Supporting Information for

Scandium and Yttrium Environments in Aluminosilicate Glasses Unveiled by ⁴⁵Sc/⁸⁹Y NMR Spectroscopy and DFT Calculations: What Structural Factors Dictate the Chemical Shifts?

Aleksander Jaworski^a, Thibault Charpentier^b, Baltzar Stevensson^a, and Mattias Edén^{a,*}

^aPhysical Chemistry Division, Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden

^bNIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette cedex, France

Contents

- 1. Section S1. Implementation of the DFT+U Procedure.
- 2. Figure S1. ¹⁷O NMR References.
- **3. Figure S2.** ^{17}O NMR Shifts for Sc_2O_3 and $YAlO_3$.
- 4. Figure S3. 45 Sc NMR Shifts for Sc₂O₃ from "Direct" and *U*-Corrected Calculations.
- 5. References

^{*}Corresponding author. E-mail address: mattias.eden@mmk.su.se

S1. Implementation of the DFT+U Procedure

For several elements, such as Ca, Sc, and La, electronic structure calculations at the PBE-DFT level of theory are prone to overestimating the hybridization between the 2p O orbital and the unoccupied $3d^0$ and $4f^0$ cation-localized orbitals. This results in an emphasized covalent bonding character, thereby deteriorating the accuracy of the NMR parameter predictions. S1-S4 To remedy this problem, here we employ the "DFT+U" approach, S1,S2 which involves an artificial shift (U) of the $3d^0$ (Sc) and $4f^0$ (Y) states towards higher energy to reduce the bond covalency and better reproduce the experimentally determined NMR chemical shifts.

To locate suitable values of U for $^{45}\mathrm{Sc}$ and $^{89}\mathrm{Y}$, $^{17}\mathrm{O}$ isotropic chemicals shifts of some reference structures were exploited, whose experimental values are available and for which the PBE-DFT/GIPAW framework provides accurate predictions: Na₂MoO₄, SiO₂ (quartz), α -Al₂O₃ and NaAlO₂ (see **Figure S1**). Linear regression of the data using the equation

$$\delta_{\rm iso}^j = -\alpha(\sigma_{\rm iso}^{\rm S,j} - \sigma_{\rm iso}^{\rm S,ref}) \tag{S1}$$

provided a slope very close to unity ($\alpha=0.99$), and $\sigma_{\rm iso}^{\rm S,ref}=256.4$ ppm. However, the ¹⁷O chemical shifts of ${\rm Sc_2O_3}$ and ${\rm YAlO_3}$ deviate significantly to the regression results. Following the procedures discussed in refs. S1 and S2, the value of U was determined such that the predicted $\sigma_{\rm iso}^{\rm S,\it j}$ result matches the regression, yielding the optimal U energy shifts of 5.0 eV ($3d^0$) and 2.8 eV ($4f^0$) for Sc and Y, respectively, as illustrated in **Figure S2**. The results of **Figure S3** reveal significantly improved ⁴⁵Sc chemical shift predictions when the DFT+U approach was applied to ${\rm Sc_2O_3}$ [eq S1].

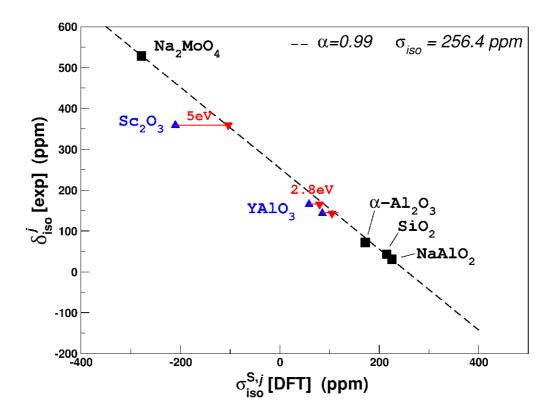


Figure S1. Experimental 17 O NMR isotropic chemical shifts plotted against their corresponding PBE-DFT/GIPAW calculated $\sigma_{\rm iso}^{{\rm S},j}$ -values (black squares) for the as-indicated reference structures, and the resulting regression line. Results for 17 O sites of Sc₂O₃ and YAlO₃ from the uncorrected PBE-DFT/GIPAW calculations are provided as blue triangles, whereas red triangles show the results from employing U-corrections of 5.0 eV (3 d^0) and 2.8 eV (4 f^0) for Sc and Y, respectively.

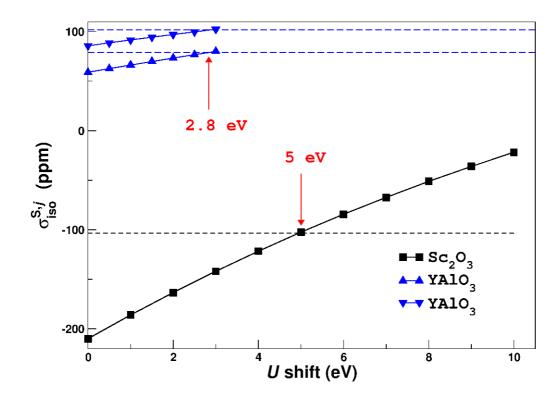


Figure S2. Dependence of the calculated 17 O $\sigma_{\rm iso}^{{\rm S},j}$ -values on the U energy shift of $3d^0$ and $4f^0$ states for Sc and Y, respectively, as presented for Sc₂O₃ (black squares) and YAlO₃ (blue triangles). Each point represents the result of an individual DFT+U calculation upon a stepwise U-value adjustment. Dashed lines correspond to the case of coinciding experimental and DFT+U/GIPAW-derived 17 O $\sigma_{\rm iso}^{{\rm S},j}$ -values, establishing our computational setup for evaluation of the 45 Sc and 89 Y chemical shifts in the glass models.

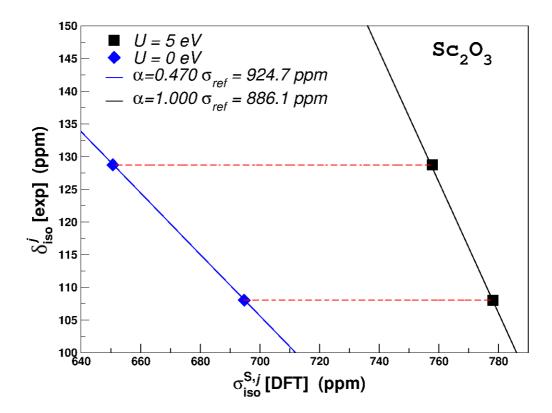


Figure S3. Experimental NMR-derived 45 Sc isotropic chemical shifts and the corresponding $\sigma_{\rm iso}^{{\rm S},j}$ values calculated at the PBE-DFT/GIPAW level of theory for the two inequivalent 45 Sc sites of Sc₂O₃. Blue and black squares represent the uncorrected and U-corrected results, respectively. The unity slope associated with the experimental NMR ($\delta_{\rm iso}^j$) and GIPAW-derived U-corrected ($\sigma_{\rm iso}^{{\rm S},j}$) 45 Sc results validates our employed $3d^0$ energy-shift value of 5.0 eV for Sc.

References

- (S1) Profeta, M.; Benoit, M.; Mauri, F.; Pickard, C. First-Principles Calculation of the ¹⁷O NMR Parameters in Ca Oxide and Ca Aluminosilicates: The Partially Covalent Nature of the Ca–O Bond, a Challenge for Density Functional Theory. J. Am. Chem. Soc. **2004**, 126, 12628–12635.
- (S2) Sadoc, A.; Body, M.; Legein, C.; Biswal, M.; Fayon, F.; Rocquefelte, X.; Boucher, F. NMR Parameters in Alkali, Alkaline Earth and Rare Earth Fluorides from First Principle Calculations. *Phys. Chem. Chem. Phys.* **2011**, *13*, 18539–18550.
- (S3) Gervais, C.; Laurencin, D.; Wong, A.; Pourpoint, F.; Labram, J.; Woodward, B.; Howes, A.; Pike, K. J.; Dupree, R.; Mauri, F.; Bonhomme, C.; Smith, M. E. New Perspectives on Calcium Environments in Inorganic Materials Containing Calcium-Oxygen Bonds: A Combined Computational-Experimental ⁴³Ca NMR Approach. *Chem. Phys. Lett.* **2008**, *464*, 42–48.
- (S4) Benoit, M.; Profeta, M.; Mauri, F.; Pickard, C.; Tuckerman, M. First-Principles Calculation of the ¹⁷O NMR Parameters of a Calcium Aluminosilicate Glass. *J. Phys. Chem. B* **2005**, *109*, 6052–6060.