Supporting Information

Highly-Efficient Guiding of Motile Microtubules on Non-Topographical Motor Patterns

Cordula Reuther ^{1,2,+}, Matthäus Mittasch ^{1,2,+}, Sundar R. Naganathan ^{2, •}, Stephan W. Grill ^{3,2}, Stefan Diez ^{1,2,*}

¹ B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Germany
² Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
³ BIOTEC, Technische Universität Dresden, Germany
⁴ current address: The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
⁺ equal contribution,
* correspondence to: *e-mail* stefan.diez@tu-dresden.de; *phone* +49 351 46343010

Movie_S1

Guided motility of microtubules along non-topographical kinesin-1 tracks with different curvatures. The tracks were generated on a PLL-PEG coated surface using a UV-laser-based patterning technique. The location of the tracks was inferred from a fluorescent micrograph of fluorescein-labeled casein molecules (shown in green). Real-time images of microtubules (labeled with rhodamine, shown in red) are superimposed.

Movie_S2

Microtubule motility on a periodic pattern of arc segments of kinesin-1 molecules. The pattern layout was adapted from the simulation results of Rupp and Nedelec (*Lab Chip* **2012**, 12, 4903-4910) for directed transport. The arc-pattern was generated on a PLL-PEG coated surface using a UV-laser-based patterning technique. The location of the tracks was inferred from a fluorescent micrograph of fluorescein-labeled casein molecules (shown in green). Real-time images of microtubules (labeled with rhodamine, shown in red) are superimposed.

1