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S1. Implementation of the DFT+ U Procedure

For several elements, such as Ca, Sc, and La, electronic structure calculations at the PBE-DFT
level of theory are prone to overestimating the hybridization between the 2p O orbital and the
unoccupied 3d° and 4f9 cation-localized orbitals. This results in an emphasized covalent bonding
character, thereby deteriorating the accuracy of the NMR parameter predictions.S'5* To remedy
this problem, here we employ the “DFT+U” approach,3"52 which involves an artificial shift (U)
of the 3d° (Sc) and 4% (Y) states towards higher energy to reduce the bond covalency and better
reproduce the experimentally determined NMR chemical shifts.

To locate suitable values of U for ¥°Sc and 8°Y, 7O isotropic chemicals shifts of some refer-
ence structures were exploited, whose experimental values are available and for which the PBE-
DFT/GIPAW framework provides accurate predictions: NagMoQOy, SiOy (quartz), a-AlyOs and
NaAlOs (see Figure S1). Linear regression of the data using the equation

§ = —a(od — grehy (S1)

iso iso iso

provided a slope very close to unity (o = 0.99), and Jigef = 256.4 ppm. However, the 17O chemical

shifts of ScoO3 and YAIO3 deviate significantly to the regression results. Following the procedures
discussed in refs. S1 and S2, the value of U was determined such that the predicted ai’g result
matches the regression, yielding the optimal U energy shifts of 5.0 eV (3d°) and 2.8 eV (4f°) for
Sc and Y, respectively, as illustrated in Figure S2. The results of Figure S3 reveal significantly

improved #°Sc chemical shift predictions when the DFT+ U approach was applied to ScoO3 [eq S1].
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Figure S1. Experimental 17O NMR isotropic chemical shifts plotted against their corresponding
PBE-DFT/GIPAW calculated aissg—values (black squares) for the as-indicated reference structures,
and the resulting regression line. Results for 7O sites of ScaO3 and YAIOj3 from the uncorrected
PBE-DFT/GIPAW calculations are provided as blue triangles, whereas red triangles show the

results from employing U-corrections of 5.0 eV (3d°) and 2.8 eV (4f°) for Sc and Y, respectively.
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Figure S2. Dependence of the calculated 7O aiss’g—values on the U energy shift of 3d° and 4f°
states for Sc and Y, respectively, as presented for ScaO3 (black squares) and YAlOg3 (blue triangles).
FEach point represents the result of an individual DFT+U calculation upon a stepwise U-value
adjustment. Dashed lines correspond to the case of coinciding experimental and DFT+ U /GIPAW-

derived 70 aii’oj—values, establishing our computational setup for evaluation of the 4Sc and 80Y
chemical shifts in the glass models.
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Figure S3. Experimental NMR-derived #*Sc isotropic chemical shifts and the corresponding Uisé’g—

values calculated at the PBE-DFT/GIPAW level of theory for the two inequivalent 4°Sc sites of
Sc203. Blue and black squares represent the uncorrected and U-corrected results, respectively.
The unity slope associated with the experimental NMR (&7, ) and GIPAW-derived U-corrected

5.7 ) 45Sc results validates our employed 3d° energy-shift value of 5.0 eV for Sc.
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