BE}_{\mathrm{SM} 2}^{\beta \text { High }}-\mathrm{BE}_{\mathrm{SM} 2}^{\text {BLow }}\right) \tag{3}
\end{equation*}
$$

The $\mathrm{BE}_{\mathrm{Mm}-\mathrm{R}}^{\mathrm{Low}}, \mathrm{BE}_{\mathrm{Dm}-\mathrm{R}}^{\alpha \mathrm{Low}}$, and $\mathrm{BE}_{\mathrm{Dm}-\mathrm{R}}^{\text {BLow }}$ are calculated with eqs. 4-6.

$$
\begin{align*}
& \mathrm{BE}_{\mathrm{Mm}-\mathrm{R}}^{\mathrm{Low}}=E_{\mathrm{Mm}-\mathrm{R}-2 \mathrm{~L}}^{\mathrm{Low}} / 2-E_{\mathrm{Mm}-\mathrm{R}}^{\mathrm{Low}} / 2-E_{\mathrm{L}}^{\mathrm{Low}} \tag{4}\\
& \mathrm{BE}_{\mathrm{D} m-\mathrm{R}}^{\mathrm{LLow}}=E_{\mathrm{D} m-\mathrm{R}-4 \mathrm{~L}}^{\mathrm{Low}} / 2-E_{\mathrm{D}-\mathrm{R}-2 \mathrm{~L}^{\beta}}^{\mathrm{Low}} / 2-E_{\mathrm{L}}^{\mathrm{Low}} \tag{5}\\
& \mathrm{BE}_{\mathrm{Dm}-\mathrm{R}}^{\mathrm{Low}}=E_{\mathrm{Dm}-\mathrm{R}-4 \mathrm{~L}}^{\mathrm{Low}} / 2-E_{\mathrm{Dm}-\mathrm{R}-2 \mathrm{~L}^{\mathrm{L}}}^{\mathrm{Lo}} \tag{6}
\end{align*} 2-E_{\mathrm{L}}^{\mathrm{Low}}
$$

where $E_{\mathrm{Mm}-\mathrm{R}-2 \mathrm{~L}}^{\mathrm{Low}}$ and $E_{\mathrm{Mm}-\mathrm{R}}^{\mathrm{Low}}$ are the total energies of monomer models with and without L, and $E_{\mathrm{L}}^{\mathrm{Low}}$ is the total energy of one gas molecule, $E_{\mathrm{D} m-\mathrm{R}-4 \mathrm{~L}}^{\mathrm{Low}}$ is total energy of dimer model with 4 gas molecules, and $E_{\mathrm{Dm}-\mathrm{R}-2 \mathrm{~L}^{\alpha}}^{\mathrm{Low}}$ and $E_{\mathrm{Dm}-\mathrm{R}-2 \mathrm{~L}^{\mathrm{B}}}^{\mathrm{Low}}$ are total energies of dimer model with 2 gas molecules at the α and β positions, respectively.
The $\mathrm{BE}_{\mathrm{SM1}}^{\text {High }}, \mathrm{BE}_{\mathrm{SM1}}^{\alpha \text { High }}, \mathrm{BE}_{\mathrm{SM1}}^{\text {PHigh }}$ and $\mathrm{BE}_{\mathrm{SM} 2}^{\text {BHigh }}$ are calculated with eqs. 7-10.

$$
\begin{align*}
& \mathrm{BE}_{\mathrm{SM1}}^{\text {High }}=E_{\mathrm{SM1}-2 \mathrm{~L}}^{\text {High }} / 2-E_{\mathrm{SM1}}^{\text {High }} / 2-E_{\mathrm{L}}^{\text {High }} \tag{7}\\
& \mathrm{BE}_{\mathrm{SM} 1}^{\text {High }}=E_{\mathrm{SM1} 1-2 \mathrm{~L}}^{\text {High }}-E_{\mathrm{SM1} 1-\mathrm{L}^{\mathrm{B}}}^{\text {High }}-E_{\mathrm{L}}^{\text {High }} \tag{8}\\
& \mathrm{BE}_{\mathrm{SM} 1}^{\text {HHigh }}=E_{\mathrm{SM1} 1-2 \mathrm{~L}}^{\text {High }}-E_{\mathrm{SM1-L}^{a}}^{\text {High }}-E_{\mathrm{L}}^{\text {High }} \tag{9}\\
& \mathrm{BE}_{\mathrm{SM} 2}^{\text {HHigh }}=E_{\mathrm{SM} 2 \mathrm{~L}}^{\text {High }}-E_{\mathrm{SM} 2}^{\text {High }}-E_{\mathrm{SM} 2}^{\text {High }} \tag{10}
\end{align*}
$$

where $E_{\mathrm{SM1-2L}}^{\text {High }}, E_{\mathrm{SM1} 1}^{\text {High }}, E_{\mathrm{SM2-L}}^{\text {High }}, E_{\mathrm{SM} 2}^{\text {High }}$ and $E_{\mathrm{L}}^{\text {High }}$ are total energies of SM1 with two L, SM1, SM2 with one L, SM2 and L, and $E_{\text {SM1-L }}^{\text {High }}$ and $E_{\text {SM1-1 }}^{\mathrm{High}}$ are total energies of SM1 with one gas
molecule at the α and β positions, respectively. The $\mathrm{BE}_{\mathrm{SM1}}^{\mathrm{Low}}, \mathrm{BE}_{\mathrm{SM} 1}^{\alpha \mathrm{Low}}, \mathrm{BE}_{\mathrm{SM1}}^{\beta L \operatorname{low}}$ and $\mathrm{BE}_{\mathrm{SM} 2}^{\beta L o w}$ are calculated in similar ways to eqs. 7-10 at the low level.

Table S1. Geometrical parameters of monomer model Mm-R with adsorbed gas molecules.

	Mm-H					$\mathrm{Mm}-\mathrm{Me}$				
	Non	CO	N_{2}	NO	CO_{2}	None	CO	N_{2}	NO	CO_{2}
$\mathrm{Cu}-\mathrm{Cu} / \AA{ }^{\text {a }}$	2.507	2.586	2.547	2.541	2.540	2.505	2.584	2.543	2.538	2.538
$\mathrm{Cu}-\mathrm{O} / \AA$	1.965	1.981	1.973	1.973	1.973	1.963	1.978	1.972	1.972	1.973
$\mathrm{Cu}-\mathrm{A}^{1} / \AA^{a}$	-	2.409	2.468	2.473	2.420	-	2.410	2.474	2.477	2.428
$\mathrm{Cu}-\mathrm{Cu}-\mathrm{X}^{1 /}{ }^{\circ}$	-	180	180	175	167	-	180	180	175	167
$\mathrm{Cu}-\mathrm{X}^{1}-\mathrm{X}^{2 / 0}$	-	180	180	122	117	-	180	180	122	117
$\mathrm{O}^{\mathrm{C}}-\mathrm{Cu}-\mathrm{X}^{1}-\mathrm{X}^{2} /{ }^{\circ}{ }^{b}$	-	-	-	0	3		-	-	0	3

${ }^{a} \mathrm{X}^{1}$ and X^{2} represent atoms in gas molecules; CO: $\mathrm{X}^{1}=\mathrm{C}, \mathrm{X}^{2}=\mathrm{O} ; \mathrm{N}_{2}: \mathrm{X}^{1}=\mathrm{N}, \mathrm{X}^{2}=\mathrm{N} ; \mathrm{NO}:$ $\mathrm{X}^{1}=\mathrm{N}, \mathrm{X}^{2}=\mathrm{O} ; \mathrm{CO}_{2}: \mathrm{X}^{1}=\mathrm{O}, \mathrm{X}^{2}=\mathrm{C}$.
${ }^{b} \mathrm{O}^{\mathrm{C}}$ represents one O atom of carboxylate groups in a paddle-wheel unit.

Table S2. NBO charges (e) for atoms and atomic groups in $\mathrm{Mm}-\mathrm{R}(\mathrm{R}=\mathrm{H}$, and Me$)$.

	$\mathrm{Mm}-\mathrm{H}$				$\mathrm{Mm}-\mathrm{Me}$			
	CO	N_{2}	NO	CO_{2}	CO	N_{2}	NO	CO_{2}
Cu	0.926	1.018	1.001	1.061	0.925	1.017	1.002	1.062
O	-0.712	-0.714	-0.713	-0.720	-0.712	-0.714	-0.713	-0.718
$\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{R}$	0.008	0.011	0.011	0.013	0.008	0.011	0.011	0.013
$\mathrm{O}_{2} \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{R}$	-0.552	-0.554	-0.551	-0.557	-0.551	-0.553	-0.551	-0.557
L	0.178	0.089	0.101	0.053	0.177	0.088	0.101	0.053

Table S3. Geometrical parameters of dimer model Dm-R with adsorbed gas molecules.

(A)	Dm-H					Dm-Me				
	Non	CO	N_{2}	NO	CO_{2}	Non	CO	N_{2}	NO	CO_{2}
	4L									
$\mathrm{Cu}^{\alpha}-\mathrm{Cu}^{\beta} / \AA$	2.548	$\begin{gathered} 2.626 \\ (2.580)^{d} \end{gathered}$	2.587	2.592	2.609	2.528	$\begin{gathered} 2.607 \\ (2.580)^{d} \end{gathered}$	2.566	2.571	2.587
$\mathrm{Cu}^{\beta}-\mathrm{Cu}^{\beta} / \AA$	4.819	$\begin{gathered} 4.628 \\ (4.642) \end{gathered}$	4.744	4.818	4.706	4.952	$\begin{gathered} 4.807 \\ (4.642) \end{gathered}$	4.895	4.939	4.836
$<\mathrm{Cu}-\mathrm{O}>/ \AA^{\text {a }}{ }^{\text {a }}$	1.964	$\begin{gathered} 1.982 \\ (1.910) \end{gathered}$	1.974	1.974	1.977	1.964	$\begin{gathered} 1.981 \\ (1.910) \end{gathered}$	1.973	1.975	1.976
$\mathrm{Cu}^{\alpha}-\mathrm{X}^{1 \alpha} / \AA^{b}$	-	2.394	2.443	2.454	2.453	-	2.409	2.452	2.471	2.471
$\mathrm{Cu}^{\beta}-\mathrm{X}^{1 \beta} / \AA$	-	2.388	2.498	2.508	2.398	-	2.382	2.453	2.468	2.382
$\mathrm{Cu}^{\beta}-\mathrm{Cu}^{\alpha}-\mathrm{X}^{1 \alpha} /{ }^{\text {a }}$	-	179	179	175	158	-	180	180	174	160
$\mathrm{Cu}^{\alpha}-\mathrm{X} 1^{\alpha}-\mathrm{X}^{2 \alpha} /{ }^{\circ}$	-	180	178	120	109	-	179	178	122	109
$\mathrm{Cu}^{\alpha}-\mathrm{Cu}^{\beta}-\mathrm{X}^{1 \beta} /{ }^{\circ}$	-	169	167	171	169	-	175	175	175	171
$\mathrm{Cu}^{\beta}-\mathrm{X}^{1 \beta}-\mathrm{X}^{2 \beta / 0}$	-	170	165	120	119	-	173	170	122	118
$\mathrm{O}^{\mathrm{C}}-_{-} \mathrm{Cu}^{\alpha}-\mathrm{X}^{1 \alpha}-\mathrm{X}^{2 \alpha / o}{ }^{\text {c }}$	-	45	45	6	40	-	45	45	1	38
$\mathrm{O}^{C \beta}-\mathrm{Cu}^{\beta}-\mathrm{X}^{1 \beta}-\mathrm{X}^{2 \beta / O}$	-	45	45	42	13	-	45	45	42	11
(B)	$2 \mathrm{~L}^{\alpha}$									
$\mathrm{Cu}^{\alpha}-\mathrm{Cu}^{\beta} / \AA$	2.548	2.587	2.567	2.567	2.580	2.528	2.568	2.544	2.540	2.585
$\mathrm{Cu}^{\beta}-\mathrm{Cu}^{\beta} / \AA$	4.819	4.652	4.680	4.734	4.653	4.952	4.775	4.877	4.899	4.784
$<\mathrm{Cu}-\mathrm{O}>/ \AA$	1.964	1.974	1.970	1.971	1.972	1.964	1.973	1.969	1.970	1.973
$\mathrm{Cu}^{\alpha}-\mathrm{X}^{1 \alpha /} \AA^{\circ}$	-	2.374	2.436	2.442	2.410	-	2.387	2.445	2.452	2.424
$\mathrm{Cu}^{\beta}-\mathrm{Cu}^{\alpha}-\mathrm{X}^{1 \alpha} /{ }^{\circ}$	-	179	179	174	160	-	179	179	175	159
$\mathrm{Cu}^{\alpha}-\mathrm{X}^{1 \alpha}-\mathrm{X}^{2 \alpha}{ }^{\circ}$	-	180	179	123	113	-	180	178	122	111
$\mathrm{O}^{\mathrm{C} \alpha}-\mathrm{Cu}^{\alpha}-\mathrm{X}^{1 \alpha}-\mathrm{X}^{2 \alpha}{ }^{\circ}$	-	45	45	5	10	-	45	45	1	37
(C)	$2 L^{\beta}$									
$\mathrm{Cu}^{\alpha}-\mathrm{Cu}^{\beta} / \AA$	2.548	2.594	2.570	2.581	2.589	2.528	2.576	2.550	2.562	2.568
$\mathrm{Cu}^{\beta}-\mathrm{Cu}^{\beta} / \AA$	4.819	4.837	4.862	4.862	4.790	4.952	4.937	4.973	4.955	4.925
$<\mathrm{Cu}-\mathrm{O}>/ \AA$	1.964	1.974	1.963	1.718	1.971	1.964	1.974	1.969	1.969	1.971
$\mathrm{Cu}^{\beta}-\mathrm{X}^{1 \beta} / \AA$	-	2.378	2.473	2.491	2.379	-	2.370	2.445	2.464	2.370
$\mathrm{Cu}^{\alpha}-\mathrm{Cu}^{\beta}-\mathrm{X}^{1 \beta / \sigma}$	-	171	169	172	170	-	176	175	176	172
$C u^{\beta}-A^{1 \beta}-X^{2 \beta / 0}$	-	171	167	121	120	-	174	172	122	119
$\mathrm{O}^{C \beta}-\mathrm{Cu}^{\beta}-\mathrm{X}^{1 \beta}-\mathrm{X}^{2 \beta / O}$	-	45	45	45	13	-	45	45	45	9

${ }^{a}$ Average value of eight $\mathrm{Cu}-\mathrm{O}$ bonds in one Cu paddle-wheel unit.
${ }^{b} \mathrm{X}^{1}$ and X^{2} represent atoms in gas molecules; $\mathrm{CO}: \mathrm{X}^{1}=\mathrm{C}, \mathrm{X}^{2}=\mathrm{O} ; \mathrm{N}_{2}: \mathrm{X}^{1}=\mathrm{N}, \mathrm{X}^{2}=\mathrm{N} ; \mathrm{NO}:$
$\mathrm{X}^{1}=\mathrm{N}, \mathrm{X}^{2}=\mathrm{O} ; \mathrm{CO}_{2}: \mathrm{X}^{1}=\mathrm{O}, \mathrm{X}^{2}=\mathrm{C}$.
${ }^{c} \mathrm{O}^{\mathrm{C}}$ represents one O atom of carboxylate groups in a paddle-wheel unit.
${ }^{d}$ In parentheses are experimental results of CO -adsorbed Cu (aip)-PCP. ${ }^{1}$

Discussion of the change in geometrical parameters by adsorption of gas molecule:

The $\mathrm{Cu}^{\alpha}-\mathrm{Cu}^{\beta}, \mathrm{Cu}^{\beta}-\mathrm{Cu}^{\beta}$, the averaged $\mathrm{Cu}-\mathrm{O}$ distances of $\mathrm{Dm}-\mathrm{H}-\mathrm{CO}$ agree with the experimental values, as shown in Table S 3 (column A); the averaged $\mathrm{Cu}-\mathrm{O}$ (carboxylate) distance is moderately longer than the experimental value but the difference is not large. However, the calculated $\mathrm{Cu}^{\beta}-\mathrm{Cu}^{\beta}$ distance is somewhat longer than the experimental value in the case of $\mathrm{Dm}-\mathrm{Me}-\mathrm{CO}$, while the $\mathrm{Cu}^{\alpha}-\mathrm{Cu}^{\beta}$ distance agrees with the experimental value. This longer $\mathrm{Cu}^{\beta}-\mathrm{Cu}^{\beta}$ distance would arise from the steric repulsion of the methyl group with the carboxylate of the next $\left[\mathrm{Cu}_{2}\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Me}\right)_{4}\right]$ unit (denoted B in Scheme $\mathrm{S} 1(\mathrm{~A})$); the steric repulsion enlarges the intermolecular distance between two $\left[\mathrm{Cu}_{2}\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Me}\right)_{4}\right]$ units (\mathbf{A} and \mathbf{B}). In the real infinite system, however, such increase in the intermolecular distance would not occur, as shown in Scheme $\mathrm{S} 1(\mathrm{~B})$, because one more $\left[\mathrm{Cu}_{2}\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}\right.\right.$ $\left.\mathrm{Me})_{4}\right]$ unit (denoted \mathbf{C} in Scheme $\mathrm{S} 1(\mathrm{~B})$) pushes back the central $\left[\mathrm{Cu}_{2}\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Me}\right)_{4}\right]$ unit (\mathbf{A} in Scheme $\operatorname{S1}(B)$). These results suggest that the optimized $\mathrm{Cu}^{\alpha}-\mathrm{Cu}^{\beta}, \mathrm{Cu}^{\beta}-\mathrm{Cu}^{\beta}$, and the average $\mathrm{Cu}-\mathrm{O}$ distances agree with the experimental values in the cluster model, in which the steric repulsion is not large. We wish to focus on the geometry changes in Dm-H hereafter because the steric repulsion is small between the two dimer units.

It is interesting to investigate how the $\mathrm{Cu}^{\alpha}-\mathrm{Cu}^{\beta}, \mathrm{Cu}^{\beta}-\mathrm{Cu}^{\beta}$, and the average $\mathrm{Cu}-\mathrm{O}$ distances change by the adsorption of gas molecule. When all Cu^{α} and Cu^{β} sites interact with gas molecule (Table S3 column A), the $\mathrm{Cu}^{\alpha}-\mathrm{Cu}^{\beta}$ distance becomes longer, the $\mathrm{Cu}^{\beta}-\mathrm{Cu}^{\beta}$ becomes shorter, and the averaged $\mathrm{Cu}-\mathrm{O}$ distance becomes moderately longer except for the NO adsorption system in which the geometrical changes are small, as shown in Table S3(A). The elongation of the $\mathrm{Cu}^{\alpha}-\mathrm{Cu}^{\beta}$ distance occurs by the interaction of gas molecule because the gas molecule interacts with the Cu 4 p orbital to decrease the $4 \mathrm{p}-4 \mathrm{p}$ bonding interaction between the Cu^{α} and Cu^{β} atoms and also raises the $\mathrm{Cu} 3 \mathrm{~d}_{\mathrm{z2}}$ orbital energy to enhance the $\mathrm{d}_{\mathrm{z2}}-\mathrm{d}_{\mathrm{z2}}$ repulsion between the Cu^{α} and Cu^{β} atoms. As a result, the $\mathrm{Cu}^{\alpha}-\mathrm{Cu}^{\beta}$ elongation occurs by the gas adsorption, which further decreases the $\mathrm{Cu}^{\beta}-\mathrm{Cu}^{\beta}$ distance.

When gas molecule interacts only with the Cu^{α} site (Table S 3 column B), the $\mathrm{Cu}^{\alpha}-\mathrm{Cu}^{\beta}$ distance increases to a lesser extent than that induced by interactions of four gas molecules with all Cu^{α} and Cu^{β} sites. However, the change in the $\mathrm{Cu}^{\beta}-\mathrm{Cu}^{\beta}$ distance is not simple; it decreases to a less extent than that by interaction of four molecules with all Cu sites in the CO adsorption and it more decreases in the $\mathrm{N}_{2}, \mathrm{NO}$, and CO_{2} adsorption systems. When gas molecule interacts only with the Cu^{β} site (Table S3 column C), the $\mathrm{Cu}^{\alpha}-\mathrm{Cu}^{\beta}$ distance increases to a lesser extent than that induced by interaction of four molecules with all Cu^{α} and Cu^{β} sites. The $\mathrm{Cu}^{\beta}-\mathrm{Cu}^{\beta}$ distance moderately increases unexpectedly because gas molecule between two Cu^{β} atoms induces the steric repulsion with another $\left[\mathrm{Cu}_{2}\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}-\right.\right.$ $\left.\mathrm{Me})_{4}\right]$ unit to increase the intermolecular distance between two $\left[\mathrm{Cu}_{2}\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Me}\right)_{4}\right]$ units.

It is likely concluded that the interaction of gas molecule with both Cu^{α} and Cu^{β} atoms are important for discussing the geometry changes by gas interaction.
(A) Dimer Model

Me groups induce the steric repulsion between \mathbf{A} and \mathbf{B} units.

The anti-clockwise movement is induced.

The $\mathrm{Cu}^{\beta}-\mathrm{Cu}^{\beta}$ distance increases.

(B) Real Cu (aip)-PCP

The anti-clockwise movement is suppressed by \mathbf{C} unit.

The $\mathrm{Cu}^{\beta}-\mathrm{Cu}^{\beta}$ distance less increases.

Scheme S1. Schematic representation of (A) Dm-Me and (B) real Cu(aip)-PCP.

Table S4. NBO charges (e) for $\mathrm{Dm}-\mathrm{R}(\mathrm{R}=\mathrm{H}$, and Me$)$.

	$\mathrm{Dm}-\mathrm{H}$				$\mathrm{Dm}-\mathrm{Me}$			
	CO	N_{2}	NO	CO_{2}	CO	N_{2}	NO	CO_{2}
Cu^{α}	0.934	1.022	1.022	1.090	0.929	1.014	1.003	1.083
Cu^{β}	0.987	1.085	1.090	1.141	0.986	1.080	1.093	1.149
$\mathrm{O}^{\alpha a}$	-0.711	-0.713	-0.712	-0.723	-0.709	-0.711	-0.713	-0.723
$\mathrm{O}^{\beta a}$	-0.732	-0.740	-0.743	-0.743	-0.736	-0.741	-0.746	-0.747
$\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{R}^{b}$	0.016	0.019	0.023	0.015	0.019	0.021	0.016	0.017
$\mathrm{O}_{2} \mathrm{C}^{-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{R}}$	-0.570	-0.576	-0.574	-0.584	-0.570	-0.574	-0.577	-0.585
$\mathrm{~L}^{\alpha}$	0.182	0.094	0.080	0.049	0.179	0.094	0.103	0.048
$\mathrm{~L}^{\beta}$	0.179	0.103	0.104	0.058	0.185	0.110	0.111	0.058

${ }^{a} \mathrm{O}^{\alpha}$ and O^{β} represent the average NBO charges of four oxygen atoms coordinated to Cu^{α} and Cu^{β}, respectively.
${ }^{b}$ Phenyl moieties $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{R}, \mathrm{R}=\mathrm{H}\right.$ and Me$)$ in Dm-R neighboring to the adsorbed L^{β} molecules.

Table S5. Various interaction terms ($\mathrm{kcal} \mathrm{mol}^{-1}$) of gas molecule with the SM1 and SM2. ${ }^{a}$

	SM1						SM2					
L	$\overline{\mathrm{BE}_{\mathrm{SM} 1}^{\mathrm{HF}}}$	ES	EXR	CT+Pol+Mix	DIS	$\mathrm{BE}_{\text {SM1 }}^{\text {MP4(SDQ }}$	$\mathrm{BE}_{\text {SM2 }}^{\mathrm{HF}}$	ES	EXR	CT+Pol+Mix	DIS	$\mathrm{BE}_{\text {SM2 }}^{\text {MP4(SDQ }}$
$\mathrm{CO}^{\text {N }}$	-3.43	-15.01	18.49	-6.82	-3.61	-7.04	4.97	-4.55	10.50	-0.98	-4.22	0.75
$\mathrm{CO}^{\text {B }}$	-3.27	-15.07	18.63	-6.84	-3.64	-6.91	2.84	-2.41	5.85	-0.60	-3.53	-0.69
$\mathrm{N}_{2}{ }^{\text {N }}$	-1.17	-6.48	8.61	-3.30	-2.63	-3.80	5.98	-3.16	9.84	-0.70	-4.79	1.19
$\mathrm{N}_{2}{ }^{\text {B }}$	-1.01	-6.44	8.75	-3.32	-2.67	-3.68	2.95	-1.64	4.91	-0.32	-3.46	-0.51
$\mathrm{NO}^{\text {N }}$	-0.05	-4.54	7.90	-3.43	-4.00	-4.05	6.21	-3.29	10.70	-1.20	-4.28	1.93
NO^{β}	-0.02	-4.98	9.16	-4.20	-4.00	-3.98	2.12	-1.82	5.64	-1.70	-3.07	-0.95
$\mathrm{CO}_{2}{ }^{\text {N }}$	-3.58	-12.27	13.06	-4.37	-1.74	-5.32	2.06	-3.43	6.46	-0.97	-3.34	-1.28
$\mathrm{CO}_{2}{ }^{\beta}$	-3.90	-11.37	11.64	-4.16	-1.29	-5.19	1.60	-3.06	5.45	-0.80	-3.26	-1.66

${ }^{a} \mathrm{R}=\mathrm{Me}$. The binding energy was analyzed at both the normal position $\left(\mathrm{L}^{\mathrm{N}}\right)$ and deviating position (L^{β}).

Table S6. CO binding energies ($\mathrm{kcal} \mathrm{mol}^{-1}$) at the β site of two Cu paddle-wheel units $\left[\mathrm{Cu}_{2}\left(\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{4}-\mathrm{R}\right)_{4}\right]_{2}\left(\mathrm{H}, \mathrm{CH}_{3}, \mathrm{CF}_{3}, \mathrm{OCH}_{3}\right.$, and $\left.{ }^{\mathrm{t}} \mathrm{Bu}\right)$.

R^{a}	DIS^{b}	$\mathrm{BE}_{\mathrm{SM} 2}^{\mathrm{MP4(SDQ}) c}$	$\mathrm{BE}^{\beta d}$
CF_{3}	-3.91	0.10	-7.19
CH_{3}	-3.97	-0.20	-7.28
OCH_{3}	-4.25	-0.45	-7.26
${ }^{\mathrm{t}} \mathrm{Bu}$	-4.40	-0.54	-7.47

${ }^{a}$ Note that the comparison with $\mathrm{R}=\mathrm{H}$ is not presented here because the introduction of these substituents induces the orientation change of phenyl moiety of the linker and such geometry change influences the binding energy; in other words, simple comparison with Dm-H is difficult.
${ }^{b, c}$ MP4(SDQ)-calculated dispersion interaction (DIS) and binding energy ($\mathrm{BE}_{\mathrm{MP4} 4(\mathrm{SDQ})}^{\mathrm{SM2}}$) between CO and SM2. In these calculations, SM2 was constructed by replacing one meta-H in PhCOO^{-}with various R substituents, keeping the other parts and CO position to be the same as those in the optimized $\left[\mathrm{Cu}_{2}\left(\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{4}-\mathrm{H}\right)_{4}\right]_{2}$.
${ }^{d}$ The ONIOM[MP4(SDQ): ω B97XD]-calculated binding energy.

Figure S1. Another side view of structures of $\mathrm{Cu}($ aip $)-\mathrm{PCP}$ (a) without gas molecule and (b) with adsorbed CO molecules.

Figure S2. Small models (a) SM1 and (b) SM2 employed for high-level calculations in the ONIOM method.

Figure S3. ω B97XD-calculated potential energy surfaces for CO interactions with (a) SM1 and (b) SM2 models.

Figure S4. (a) ω B97XD- and (b) MP2-calculated potential energy surfaces for CO_{2} interactions with SM1 and SM2.

REFERENCES

(1) Sato, H.; Kosaka, W.; Matsuda, R.; Hori, A.; Hijikata, Y.; Belosludov, R. V.; Sakaki, S.;

Takata, M.; Kitagawa, S. Self-Accelerating CO Sorption in a Soft Nanoporous Crystal. Science 2014, 343, 167-170.

