Supporting Information

Structures and Mechanisms of the Non-Heme Fe(II)- and 2-Oxoglutarate-Dependent Ethylene-Forming Enzyme: Substrate Binding Creates a Twist

Salette Martinez,^{†,1} Matthias Fellner,^{‡,1} Caitlyn Q Herr,[‡] Anastasia Ritchie,[†] Jian Hu,^{‡,#,*} and Robert P. Hausinger^{†,‡,*}

[†]Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824

[‡]Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824

[#]Department of Chemistry, Michigan State University, East Lansing, Michigan 48824

Contents:

- 1. Experimental Procedures.
- 2. Figure S1: Overall structure of EFE and regions that undergo the most notable structural changes.
- 3. Figure S2: LIGPLOTs of bound 2OG and L-Arg, and L-Arg interactions with surrounding residues.
- 4. Figure S3: Alignment of EFE sequences.
- 5. Figure S4: Comparison of EFE•Mn•2OG bound models.
- 6. Figure S5: Comparison of EFE•Mn•2OG•L-Arg and EFE•Fe•NOG•L-Arg models.
- 7. Figure S6: Comparisons among off-line active site structures.
- 8. Figure S7: Prior variant substitutions mapped onto the EFE structure.
- 9. Figure S8: Metal identification at the active site of EFE
- 10. Tables S1-S3: Crystal statistics.
- 11. Table S4: Ethylene- and P5C-forming activities of EFE variants.
- 12. Table S5: Dihedral angles ω of the D191-Y192 peptide bond in EFE samples.
- 13. Table S6: Ethylene-forming activities of previously described variants.
- 14. Table S7: Primers used for mutagenesis.
- 15. Table S8: Crystallization conditions.
- 16. References

EXPERIMENTAL PROCEDURES

Site-Directed Mutagenesis. Ethylene-forming enzyme (EFE) variants were created by mutagenesis of the *efe* gene located in plasmid pET28a⁺¹ using the primers listed (Table S7) and the Q5[®] Site-Directed Mutagenesis Kit (New England BioLabs, Inc.) according to the manufacturer's instructions. We confirmed the changes in each mutated plasmid by DNA sequencing (RTSF Genomics Core at Michigan State University) and transformed the plasmids into *E. coli* BL21 Gold (DE3) cells (Agilent Technologies).

Protein Production and Purification. The genes encoding *N*-terminally H₆-tagged wild-type (WT) and variant forms of EFE were expressed and the corresponding apoproteins were purified with cleavage of the H₆-tag as previously described.¹ During our analysis, we found that the concentration of the protein was previously underestimated;¹ the corrected specific activity for EFE was $612 \pm 66 \mu$ mole min⁻¹ mg⁻¹, in close agreement with the earlier published value of 650-660 U/mg.²⁻³

Assays for Quantifying Product Formation. We performed the standard assay at $25 \pm 1^{\circ}$ C in 10×16 mm Vacutainer glass tubes (Becton Dickinson). WT and variant forms of EFE (1 µM) were incubated in 2 mL of 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, pH 7.5, containing 0.5 mM 2-oxoglutarate (2OG), 0.5 mM L-Arg, 0.2 mM (NH₄)₂Fe(SO₄)₂, and 0.4 mM L-ascorbic acid. After 80 min the reactions were terminated with 0.1 mL of 3.6 M hydrochloric acid. Products were quantified by GC (ethylene) and 2-aminobenzaldehyde derivatization of L- Δ -1-pyrroline-5-carboxylate (P5C) as previously described.¹

Protein crystallization. For crystallization trials, we isolated the EFE apoprotein using our standard procedures and further purified the samples by size-exclusion chromatography using a Superdex HiLoad 16/600 75 prep grade column (GE Healthcare Life Sciences). We equilibrated the column with 25 mM HEPES, pH 8.0, containing 100 mM NaCl and 1 mM tris(2-carboxyethyl)phosphine (TCEP). EFE-containing fractions were pooled and buffer exchanged into 25 mM HEPES, pH 8.0, containing 1 mM TCEP. Subsequently, EFE was concentrated (53-72 mg/mL) and supplemented with 1-9 mM of CoCl₂, MnCl₂, NiSO₄, or (NH₄)₂Fe(SO₄)₂ and incubated on ice for 1 h. For co-crystallization experiments, the substrates (2OG, 2-oxoadipate (2OA), and/or L-Arg and L-Arg analogs) were added to the concentrated protein in the range of 0.6-10 mM, then incubated on ice for >1 h.

We carried out the initial crystallization screens at 4 °C in 96-well plates by the sitting-drop vapor diffusion technique and using the mosquito crystallization robot (TTP Labtech). Screening was performed against Index HT (Hampton Research), Crystal Screen HT (Hampton Research), Wizard 1&2 (Rigaku Reagents), and Wizard 3&4 (Rigaku Reagents) sparse-matrix screens. Crystals grew within 7-21 days and were optimized further. Table S8 lists a summary of conditions for all 11 crystal structures. EFE crystallized very well when incubated without a metal or in the presence of Mn. EFE also grew with Ni,

however crystals were of poorer quality (>3 Å and processing issues) and were not optimized. We obtained a Ni-bound structure by soaking an apoprotein crystal in NiCl₂ (see details in Table S8). The 2-h soak dehydrated the crystal, resulting in solvent content of 32.1% with a Matthews coefficient of 1.81. In addition, the soaked crystal suffered from high anisotropy, making data processing challenging. We therefore focused on Mn crystals and did not proceed with Ni-bound EFE. EFE did not crystallize in the presence of Co. Most attempts to obtain EFE crystals with Fe failed, with only very poorly diffracting crystals obtained (>8 Å grown at 21 °C), and we were unable to optimize these conditions further. In addition, soaking crystals with Fe, similar to Ni, abolished diffraction from these crystals.

Phase determination. For single-wavelength anomalous diffraction (SAD) experiments, selenomethionine (SeMet)-substituted EFE was produced using the protocol described for inhibition of methionine biosynthesis by Doublié⁴ with minor modifications. The protein was purified similarly to the Met-containing EFE, but with buffers containing 2 mM TCEP. For details, see Table S8.

Data collection, processing, and structure determination. X-ray diffraction data were collected at the Advanced Photon Source LS-CAT beamlines (21-ID-D, 21-ID-F and 21-ID-G). For details about dataset collection, see Tables S1-S3. Datasets were indexed and integrated with xdsapp2.0⁵ or iMosflm,⁶ and merging and scaling were done using aimless.⁷ Data quality was assessed using Phenix.xtriage.⁸ The phase of a selenomethionine-substituted crystal was solved through SAD in Phenix.autosol,⁹ and Phenix.phaser molecular replacement⁸ was used for all subsequent datasets. Refinement was done in Phenix⁸ utilizing Phenix.refine, Phenix.readyset, Phenix.eLbow, and COOT.¹⁰ In our EFE•Mn•2OG•HO-L-Arg structure there were hints of a second active site conformation at low occupancy. The changes represent a conformation free of HO-L-Arg, with a second Asp191 orientation and with 2OG bound monodentate to the metal (matching our EFE•Mn•2OG structure). Attempts to model the low occupancy species did not provide satisfactory results and this second minor conformation was therefore omitted in the final model. Datasets were validated using MolProbity¹¹ and uploaded to the protein data bank (PDB) with IDs identified for apoprotein, 5V2U; Ni, 5V2V; Mn•2OG, 5V2X; Mn•2OG•L-Arg, 5V2Y; Mn•2OA•L-Arg, 5V2Z; Mn•2OG•HO-L-Arg, 5VKA; Mn•2OG•L-Arg-amide, 5VKB; Mn•malate•Arg, 5V34; Mn•Arg, 5V31; Mn•tartrate, 5V2T and Mn•malate, 5V32. Statistics for the deposited datasets are listed in the crystallographic details, Tables S1-S3. These tables also list the details for datasets used to determine the identity of the EFE bound metal. Structure figures were created with UCSF Chimera.¹² The identity of either Ni or Mn was demonstrated by dataset collection on a single EFE•Ni or EFE•Mn•tartrate crystal above and below the corresponding absorption edges (Figure S8 and Table S1 and S3).

Figure S1. Overall structure of EFE from *P. syringae* pv. *phaseolicola* PK2 and regions that undergo the most notable structural changes. (A) The structure of EFE•Mn•2OG•L-Arg with helices depicted in red and labeled α 1- α 10, sheets shown in green and labeled β 1- β 9, and coil regions in light blue. Residues chelating the bound Mn (purple sphere) are shown with green carbon atoms, and the bound ligands, 2OG and L-Arg, are illustrated with carbon atoms in yellow and magenta, respectively. (B) The backbone of EFE•Mn•2OG•L-Arg is shown in faint pink with residues 80-93 and 306-317 depicted in dark pink, while EFE apoenzyme is shown in faint blue with the same residue ranges shown in dark blue. The short helix labeled α -8.5 is formed only in the apoprotein and occurs between α -8 and α -9 of EFE•Mn•2OG•L-Arg.

Figure S2. Side chain interactions of EFE with 2OG and L-Arg, and comparison of changes for the L-Arg binding site among the 11 structures. Interactions of (A) 2OG and (B) L-Arg with the surrounding active site residues in Mn•EFE•2OG•L-Arg as depicted by LIGPLOT.¹³ (C) Comparison of the 11 EFE structures obtained here. All structures containing L-Arg or an L-Arg analog are colored in magenta; the other structures are colored in cyan. Hydrogen bonds are shown as red dashed lines. The Mn atom and its coordination sphere are also colored magenta or cyan, accordingly. The Ni atom and its coordination sphere are colored green. Water molecules bound to the metal are shown as red spheres.

phaseolicola PK2		β1 →	معمققعه	αι	β2	α2	200
phaseolicola PK2 Cannabina GSPB 2553 glycinea 7a/90 sesami 962 pisi GSPB 1206 R. solanacearum K60 M. stipitatus P. digitatum Pd1	1 MTN MTN MTN MTN MTN MTD MIE MPPNYVAR <u>V</u> GO	10 OTFELPTEV OTFELPTEV OTFELPTEV OTFELPTEV OTFELPTEV ETFULPETA KTFTLPETA	20 TGCAADISLG TGCAADISLG TGCAADISLG TGCAADISLG TGCAADISLG TIGSAADISLG TISAHELG SGREADIALG TGSPSDVELG	*30 KALIQAWQKDG KALIQAWQKDG KALIQAWQKDG KALIQAWQKDG XALIQAWQKDG QAMVKAWRTDG QAMVKAWRTDG GAMINAWREDG	40 IFOIKTDSEO IFOIKTDSEO IFOIKTDSEO IFOIKTDSEO IFOIKTDSEO IFOITLSKO IFOITLSKO IFOVMSPAO ILOVSMSPRO	50 DRKTQEAMAASKC DRKTQEAMAASKC DRKTQEAMAASKC DRKTQEAMAASKC DRKTQEAMAASKC CRTDEAMAASKC QTTDEAMASSC QTTDEAMASSC AEKSQRAFELSR QALFENASAASKF	60 * FCKEP FCKEP FCKEP FCKEP FCKEP FFSQD FFSQD FFSQD FFAMP
phaseolicola PK2	α3 <u>000000</u> * 7 9	β3 8 0	β4 → TT → 90 ★	β6	α4 2222 110	120	130
phaseolicola PK2 Cannabina GSPB 2553 glycinea 7a/90 sesami 962 pisi GSPB 1206 R. solanacearum K60 M. stipitatus P. digitatum Pd1	LTFKSSCVSDI LTFKSSCVSDI LTFKSSCVSDI LTFKSSCVSDI LTFKSSCVSDI LTFKSSCVSDI LTFKSCVSDI PETKSRHVSAL LETKARCVSDI PNOKAACVDTOS	YSGYVASGE YSGYVASGE YSGYVASGE YSGYVASGE YSGYVASGE YSGYIASGE YSGYIASGE YAGYIASGE	EVTAGKPDFPE EVTAGKPDFPE EVTAGKPDFPE EVTAGKPDFPE EVTAGKPDFPE EVTAGEADYSE ELTASEADLSE ELTAGIADYSE	IFTVCKDISV IFTVCKDISV IFTVCKDISV IFTVCKDISV IFTVCKDIPV IFTICPDIGI VFTVCRDVPL IFTVTKDIPL	GDQRVKAGWP GDQRVKAGWP GDQRVKAGWP GDQRVKAGWP SDQRVKAGWP EDARVRENLP TDPRVQSKWP DEPRVEAKWP	CHGPUPWPNNTYC CHGPUPWPNNTYC CHGPUPWPNNTYC CHGPUPWPNNTYC CHGPUPWPNNTYC CHGPUPWPGAAYF CHGPCPWPDESWF CHGPCPWPDESWF	QKSMKT QKSMKT QKSMKT QKSMKA QKSMKA RDRMKA RQGMQA RTPIQQ
phaseolicola PK2	α5 20200000000 140	150	η1 000 160	β7 170	→	β8 190	_
phaseolicola PK2 Cannabina GSPB 2553 glycinea 7a/90 sesami 962 pisi GSPB 1206 R. solanacearum K60 M. stipitatus P. digitatum Pdl	FMEELGLAGERI FMEELGLAGERI FMEELGLAGERI FMEELGLAGERI FMGELGLAGERI FMGELGLAGERI HAEELGSVGERI HAEELGSVGERI YMDSLGSSGEII	LKLTALGFE LKLTALGFE LKLTALGFE LKLTALGFE LKLTALGFE LOLIALGLC LQLIALGLC LLQMIEYGLS	LP INTFTDL LP INTFTDL LP INTFTDL LP INTFTDL LP INTFTDL LP INTFTDL LD INTFTRL LD ILALTTL LH PDTLTSL	RDGWHHMRVL RDGWHHMRVL RDGWHHMRVL RDGWHHMRVL RNGWHHMRVL ODGWHHMRVL HDGWHHMRVL KDGWHHLRL	RFPPQ.T RFPPQ.T RFPPQ.T RFPPQ.T RFPTVQS RFPAR.S RFPQNNKTNG	STLSRGIGAHTI STLSRGIGAHTI STLSRGIGAHTI STLSRGIGAHTI STLSRGIGAHTI STMSSGIGAHTI FURRGIGAHTI RGKKGRGIGSHTI	YGLLV YGLLV YGLLV YGLLV YGLLV YGLLV YGLLV YGLLV
phaseolicola PK2	$\beta 9$ $\beta 10$. тт 210 *	TT TT 220 2	β 230 2	11 β1 40 22	2 α6 202020 50 260	
phaseolicola PK2 Cannabina GSPB 2553 glycinea 7A/90 sesami 962 pisi GSPB 1206 R. solanacearum K60 M. stipitatus P. digitatum Pd1	IAAQDDVGGLVI IAAQDDVGGLVI IAAQDDVGGLVI IAAQDDVGGLVI IAAQDDVGGLVI IAAQDDVGGLV IAAQDDVGGLVI IAAQDDVGGLVI IAAQDDVGGLFI	RPPVEGEKR RPPVEGEKR RPPVEGEKR RPPVEGEKR RPPVEGEKR RPPIEGERR RPPVEGEKR RPPADDEKI	NRNWLPGESS NRNWLPGESS NRNWLPGESS NRNWLPGESS NRNWLPGESS NRNWLPSEST PRNWLPHESS PRNWLPHESS	CGMFEHDEPWT CGMFEHDEPWT CGMFEHDEPWT CGMFEHDEPWT CGMFEHDDPWT CGVYEHDDGWN CGYREHDEPWT	F <mark>V</mark> TPT PGVWT FVTPT PGVWT FVTPT PGVWT FVTPTPGVWT FIKPMPAVWT YIKPWPAVLT YVRPVPGVLT YVPPV PGV FT	VFPGDILOFMTG VFPGDLOFMTG VFPGDLOFMTG VFPGDLOFMTG VFPGDLOFMTC VFPGDLOFMTC VFPGDLOFMTC VFPGDLOFMTG VFPGDLOFMTG	QLLST QLLST QLLST QLLST QLLST HLLST YLLST YLLST
phaseolicola PK2	β13 270	β14 280	β15 290 ★	ΤΤ 300	16 α7 ►000000000 310	α8 200 <u>20000</u> 320	2000 Q 330
phaseolicola PK2 Cannabina GSPB 2553 glycinea 7a/90 sesami 962 pisi GSPB 1206 R. solanacearum K60 M. stipitatus P. digitatum Pd1	PHKVKLNTRER PHKVKLNTRER PHKVKLNTRER PHKVKLNTRER PHKVRLNTRER PHKVRLNTRER PHKVGLNTRER PHKVGLNTRER	ACAYFHEPN FACAYFHEPN FACAYFHEPN FACAYFHEPN FACAYFHEPN FACAYFHEPN FALAYFHEPS FALAYFHEPS	FEASAYPIFE FEASAYPIFE FEASAYPIFE FEACAYQVFE FDAWVEPIEA FEACVRPISA FCAVVSPVAKI		HYGEHFINMFI HYGEHFINMFI HYGEHFINMFI HYGEHFINMFI HYGEHFISMFI HYGTHFINMFI HYGTHFINMFI HYGTHFINMFI	MRCYPDRITTORI MRCYPDRITTOSI MRCYPDRITTOSI MRCYPDRITTOSI MRCYPDRITTOSI MRCYPDRITTOSI MRCYPRITTOSI MRCYPRITTRI MRSYPDRITTERI	NKENR NKENR NKENR NKENR HKDNR HKDNR LDESR IKEDR
phaseolicola PK2	α9 <u>2022020</u> ★ 340	350					
phaseolicola PK2 Cannabina GSPB 2553 glycinea 7a/90 sesami 962 pisi GSPB 1206 R. solanacearum K60 M. stipitatus P. digitatum Pd1	LAHLEDIKKYSI LAHLEDIKKYSI LAHLEDIKKYSI LAHLEDIKKYSI LAHFK LAHFK LOKLPILSELA LITLSWIRQEA LULDRPELRIC	DTRATGS DTRATGS DTRATGS DTRATGS VLRTAPLEAV	 PLQRAAG				

Figure S3. Alignment of EFE sequences for strains known to produce ethylene as shown by assays using cell-free extracts supplemented with 2OG and L-Arg (*Ralstonia solanacearum* K60 and the following pathovars of *P. syringae: cannabina* GSPB2553, *glycinea* 7a/90, *sesami* 962, and *pisi* GSPB1206) or by analysis of recombinant yeast cells containing *efe* from *Penicillium digitatum* Pd1 or *Myxococcus stipitatus*.¹⁴⁻¹⁵ The Figure was created with EsPript 3.¹⁶

Figure S4. Comparison of EFE•Mn•2OG bound models. (A) Our EFE•Mn•2OG model (5V2X) with its $2F_O - F_C$ map shown as blue meshes at 1 σ . The metal is chelated by two water molecules and a monodentate bound 2OG depicted in two conformations at ~50 and ~30% occupancy. (B) Model by Zhang *et al.* (5MOF)¹⁷ with carbon atoms in orange accounting for very similar electron density with the metal chelated by one water molecule (100%, red sphere) and either (at 30% occupancy) two chelating water molecules, additional water molecules (orange spheres), and a chloride (green sphere) towards R277 or (at 70% occupancy) bidentate bound 2OG that includes a single hydrogen bond with R277.

Figure S5. Comparison of EFE•Mn•2OG•L-Arg and EFE•Fe•NOG•L-Arg models. (A) Comparison of our EFE•Mn•2OG•L-Arg (5V2Y, carbon and Mn atoms in magenta) and the A conformation of EFE•Fe•NOG•L-Arg by Zhang *et al.* (5LUN, carbon and Fe atoms in orange).¹⁷ (B) Comparison of one of our L-Arg free structures (EFE•Mn•malate; 5V32, carbon, water oxygen and Mn atoms in cyan) and the B conformation of 5LUN.

Figure S6. Comparison of the EFE•Mn•2OG•L-Arg active site geometry to that of selected other structurally characterized Fe(II)/2OG oxygenases which exhibit off-line geometry. (A) In each case, the metallocenters (spheres), 2-histidine-1-carboxylate side chains (green carbons), and 2OG or NOG (yellow carbons) are shown in similar orientations, with the substrates (magenta carbons) positioned away from the apparent dioxygen-binding site to the right of the metal. The sites of oxygenation (hydroxylation or desaturation) on the substrates are highlighted by the blue ovals. The enzyme active sites depicted include our EFE•Mn•2OG•L-Arg (5V2Y) structure, as well as carbapenem synthase (CarC, PDB access code: 4OJ8),¹⁸ anthocyanidin synthase (ANS, 2BRT),¹⁹ γ -butyrobetaine hydroxylase (BBOX, 3O2G), AsqJ (5DAQ),²⁰ HIF hydroxylase (PHD2, 3HQR),²¹ 5-methylcytosine hydroxylase (TET2, 4NM6),²² and AlkB demethylase (3BIE).²³ (B) Offline representation of our EFE•Mn•2OG•L-Arg (5VXA) structure showing a water molecule at the oxygen binding site. (C) Offline comparison of structures shown in (A) with our EFE•Mn•2OG•L-Arg colored in black. Note that the carboxylate metal chelating ligand in EFE adopts a distinct conformation from the other Fe(II)/2OG oxygenases.

Figure S7. Structure of EFE•Mn•2OG•L-Arg showing the location of residues previously substituted by others, excluding the active site residues. Residues colored in orange were studied by Nagahama *et al.*,²⁴ those shown in purple were investigated by Johansson *et al.*,¹⁵ and residues in green were characterized by Zhang *et al.*¹⁷ 2OG and L-Arg are shown with yellow and red carbon atoms, respectively. Metal-binding residues are shown in cyan.

Figure S8. Metal identification at the active site of EFE. Carbon atoms of the metal-chelating residues (H189, D191 and H268) are shown in green; tartrate is depicted in yellow. Ni and Mn atoms are shown as green and purple spheres, respectively. The $2F_O - F_C$ maps for metal atoms are shown as blue meshes at 1 σ . The anomalous maps for metal atoms are shown as magenta meshes at 5 σ . (A) EFE•Ni examined above the Ni edge at 8.39 keV. (B) EFE•Ni examined below the Ni edge at 8.28 keV. (C) EFE•Mn•tartrate examined above the Mn edge at 6.59 keV. (D) EFE•Mn•tartrate examined below the Mn edge at 6.48 keV.

EFE crystals	apoprotein	Ni	Mn•2OG	Mn•2OG	Mn•2OA
				•L-Arg	•L-Arg
Data collection	L	•	L	8	
Beamline	LS-CAT 21-	LS-CAT 21-	LS-CAT 21-	LS-CAT 21-	LS-CAT 21-ID-
	ID-F	ID-D	ID-F	ID-G	D
Wavelength (Å)	0.979	1.478	0.979	0.979	1.127
Detector distance (mm)	240	150	240	190	100
Number of frames	90 at 1°	164 at 1°	140 at 1°	150 at 1°	310 at 1°
Space group	P2 ₁ 2 ₁ 2 ₁	P2 2 ₁ 2 ₁	$P2_{1}2_{1}2_{1}$	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁
Unit cell a, b, c (Å)	43, 87, 92	42, 79, 88	74, 98, 102	49, 82, 88	49, 82, 88
α, β, γ (°)	90, 90, 90	90, 90, 90	90, 90, 90	90, 90, 90	90, 90, 90
^a Resolution (Å)	45.91 - 2.06	87.75 - 3.04	45.33 - 1.85	43.80 - 1.43	48.45 - 1.23
	(2.11 - 2.06)	(3.22 - 3.04)	(1.89 - 1.85)	(1.45 - 1.43)	(1.25 - 1.23)
Unique reflections	21,539 (1,652)	5,959 (941)	64,351 (3,789)	65,410 (3,159)	100,282 (4,164)
^a Redundancy	3.7 (3.6)	4.8 (5.1)	5.8 (5.6)	5.8 (3.9)	10.1 (4.8)
^a Completeness (%)	98.1 (98.2)	99.3 (99.7)	99.6 (95.9)	99.7 (96.3)	98.7 (84.1)
^a I/\sigmaI	9.6 (2.8)	7.0 (3.3)	11.6 (2.5)	15.9 (2.2)	14.6 (2.4)
${}^{a}R_{merge}$	0.114 (0.413)	0.132 (0.350)	0.119 (0.675)	0.060 (0.532)	0.080 (0.560)
${}^{a}R_{pim}$	0.093 (0.343)	0.094 (0.246)	0.083 (0.478)	0.041 (0.441)	0.037 (0.419)
^b CC _{1/2}	0.989 (0.778)	0.990 (0.941)	0.997 (0.830)	0.999 (0.773)	0.998 (0.816)
Refinement	· · · ·	• • •	• · · ·		
Protein atoms	2,739	2,316	5,507	2,805	2,921
Hydrogen atoms	0	0	0	2,718	2,842
Metal atoms	0	1	2	1	1
20G/20A molecules	0	0	4	1	1
L-Arg molecules	0	0	0	1	1
H ₂ O molecules	278	2	994	353	439
$^{\circ}R_{work}/R_{free}$	0.186 / 0.245	0.199 / 0.268	0.163 / 0.201	0.132 / 0.161	0.141 / 0.160
<i>B</i> -factors (Å ²)	18.9	47.7	18.2	18.5	16.7
Protein	18.5	47.7	16.1	16.0	14.2
Hydrogens	-	-	-	19.8	17.6
Metal	-	52.01	13.4	11.3	8.5
20G/20A molecules	-	-	18.8	17.5	14.3
L-Arg molecules	-	-	-	14.7	12.0
H ₂ O	22.2	44.13	30.0	29.4	27.7
R.m.s. deviation in bond	0.003	0.005	0.007	0.007	0.011
lengths (Å)					
R.m.s. deviation in bond	0.616	0.533	0.750	0.949	1.110
angles (°)					
Ramachandran plot (%)	97.95	95.27	97.81	97.94	97.98
favored					
Ramachandran plot (%)	0.29	0.34	0	0.59	0.58
outliers					
Rotamer outliers (%)	0	0	0	0.33	0
PDB ID	5V2U	5V2V	5V2X	5V2Y	5V2Z

Table S1. Crystal statistics for EFE apoprotein; EFE in complex with Ni(II); EFE with bound Mn(II) and 2OG; EFE with Mn(II), 2OG, and L-Arg; and EFE with Mn(II), 2OA, and L-Arg.

^aHighest resolution shell is shown in parentheses.

 ${}^{b}CC_{1/2}$ is the correlation coefficient of the half datasets.

 ${}^{c}R_{work} = \sum_{hkl} ||F_{obs}| - |F_{calc}|| / \sum_{hkl} |F_{obs}|$, where F_{obs} and F_{calc} is the observed and the calculated structure factor, respectively. R_{free} is the cross-validation R factor for the test set of reflections (5% of the total, except for Ni 15%) omitted in model refinement.

EFE crystals	Mn•2OG• Mn•2OG•		Mn•L-Arg	Mn•tartrate	
·	HO-L-Arg	L-Arg-amide	0		
Data collection					
Beamline	LS-CAT 21-ID-F	LS-CAT 21-ID-F	LS-CAT 21-ID-D	LS-CAT 21-ID-G	
Wavelength (Å)	0.979	0.979	1.127	0.979	
Detector distance (mm)	140	130	200	150	
Number of frames	150 at 1°	220 at 1°	99 at 1°	290 at 1°	
Space group	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁	I2 2 2	
Unit cell a, b, c (Å)	49, 82, 88	49, 82, 88	49, 82, 87	80, 98, 98	
α, β, γ (°)	90, 90, 90	90, 90, 90	90, 90, 90	90, 90, 90	
^a Resolution (Å)	48.58 - 1.17	48.48 - 1.14	87.16 - 2.45	48.99 - 1.23	
	(1.19 – 1.17)	(1.16 – 1.14)	(2.55 - 2.45)	(1.25 – 1.23)	
Unique reflections	118,142 (5,146)	127,532 (5,998)	12,891 (1,451)	111,277 (5,275)	
^a Redundancy	5.7 (3.6)	8.4 (5.4)	3.5 (3.6)	11.1 (7.1)	
^a Completeness (%)	99.2 (87.9)	99.6 (95.4)	97.3 (98.0)	99.7 (95.6)	
$^{a}I/\sigma I$	12.3 (2.2)	17.1 (2.0)	5.4 (2.4)	20.3 (2.3)	
$^{a}R_{merge}$	0.071 (0.515)	0.064 (0.822)	0.163 (0.514)	0.066 (0.905)	
${}^{a}R_{pim}$	0.048 (0.401)	0.034 (0.565)	0.132 (0.425)	0.030 (0.530)	
^b CC _{1/2}	0.997 (0.752)	0.999 (0.747)	0.972 (0.718)	0.999 (0.739)	
Refinement					
Protein atoms	2,863	2,906	2,706	2,805	
Hydrogen atoms	2,782	2,829	0	2,706	
Mn atoms	1	1	1	1	
2OG/tartrate molecules	1	1	0	1	
L-Arg like molecules	1	2	1	0	
H ₂ O molecules	505	472	128	466	
$^{c}R_{work}/R_{free}$	0.172 / 0.188	0.147 / 0.160	0.180 / 0.247	0.139 / 0.153	
<i>B</i> -factors (Å ²)	16.2	19.1	25.0	18.7	
Protein	13.6	18.3	25.0	15.8	
Hydrogens	16.8	20.1	-	19.4	
Manganese	14.0	11.2	25.6	10.2	
20G/tartrate molecules	16.2	17.8	-	19.2	
L-Arg like molecules	13.5	19.2	30.7	-	
H ₂ O	27.7	29.4	25.5	31.5	
R.m.s. deviation in bond	0.009	0.008	0.016	0.008	
lengths (Å)					
R.m.s. deviation in bond	0.961	0.957	0.915	0.928	
angles (°)					
Ramachandran plot (%)	97.69	97.97	97.63	97.95	
favored					
Ramachandran plot (%)	0.58	0.58	0.59	0.29	
outliers					
Rotamer outliers	0.33	0	0	0	
PDB ID	5VKA	5VKB	5V31	5V2T	

Table S2. Crystal statistics for EFE in complex with Mn, 2OG, and HO-L-Arg; Mn, 2OG, and Argamide; Mn and L-Arg; and Mn and tartrate.

^aHighest resolution shell is shown in parentheses.

 ${}^{b}CC_{1/2}$ is the correlation coefficient of the half datasets.

 ${}^{e}R_{work} = \sum_{hkl} ||F_{obs}| - |F_{calc}|| / \sum_{hkl} |F_{obs}|$, where F_{obs} and F_{calc} is the observed and the calculated structure factor, respectively. R_{free} is the cross-validation R factor for the test set of reflections (5% of the total) omitted in model refinement.

EFE crystals	Mn•malate	Mn•malate	Ni	Mn•tartrate	Mn•tartrate
·		•L-Arg	8.28 keV	6.59 keV	6.48 keV
Data collection					
Beamline	LS-CAT 21-	LS-CAT 21-	LS-CAT 21-	LS-CAT 21-	LS-CAT 21-ID-
	ID-G	ID-D	ID-D	ID-D	D
Wavelength (Å)	0.979	1.127	1.497	1.881	1.913
Detector distance (mm)	180	120	150	100	100
Number of frames	140 at 1°	131 at 1°	151 at 1°	200 at 1°	170 at 1°
Space group	I2 2 2	P3 ₂ 21	P212121	I2 2 2	I2 2 2
Unit cell a, b, c (Å)	79, 98, 98	87, 87, 104	42, 76, 85	80, 98, 98	80, 98, 98
α, β, γ (°)	90, 90, 90	90, 90, 120	90, 90, 90	90, 90, 90	90, 90, 90
^a Resolution (Å)	38.35 - 1.49	61.24 - 1.48	88.49 - 2.76	69.40 - 2.25	69.43 - 2.29
	(1.51 - 1.49)	(1.51 - 1.48)	(2.91 - 2.76)	(2.32 - 2.25)	(2.37 - 2.29)
Unique reflections	62,625 (2,835)	75,179 (3,605)	7,032 (1,005)	18,082 (1,618)	17,705 (1,695)
^a Redundancy	5.7 (5.4)	7.2 (7.4)	4.3 (4.1)	7.0 (7.2)	5.8 (6.0)
^a Completeness (%)	99.5 (91.0)	97.9 (96.4)	91.9 (93.4)	97.6 (96.5)	99.6 (99.5)
$^{\mathrm{a}}I/\sigma I$	15.7 (2.6)	12.8 (1.9)	5.6 (1.7)	10.2 (3.3)	8.8 (2.4)
$^{a,b}R_{merge}$	0.072 (0.901)	0.078 (0.968)	0.127 (0.427)	0.112 (0.516)	0.119 (0.653)
a, cR_{pim}	0.049 (0.608)	0.045 (0.563)	0.080 (0.298)	0.066 (0.303)	0.079 (0.427)
$^{d}CC_{1/2}$	0.999 (0.844)	0.998 (0.639)	0.990 (0.881)	0.993 (0.854)	0.994 (0.758)
Refinement					
Protein atoms	2,841	2,797	-	-	-
Hydrogen atoms	2,748	2,717	-	-	-
Metal atoms	1	1	-	-	-
Malic acid molecules	1	1	-	-	-
L-Arg molecules	0	1	-	-	-
H ₂ O molecules	278	473	-	-	-
^e R _{work} /R _{free}	0.142 / 0.169	0.135 / 0.162	-	-	-
<i>B</i> -factors (Å ²)	19.9	23.7	-	-	-
Protein	17.2	20.6	-	-	-
Hydrogens	21.2	25.3	-	-	-
Metal	10.4	15.8	-	-	-
Malic acid	20.7	24.2	-	-	-
L-Arg	-	17.7	-	-	-
H ₂ O	22.2	34.0	-	-	-
R.m.s. deviation in bond	0.008	0.010	-	-	-
lengths (Å)					
R.m.s. deviation in bond	0.911	1.029	-	-	-
angles (°)					
Ramachandran plot (%)	98.22	97.06	-	-	-
favored					
Ramachandran plot (%)	0.30	0.59	-	-	-
outliers					
Rotamer outliers (%)	0	0	-	-	-
PDB ID	5V32	5V34	-	-	-

Table S3. Crystal statistics for EFE in complex with Mn and malic acid; Mn, malic acid, and L-Arg; as well as datasets collected for the metal determination of Ni and Mn.

^aHighest resolution shell is shown in parentheses.

 ${}^{b}CC_{1/2}$ is the correlation coefficient of the half datasets.

 ${}^{c}R_{work} = \sum_{hkl} ||F_{obs}| - |F_{calc}|| / \sum_{hkl} |F_{obs}|$, where F_{obs} and F_{calc} is the observed and the calculated structure factor, respectively. R_{free} is the cross-validation R factor for the test set of reflections (5% of the total) omitted in model refinement.

Variant	Role	Ethylene, nmol (%)	P5C, nmol (%)	Ν
WT		$561 \pm 130 (100 \pm 23)$	$253 \pm 63 \ (100 \pm 25)$	15
L73K	Surface	$297 \pm 94 \ (53 \pm 17)$	$145 \pm 16 (57 \pm 7)$	3
L73R	Surface	$27 \pm 19 (5 \pm 3)$	$86 \pm 9 (34 \pm 3)$	4
S81R	Surface	$22 \pm 13 \ (4 \pm 2)$	$15 \pm 11 \ (6 \pm 4)$	3
S81Y	Surface	$7.2 \pm 0.2 \ (1.29 \pm 0.04)$	$16 \pm 6 (6 \pm 2)$	2
E84A	L-Arg binding	$0.0 \pm 0.0 \ (0 \pm 0)$	$13 \pm 6 (5 \pm 2)$	4
R171A	2OG binding	$0.0 \pm 0.0 \ (0 \pm 0)$	$12 \pm 5 (5 \pm 2)$	2
R184A	Surface	397 ± 82 (71 ± 15)	$175 \pm 14 \ (69 \pm 6)$	2
Y192F	L-Arg binding	$69 \pm 10 (12 \pm 2)$	$39 \pm 2(15 \pm 1)$	2
Y192R	L-Arg binding	$0.0 \pm 0.0 \ (0 \pm 0)$	$7 \pm 8 (3 \pm 3)$	4
Y192W	L-Arg binding	$3 \pm 2 (0.6 \pm 0.3)$	52.7 ± 4.3 (21 ± 2)	3
V196R	Hydrophobic pocket	$0.2 \pm 0.2 \ (0.03 \pm 0.04)$	$1 \pm 1 \ (0.3 \pm 0.4)$	2
V196F	Hydrophobic pocket	N/A ^b	N/A	N/A
A198V	Hydrophobic pocket	$14 \pm 1 \ (2.3 \pm 0.3)$	$157 \pm 10 \ (62 \pm 4)$	3
E213A	Surface	$582 \pm 216 (104 \pm 38)$	$235 \pm 15 \ (93 \pm 6)$	2
E213A/E215A	Surface	$19 \pm 22 \ (3 \pm 4)$	$19 \pm 2 \ (8 \pm 1)$	2
E215A	Surface	$23 \pm 7 (4.0 \pm 1.1)$	$21 \pm 0.3 \ (8.0 \pm 0.1)$	2
R277A	2OG binding	N/A ^b	N/A	N/A
A281R	Hydrophobic pocket	$0.1 \pm 0.1 \ (0.02 \pm 0.02)$	$2 \pm 3 \ (0.7 \pm 1.0)$	2
A281V	Hydrophobic pocket	$15 \pm 13 \ (3 \pm 2)$	$12 \pm 5 (5 \pm 2)$	2
F283A	Hydrophobic pocket	$1.0 \pm 0.6 \ (0.12 \pm 0.11)$	$50 \pm 8 \ (20 \pm 3)$	3
F283R	Hydrophobic pocket	$0.0 \pm 0.0 \ (0 \pm 0)$	$48 \pm 4 (19 \pm 1)$	3
F283V	Hydrophobic pocket	$2.4 \pm 4.2 \ (0.4 \pm 0.8)$	$48 \pm 11 \ (19 \pm 4)$	3
F283W	Hydrophobic pocket	$1.1 \pm 0.8 \ (0.2 \pm 0.1)$	$57 \pm 10 (22 \pm 4)$	3
F283Y	Hydrophobic pocket	$0.0 \pm 0.0 \ (0 \pm 0)$	$0.0 \pm 0.0 \ (0 \pm 0)$	2
E285A	Surface	$0.0 \pm 0.0 \ (0 \pm 0)$	$38 \pm 22 (15 \pm 9)$	3
E285Q	Surface	$0.0 \pm 0.0 \ (0 \pm 0)$	$65 \pm 1 \ (26 \pm 1)$	2
Y306A	Hydrophobic interactions	$24 \pm 8 \ (4 \pm 1)$	$14 \pm 4 (5 \pm 1)$	3
Y306F	Hydrophobic interactions	$31 \pm 8 (6 \pm 1)$	$25 \pm 4 (10 \pm 2)$	2
F310R	Hydrophobic interactions	$0.4 \pm 0.3 \ (0.06 \pm 0.05)$	$8 \pm 3 (3 \pm 1)$	3
F310W	Hydrophobic interactions	$120 \pm 47 \ (21 \pm 8)$	$76 \pm 12 \ (30 \pm 5)$	2
C317N	L-Arg binding	$154 \pm 33 \ (27 \pm 6)$	$106 \pm 19 \; (42 \pm 8)$	3
C317S	L-Arg binding	$464 \pm 4 \ (83 \pm 1)$	$242 \pm 3 (96 \pm 1)$	2
Δ338-350	C-terminus	$314 \pm 99 \ (56 \pm 18)$	$163 \pm 9 \ (64 \pm 4)$	2

Table S4. Ethylene and P5C production by EFE variants.^a

^aThe product concentrations are the average of at least two independent assays and are reported as nmoles \pm the standard deviation. Values in parentheses are % product \pm the standard deviation. Whereas ethylene production provides a direct readout of that product, the levels of P5C indicate the amount of C5 hydroxylation of L-Arg. N is the number of replicates for that sample. ^bN/A, not available due to localization of the protein in inclusion bodies.

Near ideal ω 180		twisted >30° from ideal		
Mn•2OG	170.7	Mn•2OG•L-Arg	145.4	
apoprotein	169.7	Mn•2OA•L-Arg	145.7	
Ni	163.1	Mn•2OG•HO-L-Arg	146.8	
Mn•tartrate	169.2	Mn•2OG•L-Arg-amide	147.7	
Mn•malate	168.0	Mn•malate•L-Arg	144.5	
		Mn•L-Arg	150.7	
average	168.1	average	146.8	
Mn•2OG ^a	170.4			
Mn•BTP ^b	174.0			
	Fe•	NOG•L-Arg ^c		
chain A-B	153.7	chain A-A	146.9	
chain B-B	151.6	chain B-A	145.8	
chain C-B	152.3	chain C-A	147.3	
chain D-B	152.5	chain D-A	146.3	
average	152.5	average	146.6	

Table S5. Dihedral peptide angle ω of the Asp191-Tyr192 bond (ideal 180° for C_{α} , C, N₊₁, $C_{\alpha+1}$)

^aPDB 5MFO: EFE•Mn•2OG from Zhang *et al.*¹⁷ ^bPDB 5LSQ: EFE•Mn•bis-Tris-propane from Zhang *et al.*¹⁷ ^cPDB 5LUN: EFE•Fe•NOG•L-Arg from Zhang *et al.*¹⁷ (Note that Asp191 was modelled with two conformations of the sidechain; B represents O_{D1} chelation of the metal, A represents O_{D2} chelation that introduces the twisted peptide bond).

Table S6. Ethylene-forming activities of previously described EFE variants. Information shown on a white, light gray, and dark gray backgrounds were for variants investigated by Zhang *et al.*,¹⁷ Johansson *et al.* (estimated from the published graph),¹⁵ and Nagahama *et al.*²⁴ P5C levels were not monitored in these investigations.

EFE variants	Relative	Proposed role
	ethylene	
	forming	
Wild type	$\frac{\text{activity (\%)}}{100+2.6}$	
	100 ± 3.0	I Ara hinding
E84Q	ND	
E84D	ND	L-Arg binding
1868	31.3 ±0.7	L-Arg binding
186V	ND	L-Arg binding
R171K	ND	L-Arg binding
R171A ^b	ND	L-Arg binding
Y192F ^b	5.6 ±0.2	L-Arg binding
R316K	13.1 ±0.3	L-Arg binding
R316A	3.7 ± 0.1	L-Arg binding
C317S ^b	21.4 ±0.5	L-Arg binding
C317A	34.0 ±0.7	L-Arg binding
Y318F	65.6 ±1.2	L-Arg binding
F175Y	18.6 ±0.5	2OG binding
V270T	4.3 ±0.2	2OG binding
L22M	100.00	Surface
V172T	80.00	Surface
A199G	~38	Surface
VE212-213YS	~50	Loop/Surface
E235D	~90	Surface
I254M	~95	Surface
F278Y	~110	Surface
I304N	ND	Surface/possible hydrophobic interaction with I254
I322V	~110	Surface
Loop deletion, 210-232	ND	Loop/surface/structural stability
C280F	~55	Surface/possible interaction with M54
R326S	~70	Surface
H189A	ND	Metal ligand
D191A	ND	Metal ligand
H268A	ND	Metal ligand
H233A	~125	Surface
H116Q	2.40	Surface
H168Q	3.00	Surface/hydrogen bonds with solvent
H169Q	9.30	Weak hydrogen bonding with L-Arg and π stacking

		interactions with F283
H189Q	ND	Metal ligand
H233Q	ND	Surface/hydrogen bonds with solvent
H268Q	1.80	Metal ligand
H284Q	2.00	Hydrogen bonding with E142 and Y282
H305Q	40.00	Surface/Hydrogen bonds with E308 and solvent
H309Q	3.30	Part of helix that moves toward active site upon bind of
		L-Arg; hydrogen bonds to R312 and D253
H335Q	60.00	Surface

^aND, not detected.

^bIdentical to the variants we report.

EFE Variant	Oligonucleotides
Deletion Δ338-350	F: TAAGGATCCGAATTCGAGC
	R: TTCCAGATGGGCTAACCG
C317N	F: GTTTATGCGGaacTACCCCGATC
	R: ATGTTGGTAAAGTGTTCG
C317S	F: GTTTATGCGGtctTACCCCGATC
	R: ATGTTGGTAAAGTGTTCG
F310R	F: TGGCGAACACcgtACCAACATGTTTATG
	R: TAATGAATCCGTTCATTGG
F310W	F: TGGCGAACACtggACCAACATGT
	R: TAATGAATCCGTTCATTGGC
Y306F	F: ACGGATTCATtttGGCGAACACTTTAC
	R: TCATTGGCGGAGGGTTCA
Y306A	F: ACGGATTCATgcgGGCGAACACTTTACC
	R: TCATTGGCGGAGGGTTCA
E285A	F: TTATTTTCACgcgCCCAACTTTGAAGCCTC
	R: GCACAGGCAAACCGTTCA
E285Q	F: TTATTTTCACcagCCCAACTTTGAAGCCTC
	R: GCACAGGCAAACCGTTCA
F283R	F: CTGTGCTTATcgtCACGAACCCAACTTTG
	R: GCAAACCGTTCACGGGTA
F283Y	F: CTGTGCTTATtatCACGAACCCAAC
	R: GCAAACCGTTCACGGGTA
F283W	F: CTGTGCTTATtggCACGAACCCAAC
	R: GCAAACCGTTCACGGGTA
F283A	F: CTGTGCTTATgcgCACGAACCCAACTTTG
	R: GCAAACCGTTCACGGGTA
F283V	F: CTGTGCTTATgtgCACGAACCCAAC
	R: GCAAACCGTTCACGGGTA
A281V	F: GTTTGCCTGTgtgTATTTTCACGAACC
	R: CGTTCACGGGTATTCAATTTC
A281R	F: GTTTGCCTGTcgtTATTTTCACGAACC
D0774	
R2//A	F: TACCCGTGAAgcgTTTGCCTGTG
Fate	
E215A	F: CGTGGAAGGGgcgAAACGGAATC
E213A/E215A	F: ggccAACGGAATCGCAACTGG
E212A	
E213A	$\mathbf{R} \cdot \mathbf{C} \mathbf{G} \mathbf{A} \mathbf{T} \mathbf{G} \mathbf{T} \mathbf{A} \mathbf{C} \mathbf{A} \mathbf{G} \mathbf{A} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{A} \mathbf{A}$
A198V	F. GTTGGTGATTotoGCTCAGGATG
A170 V	\mathbf{R} AGACCATAATCGGTATGG
V196R	F. TGGTCTGTTGcotATTGCCGCTCAGGATG
, 1, 010	R [•] TAATCGGTATGGGCACCA
V196F	F: TGGTCTGTTGtttATTGCCGCTC

Table S7. Oligonucleotides used for EFE mutagenesis. F and R correspond to forward and reverse primers, respectively.

	R: TAATCGGTATGGGCACCA
Y192F	F: CCATACCGATtttGGTCTGTTGGTG
	R: GCACCAATGCCCCGACTC
Y192W	F: CCATACCGATtggGGTCTGTTGGTGATTGC
	R: GCACCAATGCCCCGACTC
Y192R	F: CCATACCGATcgtGGTCTGTTGGTGATTGC
	R: GCACCAATGCCCCGACTC
R184A	F: CACTCTGAGTgcgGGCATTGGTG
	R: GAGGTTTGGGGGGGGAAAA
R171A	F: GCATCACATGgcgGTGTTACGTTTTCCCC
	R: CATCCGTCACGGGTCAAA
E84A	F: CTCCGGTGAAgcgGTTACCGCTG
	R: GCCACGTAGCCAGAATAA
S81R	F: CTACGTGGCCcgtGGTGAAGAAG
	R: CCAGAATAAGTTAAATCGC
S81Y	F: CTACGTGGCCtatGGTGAAGAAG
	R: CCAGAATAAGTTAAATCGC
L73R	F: CGTGAGCGATcgtACTTATTCTGG
	R: CAACTGGATTTAAAGGTCAAG
L73K	F: CGTGAGCGATcgtACTTATTCTGG
	R: CAACTGGATTTAAAGGTCAAG

Table S8. Crystallization conditions for 4 °C sitting drop vapor diffusion. Protein buffer was always 25 mM HEPES, pH 8.0, with 1 mM TCEP. Crystals were cryoprotected by soaking ~1 min in 25% cryoprotectant and 75% reservoir solution.

Structure	PDB	Drop	EFE	Reservoir	μl	Cryo 25%
ligand	ID	μĺ	mg/ml			-
apoprotein	5V2U	0.5	72	20% w/v PEG 6,000	200	none
		+		0.1 M Tris, pH 8.0		
		0.5		0.2 M LiCl		
<u>Nickel^a</u>	5V2V	0.5	72	20% w/v PEG 6,000	200	none
		+		0.1 M Tris, pH 8.0		
		0.5		0.2 M LiCl		
<u>Mn•2OG</u>	5V2X	0.18	61	20% w/v PEG 6,000	50	glycerol
1 mM MnCl ₂		+		0.1 M Tris, pH 8.0		
0.6 mM 2OG		0.18		0.2 M LiCl		
Mn•2OG•L-Arg	5V2Y	0.2	64	25% w/v PEG 3,350	50	PEG 400
4 mM MnCl ₂		+		0.1 M Bis-Tris, pH 6.5		
2.5 mM 2OG + L-Arg		0.2		0.2 M NaCl		
Mn•2OA•L-Arg	5V2Z	0.5	64	25% w/v PEG 3,350	200	PEG 400
4 mM MnCl ₂		+		0.1 M Bis-Tris, pH 6.5		
3 mM 2OA		0.5		0.2 M NaCl		
3 mM L-Arg						
Mn•2OG•HO-L-Arg	5VKA	0.5	72	20% w/v PEG 6,000	200	ethylene
9 mM MnCl ₂		+		0.1 M Tris, pH 8.0		glycol
100 mM 2OG		0.5		0.2 M LiCl		
10 mM HO-L-Arg						
Mn•2OG•L-Arg-amide	5VKB	0.5	72	20% w/v PEG 6,000	200	PEG 400
9 mM MnCl ₂		+		0.1 M Tris, pH 8.0		
100 mM 2OG		0.5		0.2 M LiCl		
10 mM L-Arg-amide						
<u>Mn•malate•L-Arg</u>	5V34	0.2	64	25% w/v PEG 1,500	50	PEG 400
4 mM MnCl ₂		+		0.1 M DL-malic acid:MES:Tris		
2.5 mM L-Arg		0.2		buffer, pH 6.5		
<u>Mn•L-Arg</u>	5V31	0.2	64	25% w/v PEG 10,000	50	PEG 400
1 mM MnCl ₂		+		0.1 M HEPES, pH 7.5		
2.5 mM L-Arg		0.2				
Mn•tartrate ^b	5V2T	1	59	1 M potassium sodium tartrate	200	glycerol
1.2 mM MnCl ₂		+ 1		0.1 M MES, pH 6.0		
Mn•malate	5V32	0.2	64	20% w/v PEG 3,350	50	PEG 400
4 mM MnCl ₂		+0.2		0.15 M DL-malic acid, pH 7.0		

^aA single apoprotein crystal was soaked for 2 h in a sitting drop containing 0.1 M NiCl₂, 0.2 M LiCl, 0.1 M Tris, pH 8.0, 20% w/v PEG 6,000, with the reservoir of 100 µl containing 0.2 M LiCl, 0.1 M Tris-HCl, pH 8.0.

^bThis dataset was used to solve the phases by SAD using EFE containing Se-Met.

REFERENCES

- 1. Martinez, S.; Hausinger, R. P. Biochemistry 2016, 55, 5989-5999.
- Nagahama, K.; Ogawa, T.; Fujii, T.; Tazaki, M.; Tanase, S.; Morino, Y.; Fukuda, H. *Microbiology* 1991, 137, 2281-2286.
- 3. Fukuda, H.; Ogawa, T.; Tazaki, M.; Nagahama, K.; Fujiil, T.; Tanase, S.; Morino, Y. Biochem. Biophys. Res. Commun. 1992, 188, 483-489.
- 4. Doublié, S. Macromolecular crystallography protocols: Volume 1, preparation and crystallization of macromolecules, Walker, J. M.; Doublié, S., Eds. Humana Press: Totowa, NJ, 2007; pp 91-108.
- 5. Sparta, K. M.; Krug, M.; Heinemann, U.; Mueller, U.; Weiss, M. S. J. Appl. Crystallogr. 2016, 49, 1085-1092.
- 6. Battye, T. G.; Kontogiannis, L.; Johnson, O.; Powell, H. R.; Leslie, A. G. Acta Crystallogr. 2011, D67, 271-281.
- 7. Evans, P. R.; Murshudov, G. N. Acta Crystallogr. 2013, D69, 1204-1214.
- Adams, P. D.; Afonine, P. V.; Bunkóczi, G.; Chen, V. B.; Davis, I. W.; Echols, N.; Headd, J. J.; Hung, L.-W.; Kapral, G. J.; Grosse-Kunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R.; Read, R. J.; Richardson, D. C.; Richardson, J. S.; Terwilliger, T. C.; Zwart, P. H. Acta Crystallogr. 2010, D66, 213-221.
- 9. Terwilliger, T. C.; Adams, P. D.; Read, R. J.; McCoy, A. J.; Moriarity, N. W.; Grosse-Kunstleve, R. W.; Afonine, P. V.; Zwart, P. H.; Hung, L.-W. *Acta Crystallogr.* **2009**, *D65*, 582-601.
- 10. Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K. Acta Crystallogr. 2010, D66, 486-501.
- 11. Chen, V. B.; Arendall, B., III; Headd, J. J.; Keedy, D. A.; Immormino, R. M.; Kapral, G. J.; Murray, L. W.; Richardson, J. S.; Richardson, D. C. *Acta Crystallogr.* **2010**, *D66*, 12-21.
- 12. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. *J. Comput. Chem.* **2004**, *25*, 1605-1612.
- 13. Laskowski, R. A.; Swindells, M. B. J. Chem. Inf. Modeling 2011, 51, 2778-2786.
- 14. Weingart, H.; Völksch, B.; Ullrich, M. S. Phytopathology 1999, 89, 360-365.
- 15. Johansson, N.; Persson, K. O.; Larsson, C.; Norbeck, J. BMC Biochem. 2014, 15, 1-8.
- 16. Robert, X.; Gouet, P. Nucl. Acids Res. 2014, 42, W320-W324.
- Zhang, Z.; Smart, T. J.; Choi, H.; Hardy, F.; Lohans, C. T.; Abboud, M. I.; Richardson, M. S. W.; Paton, R. S.; McDonough, M. A.; Schofield, C. J. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 4667-4672.
- 18. Chang, W.-c.; Guo, Y.; Wang, C.; Butch, S. E.; Rosenzweig, A. C.; Boal, A. K.; Krebs, C.; Bollinger, J. M., Jr. *Science* **2014**, *343*, 1140-1144.
- 19. Welford, R. W. D.; Clifton, I. J.; Turnbull, J. J.; Wilson, S. C.; Schofield, C. J. Org. Biomolec. Chem. **2005**, *3*, 3117-3126.
- 20. Bräuer, A.; Beck, P.; Hintermann, L.; Groll, M. Angew. Chemie 2016, 55, 422-426.
- Chowdhury, R.; McDonough, M. A.; Mecinovíc, J.; Loenarz, C.; Flashman, E.; Hewitson, K. S.; Domene, C.; Schofield, C. J. *Structure* 2009, *17*, 981-989.
- 22. Hu, L.; Li, Z.; Cheng, J.; Rao, Q.; Gong, W.; Liu, M.; Shi, Y. G.; Zhu, J.; Wang, P.; Xu, Y. Cell 2013, 155, 1545-1555.
- 23. Yang, C.-G.; Yi, C.; Duguid, E. M.; Sullivan, C. T.; Jian, X.; Rice, P. A.; He, C. *Nature* **2008**, *452*, 961-965.
- 24. Nagahama, K.; Yoshino, K.; Matsuoka, M.; Tanase, S.; Ogawa, T.; Fukuda, H. *J. Ferment. Bioeng.* **1998**, *85*, 255-258.