Supporting Information

Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO₂ Reduction

Shengjuan Huo, $^{*,\dagger, \ddagger, \parallel, \$}$ Zhe Weng, $^{\ddagger, \parallel, \$}$ Zishan Wu, $^{\ddagger, \parallel}$ Yiren Zhong, $^{\ddagger, \parallel}$ Yueshen Wu, $^{\ddagger, \parallel}$ Jianhui Fang[†] and Hailiang Wang^{*, \ddagger, \parallel}

[†] Department of Chemistry, Science Colleges, Shanghai University, 99 Shangda Road, Shanghai 200444, China.

[‡] Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.

^{II} Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States.

[§] Shengjuan Huo and Zhe Weng contributed equally to this work.

* E-mail addresses: huoshengjuan@shu.edu.cn (S. Huo), hailiang.wang@yale.edu (H. Wang).

#	1	2	3	4	5	6	7	8	9	10	11	12	13
C_{SnCl_2}/M	0	0.001	0.0025	0.005	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
V_{SnCl_2}	0	2.5 μL	2.5 μL	2.5 μL	10 µL	100 µL	330 µL	0.5 mL	0.75 mL	1 mL	1.5 mL	2 mL	8 mL
C _{Cu(OAc)2}	0.02 M												
$V_{Cu(OAc)_2}/\ mL$	8	8	8	7.999	7.99	7.9	7.67	7.5	7.25	7	6.5	6	0
C _{CNT}	4 mg/mL												
V _{CNT}	2 ml												
Скон	0.5 M												
$V_{KOH}/\mu L$	600	605	610	620	630	640	730	670	690	710	760	830	1000

Table S1. The recipes for synthesizing the CuO_y/SnO_x -CNT materials.

Table S2. Designed and measured (by XRF) Y_{Sn} atomic ratios for the CuO_y/SnO_x -CNT materials.

#	1	2	3	4	5	6	7	8	9	10	11	12	13
Measured Y _{Sn} Sn/(Sn+Cu) %	0	0.01	0.014	0.029	0.275	2.65	6.20	9.31	13.16	21.05	25.38	30.21	100
Designed Y_{Sn} value %	0	1.56×10 ⁻³	3.91×10 ⁻³	7.81×10 ⁻³	0.125	1.25	4.13	6.25	9.37	12.5	18.75	25	100

Figure S1. SEM images of (a) CuO_y-CNT-1#, (b-l) CuO_y/SnO_x-CNT-#2-#12, and (m) SnO_x-CNT-#13.

Figure S2. TEM images of CuO_y/SnO_x-CNT-#7.

Figure S3. O 1s core level XPS spectra of CuO_y-CNT-#1, CuO_y/SnO_x-CNT-#2, CuO_y/SnO_x-CNT-#7, CuO_y/SnO_x-CNT-#12 and SnO_x-CNT-#13.

Figure S4. Linear sweep voltammograms of CuO_y -CNT-#1, CuO_y /SnO_x-CNT-#2, CuO_y /SnO_x-CNT-#7, CuO_y /SnO_x-CNT-#12 and SnO_x-CNT-#13 electrocatalysts measured in CO₂-saturated 0.1 M KHCO₃ solution at a scan rate of 50 mV/s.

Figure S5. Long term catalytic stability for the (a) CuO_y/SnO_x -CNT-#7 and (b) CuO_y/SnO_x -CNT-#12 electrocatalysts at -0.99 V vs. RHE in 0.1 M KHCO₃ solution.

Figure S6. Chronoamperograms for the CuO_y/SnO_x -CNT-#12 and SnO_x -CNT-#13 electrocatalysts at -0.99 V vs. RHE in CO₂-saturated 0.1 M KHCO₃ solution.

Figure S7. Low-magnification TEM images of (a) CuO_y -CNT-#1, (b) CuO_y /SnO_x-CNT-#2, (c) CuO_y /SnO_x-CNT-#7, (d) CuO_y /SnO_x-CNT-#12, and (e) SnO_x-CNT-#13 after CO₂ electroreduction catalysis.