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I. Permeability through a pore in the presence of a free energy barrier 

 

Figure S1. Mathematical description of the selective permeation through the PduA pore. We assume the 

initial substrate or the intermediate has constant concentrations at both the outside (C1) and the inside (C2) 

of the bacterial microcompartment (BMC). Following Fick’s law of diffusion, the total flux (J�����) is the 

sum of the contributions from the concentration gradient (�D �	
�
 ) and the external energy gradient 

(�DC ��
�
). 

 

We consider the diffusion of a small molecule through the PduA pore where Fick’s laws of diffusion are 

obeyed. In this system, 1-D diffusion of the small molecule along an axis () through the PduA pore is 

considered (Figure S1). By Fick’s 1st law, in the absence of an external force, the diffusion of the 

molecules in a concentration gradient gives rise to a net flux (�): 
�� � �����  

, where �  is the diffusion coefficient. In the presence of an external energy term, � , an additional 

transport velocity is caused by the external force: 
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�� � �1� ���  

where � is the frictional coefficient and is inversely related to � by the Einstein-Smoluchowski relation 

(� � ��� �⁄ ), such that 

�� � �����  

for � expressed in units of ���.  The transport velocity due to the energy term gives rise to a flux, 

�� � ��� � ��� ���. 
Thus, in the case of molecular diffusion on a non-uniform energy landscape, the total flux can be written 

as 

� ! "# �	 �� + �� � ����� � �� ���  

, which is one form of the Smoluchowski equation for diffusion across an energy barrier.1  

We consider the relative permeation at a steady state, where the two substrates are in the same constant 

concentrations at both sides of the PduA pore. This is a hypothetical situation where both the initial and 

the intermediate substrates are consumed at the same rate inside the MCP. At steady state, the total flux is 

constant over time (
&'()(*+& � 0) and we can consider the spatial dependence of the flux.  We are left to 

solve an ordinary differential equation of the form 

���- � ���- � .	
, where the primes indicate the derivative with respect to position. 

Let / stand in for the constant �./�, so 

�- + ��- � /.	
For the one-dimensional system considered along z, where  � 0 on the lumenal side of the bacterial 

microcompartment pore, the general solution to this first-order linear differential equation is 

�12 � /34�152 6 3�15275
8 . 

We drop the additive constant from the integrated expression under the assumption that �102 � 0.  Then, 

expressing the permeability 9 as a ratio of flux � to concentration difference ∆� from positions z=0 to 

z=a, 

9 � ���1;2 

Noting from substitutions above that the constant flux is equal to �/�, substituting the equation for C 

into the equation above and taking �1;2 to be zero, gives the following expression for permeability 

9 � �
< 3�1527"8

	
A similar method is used by Bauer and Nadler (2006) to derive flux of particles that are non-interacting 

with a channel, interacting with a channel, or blocked from passage through a channel.2  
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Thus, the permeabilities of the small molecules 1,2-propanediol and propionaldehyde through the PduA 

pore are proportional to expressions of the form 
�

< =>1?2@5*A  , where the energy profiles are different for the 

two molecules, and those energy profiles are obtained in the present work from MD-based enhanced 

sampling simulations. 

 

 

II. Lowest energy conformations of the metabolites  

 

Figure S2. Three local energy minimum conformations of 1-2-propanediol (A-C) and propionaldehyde 

(D-F). The gas phase optimized structures at the B3LYP/6-31(d) level theory are shown. The free energy 

(∆∆BC"D and ∆∆BE" =F) of each conformation relative to the lowest energy conformation is shown. The 

energy unit is in kcal/mol. The three bonds defining the dihedral angle scanned (OH-C-C-OH of PDO and 

OH-C-C-C of PPN) are highlighted in green. The unit of angle is in degrees. 

 

The lowest energy conformation of each metabolite was identified using conformational scanning 

analysis. For each metabolite, three local minimum conformations are optimized at B3LYP/6-31(d) level 

theory as shown in Fig. S2. The three local minimum conformations were identified by scanning a 

dihedral angle: θ1OH-C-C-OH2  of PDO and θ1OH-C-C-C2  of PPN. For PDO, the lowest energy 

conformation is 0.7 kcal/mol lower in energy than the second lowest conformation. Likewise, the lowest 
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energy conformation of PPN is 1.0 kcal/mol lower in energy than the second lowest energy conformation. 

The results show that the lowest energy conformation is more populated by > three times than the second 

lowest conformation, that justifies the use of force field parameters derived from the lowest energy 

conformations. The influences of the solvation environment were studied: the gas phase optimized 

structures are reoptimized at the B3LYP/6-31(d)/IEFPCM(water) level theory that accounts for the 

solvation environment.  The reoptimized structures differ from the corresponding gas phase 

conformations by less than 0.1 Å of RMSD (data not shown). The finding indicated that the lowest energy 

conformation of each metabolite is not affected by the presence the solvation environment.   

III. Normalization of the free energy profile computed from the metadynamics MD 

simulations 

 

The collective variables used for the metadynamics simulations were: the radial distance (r) from the pore 
axis and the axial coordinate (z). At a radial coordinate r,  the differential volume element in polar 
coordinates, namely 2LMdMdOd, had to be considered in the final calculation of free energies.  If the 
appropriate correction is not applied, a radial dependence on energy arises in the absence of forces, and 
this was confirmed in our analysis (data not shown).  Specifically, the free energy difference between 
points (r2, z2) and (r1, z1) must take into account the ratio between the differential volume elements at r2 
and r1, which is 2LM�dMdOd/2LM�dMdOd, or simply r2/r1.  More succinctly, this takes into account the 
Jacobian of the coordinate transformation between cylindrical and Cartesian coordinates.  Expressed as a 
ΔG, 

   

∆B � B1M�, �2 � 	B1M�, �2 � ����QRS34TU1FV,5V24U1FW,5W2X/YZ[
M� M�⁄ \ 

 

Where (r1, z1) can be chosen as a reference point remote from the energetic effects of the protein. 

The apparent divergence of the expression above at r=0 is mitigated by the discretized sampling of the 
collective variables in the MD simulations.  The radial coordinate (r) was sampled every 1.5 Å, beginning 
at r=0.75 Å (to cover the region at the center), and the axial coordinate (z) was recorded every 1.0 Å. 

 

IV. Convergence of metadynamics MD simulations 
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Figure S4.  (A) The computed energy barrier heights and (B) the relative permeabilities from the 

metadynamics MD simulations are plotted over time.  

 

The energy barrier height from the metadynamics MD simulations are plotted in Fig. S4 (A). The barrier 

height is defined by two values: the maximum near the pore (|z| < 5.0 Å) and the average free energy 

away from the pore (20 Å ≤ |z| ≤ 25 Å). As the barrier height fluctuates over time, we estimated the 

statistical error of the computed barrier height by computing the standard deviation of the barrier height 

over the last 180 ns duration. The error in barrier height of the PDO simulations is 0.13 kcal/mol and that 

of the PPN simulations is 0.20 kcal/mol. Relative permeabilities of PDO and PPN are computed as a 

function of simulation time (Fig. S4 (B)). The permeabilities of both ligands (]̂ _` and ]̂ ^a) are defined 

by Eq. 2. The relative permeability (]̂ _`/]̂ ^a) fluctuates significantly until 350 ns, and later converges 

to 9.7 d 1.8, when averaged over the last 180 ns.  

V. Statistical error of REUS MD simulations 

 

Figure S5. Sampled z-coordinates from REUS MD simulations: (A) PduA+PDO and (B) PduA+PPN. 

Four representative trajectories for the simulations of each small molecule are shown. 

 

We used the weighted histogram analysis method (WHAM)3, 4 to compute the Gibbs free energy profile 

from the REUS MD simulations. The statistical uncertainty of the computed free energy values were 

estimated using the bootstrap analysis method.5 We repeated random resampling with replacement 200 

times to compute the standard error of the free energy at each window. As shown in Fig S5 (A) and (B), 

two successive values of the sampled z-coordinates from an individual replica can be correlated. In order 

to produce uncorrelated resampled data, two data points separated beyond the correlated time interval 

needs to be sampled. We computed a normalized autocorrelation function (�f1g2) of the z-coordinates 

sampled from individual replicas6: 



S6 
 

�51g2 � 〈1i + g21i2〉k � 8�l5� , 
where 1g2 is the axial coordinate of a replica at t, 8 is averaged energy, and σ5� is the variance of energy. 

The axial coordinates are computed from the trajectories of individual replicas. The autocorrelation 

function is then fitted to an exponential function: 

�51g2 � exp p	� ggq!FFr ,	
to give the energy correlation time (gq!FF). The most extended correlation time is 23.0 ps, and that value 

was used as the correlation time interval in the bootstrap analysis. The estimated errors are depicted in 

Figure 3 of the main text. 

The barrier heights (�s=tCs ) and the corresponding variances (u;MT�s=tCs X) are analyzed: 

�s=tCs � ΔB1 � 02 � ΔB1;w;x2, 
yg7T�s=tCs X � zu;M1ΔB1 � 022 + u;MTΔB1;w;x2X 

, where {B1z � 02 is the potential of mean force (PMF) at the center of the pore, ΔB1;w;x2 is the 

averaged PMF away from the pore (20 Å < |z| < 25  Å), and u;M1ΔB2 and yg71�s=tCs 2 are the variance 

and the standard deviation of the energy values. We report the standard deviations as the uncertainty of 

the computed energy barrier heights. 

 

VI. Diffusion coefficients of the metabolites in the aqueous medium and in the 

constricted pore region 

 

We compared relative permeabilities of the PDO and PPN molecules under the assumption that the two 

metabolites have comparable diffusion constant in the aqueous medium and near the center of the 

constricted pore. We confirmed the assumption by computing the diffusion constants in the aqueous 

medium using unconstrained MD simulations. In addition, we calculated the diffusion constants in the 

pore based on a formula proposed by Hummer.7 The computed diffusion coefficients show that the two 

metabolites share near identical diffusion constants in the bulk medium and at the pore. Of note, the 

diffusion constants at the center of the pore are about half those in the bulk medium.  
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Figure S6. Diffusion of the metabolites in aqueous medium: (A) PDO and (B) PPN. Squared deviations 

of the center-of-mass coordinates from the initial positions are plotted.  

 

Figure S6 shows the squared distances from the initial positions of the two metabolites observed from the 

unconstrained MD simulations. For each metabolite, the unconstrained molecular trajectories were 

sampled for 10 ns at 300 K. The simulations were repeated 24 times to provide an ensemble of 

trajectories for each metabolite. The averaged squared distances are proportional to the diffusion constant 

(D) in the bulk media by the Einstein relation:6 6�g � 	 〈~1g2~102〉 
, where t is the time, R(t) is the center-of-mass coordinates of the metabolite, and 〈⋯ 〉  represents 

ensemble average over many realizations. The Einstein relation was least-square fitted to the ensemble of 

MD trajectories to give the diffusion constant of each metabolite. The computed diffusion coefficient of 

the PDO molecule is 0.92 d 0.01 � 104� cm2/s and of the PPN molecule is 0.94 d 0.01 � 104� cm2/s. 

Here the standard errors of the least-square fittings are understood as the uncertainty of the estimation. 

The computed diffusion coefficients are in good agreement with the experimental observations, which are 1.0 � 104� cm2/s for the PDO and 1.16 � 104� cm2/s for the PPN.  

We computed the diffusion coefficient of each metabolite at the center of the PduA pore. Due to 

geometrical restraints, the metabolites may diffuse through the pore with different diffusion rates relative 

to the bulk medium. We analyzed the restrained MD simulations (Figure 4B) to compute the local 

diffusion coefficient. In the restrained MD simulations, the center-of-mass positions of the two 

metabolites were harmonically restrained at the center of the PduA pore. Without the restraints, the 

diffusive behaviors of the metabolites are difficult to observe. This is because the center of the pore is 

energetically uphill in energy as shown in Figures 2 and 3. According to Hummer,7 the local diffusion 

coefficient under restraints is expressed: 

��!q"# � u;M1~2i�  

, where ��!q"# is the local diffusion coefficient at the pore, u;M1~2 is the variance of the center-of-mass 

coordinates of the metabolite under the restraints, and τ� is the correlation time that is defined as below. 
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i� � < ��1g2�8 7t
u;M1~2  

, where ��1g2  is the normalized autocorrelation function of the center-of-mass positions. The entire 

duration (100 ns) of the MD simulations were split into 20 ns overlapping windows. For each window, we 

computed the autocorrelation time and consequently the local diffusion coefficients. Finally, the 

computed diffusion coefficients were averaged over the 80 windows. The resultant diffusion coefficients 

are  0.49 d 0.20 � 104� cm2/s for the PDO and  0.47 d 0.17 � 104� cm2/s for the PPN. The standard 

deviations of the averages are used as the errors of the estimates. 

 

 

 

 

 

 

 

 

 

 

 

 

Table S1. Optimized coordinates and atomic partial charges of the metabolites 

Molecule Atom X* Y Z RESP partial 

charge** 

1-2-propanediol O -1.942 -0.054 -0.002 -0.663329 
C -0.71 -0.748 -0.227 0.17897 
H -0.741 -1.766 0.188 0.019313 
H -0.612 -0.82 -1.315 0.019313 
C 0.465 0.049 0.342 0.449042 
O 0.412 1.378 -0.157 -0.686685 
H 0.365 0.058 1.446 -0.04614 
C 1.816 -0.548 -0.025 -0.381434 
H 1.927 -1.558 0.386 0.099838 
H 1.929 -0.595 -1.114 0.099838 
H 2.622 0.077 0.372 0.099838 
H -2.144 -0.115 0.946 0.406932 
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H -0.535 1.604 -0.178 0.404505 
propionaldehyde C 1.44 -0.506 0 -0.212956 

C 0.549 0.734 0 0.121244 
C -0.931 0.425 0 0.471457 
O -1.404 -0.69 0 -0.503403 
H -1.595 1.321 0 -0.022998 
H 1.246 -1.125 0.881 0.059357 
H 2.497 -0.225 0 0.059357 
H 1.246 -1.125 -0.881 0.059357 
H 0.747 1.377 0.872 -0.015707 
H 0.747 1.377 -0.872 -0.015707 

*: Unit of coordinates is angstrom; **: Unit of atomic partial charge is electron 

 

 

 

 

 

 

Table S2. Computed diffusion constants from the MD simulations. The unit of the constants is cm2/s 

Metabolite Diffusion constant in aqueous 

medium 

Diffusion constant at the PduA 

pore 

Propanediol (PDO) 0.92 d 0.01 � 104� 0.49 d 0.20 � 104� 

Propionaldehyde (PPN) 0.94 d 0.01 � 104� 0.47 d 0.17 � 104� 
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