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1. Mathematical Modelling of a Fixed-Bed Reactor for Fischer–Tropsch Synthesis Process 

A numerical analysis and mathematical modelling can be used as an effective tool to provide knowledge about a 

catalytic reaction. Experimental studies are typically very expensive; whereas theoretical modelling studies 

require only a suitable model formulation and adequate physicochemical data. The information such as 

temperature, reactant composition and products’ distributions obtained from the modelling is significantly 

helpful in reactor design, scale-up, the understanding of its behaviour in operation and predicting the effect of 

changing operating conditions. Here, the procedures in developing the mathematical model of a fixed-bed FT 

synthesis reactor that is used in the evaluation of the kinetic parameters, parametric studies and optimization of 

the reactor operations, are discussed in detail. In addition, the general selection criteria and the governing 

equations used in the modelling of a fixed-bed reactor are explained. In principle, a model should be tailored for 

its main purpose. It should be as simple as possible, but still include a sufficient representation of the essential 

mechanisms involved. Hence, several assumptions were taken into account in order to facilitate the 

computational procedure and the model equations; such as species balance, continuity equation and pressure 

drop.  An algorithm was developed to solve the system of equations which includes the mathematical description 

of the reactor model, reaction kinetics, and steps towards estimating kinetic parameters. 

In general, procedures for obtaining the kinetics parameters involved several steps; such as (i) selection and 

construction of experimental equipment; (ii) planning of experiments; (iii) conducting them; (iv) checking the 

consistency of the experimental data; (v) developing kinetics models; (vi) developing a mathematical model of a 

catalytic reactor by derivation of governing conservation equations; and (vii) evaluation of the kinetics 

parameters. The latter tasks can be carried out by classical methods, which are mostly on the basis of graphical 

procedures; or by modern approaches, which rely on statistical methods as will be explained in section 3.2. The 

evaluation of kinetics parameters based on statistical methods necessitates the implementation of a particular 

kinetics model on a computer and subsequent parameter estimation; then, the physical and statistical consistency 

of the kinetics parameters has to be evaluated. If the values of the parameters are for some reason unacceptable, 

then the estimation of the parameters should be repeated, sometimes with additional experiments or by reducing 

the number of system parameters by simplifying the reactor model and/or kinetics model. Corresponding to the 



procedures mentioned above, one can say that the following steps are the next sequences for the whole 

theoretical investigation of the model: (viii) validation of the mathematical model using the evaluated kinetics 

parameters in the latter task; (ix) parametric studies of effective independent variables to investigate the 

performance of the fixed-bed FT synthesis reactor over a Co/SiO2 catalyst for conversion and selectivities; (x) 

numerical optimization of the operating conditions to maximize the FT synthesis conversion, selectivities and 

productions of favourable compositions. A block diagram of the complete process is illustrated in Figure S1.  



 

Figure S1 The whole process involved in the development of kinetics modelling of the FT synthesis process. 



In a one-dimensional model (also known as a plug flow model), fluid properties (e.g. temperature, concentration 

and velocity) are assumed to be uniform over the tube cross-section. Hence, the gradients of these properties 

(i.e. the resistance to heat and mass transfer) in the radial and angular directions are neglected; the properties are 

varied only in the axial direction (e.g. along the reactor bed length). 

2. Algorithm Development and Numerical Method 

Regardless of the technique (e.g. finite difference or finite element method) that is used to solve the system of 

differential equations (e.g. ODE or PDE), it is necessary to build the solution method into an algorithm which 

will be turned into a computer program. The intention was to provide recipes for solving the final problem in 

which experimental data is predicted satisfactorily by a mathematical model. Here, the developed algorithm was 

found useful in solving the reactor problem not only in a fixed-bed reactor but also in a different reactor type. A 

solution algorithm was presented that is effective in solving the single tube reactor model. Such a solution 

methodology can be applied to a wide variety of problems which require the solution of sets of coupled non-

linear partial differential equations (e.g. 2
nd

 order differential equations 
1
). The algorithm was applied after the 

decision was made about which numerical scheme to employ and the equations were reformulated in the 

appropriate manner. The algorithm illustrated in Figure S2 and Figure S3 referred to a steady-state one-

dimensional model; however, the methodology is easily extended to two- or three-dimensional models or shifted 

to an unsteady-state condition. 



 

Figure S2 Flow-chart diagram of mathematical and kinetics modelling procedure. 



 

Figure S3 Flowchart diagram of optimization procedure in estimation of kinetics parameters. 



The mole balance equation is, in fact, the most difficult to solve because it is highly nonlinear due to the nature 

and order of reaction rates in terms of concentration of different species such as CO, CO2, H2 and H2O. The 

unknown dependent variables in the reactor were the concentration, mole fraction and partial pressure of the 

species in the flow direction; the rate equation for the multiple reactions; as well as the fluid velocity and total 

pressure of the system. The approach was to solve each differential equation in turn, cycling through the 

equations one after another, repeating the process until a final converged solution was gained at the reactor 

outlet. It was assumed that the domain was discretized and that the solution was calculated at a number of fixed 

points (locations) along the length of the packed bed. The steps were as follows: 

i. The physical and chemical parameters involved in the reactor model were initialized. These parameters 

were either fixed values or functions of temperature, concentration, pressure and/or velocity. Some of 

these values were stored in a data file and some others were built into library of functions to be called by 

the main MATLAB program. 

ii. The temperature was assumed to be constant. Therefore, the species partial pressure, concentration, and 

mole fraction, as well as the total pressure and velocity of the fluid flow were initialized.  

iii. The total pressure of the fluid flow i.e. Equation 6, was solved using the most recent values for 

concentration and partial pressure. The value of the pressure was then updated to be used to solve the 

density of the fluid mixture i.e. Equation 4.  

iv. The fluid velocity field i.e. Equation 3, was then determined by using the updated (the most recent) value 

of pressure and fluid velocity which was stored as an input to the next steps. 

v. Then, the last stored data were used to calculate the partial pressure (Equation 2), concentration 

(Equation 1), mole fraction and weight fraction of each chemical compound defined in the reactor 

problem. 

vi. Steps (ii) to (v) were repeated using several nested loops until all the unknown dependent variables were 

solved at each specified fixed node (location) in the spatial coordinate and for different experimental 

cases (conditions). 

vii. The results were then stored in the library and data file to be used in the post processing section that was 

used to perform statistical analysis, such as F-test and t-test to ensure that the model and the parameters 

were statistically significant. Also, the relative residual between the calculated and measured data was 

determined to check the accuracy of the prediction. 

viii. A statement was made so that if the accuracy of the prediction and/or statistical analysis failed, then the 

model must be rejected and steps (iii) to (vii) must be repeated. 

ix. Finally, the results were printed and plotted for further analysis and investigation. 
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In order to solve the dependent variables (e.g. concentrations, partial pressures, reactants’ conversions and 

products’ selectivity) a numerical method was used. Euler’s and finite difference approximation were employed 

to solve Equation 1 to Equation 5 at each point (��, �", �/, …, �34�, and �3) from an initial value of �5. The 

backward finite difference for the first order ODEs was programmed in the space increments. Therefore, the 

node �3 is directly calculated from the �34� by computing the derivative at �3. The exact solution was 

converged by reducing the step size which leads to a decrease of the error. The variables were calculated along 

the axial dimension in multi-nested loops. The advantage of this combined method was that the percentage error 

produced by the program code was negligible. 

The model was discretized in the dimension needed by the code (i.e. ‘’�’’, ‘’6’’and ‘’7’’ which are length, 

number of species and number of experimental conditions, respectively) as follows: 
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3. Optimization Methodology for Kinetics Parameter Estimation 

 Optimization Method 3.1.

Parameter estimation problems were stated as minimizing the objective function that measured the correctness 

of the fit of individual models with respect to a given experimental data set. Each presented model contained a 

number of unknown independent parameters so that the values should be estimated by an advanced optimization 

technique to obtain a model fitting the experimental results. The procedures were as follows: the value of the 

dependent variables (i.e. reaction rates, conversion and selectivity of different components) were predicted by 

the model; a function ‘f’, contained independent variables (i.e. temperature (T), pressure (��) and gas hourly 

space velocity (GHSV)) and parameters (i.e. kinetics parameters such as kinetic rate constants (K�), adsorption 

equilibrium constants (L�) and activation energies (M
). The choice of optimization technique depends on the 

level of sophistication of the problem. In the case of a reactor problem, the reactor model along with the 



chemical reaction networks was stated as a nonlinear programming (NLP) problem, especially when a high 

order of reaction rates builds the network. There is evidence that traditional (gradient-based), local, optimization 

methods fail to arrive at satisfactory solutions and are not suitable for nonlinear problems. As a consequence, 

the values of the parameters were estimated by an advanced global optimization technique, which is a powerful 

and objective tool for this purpose. Among different global optimization methods, the Global Search algorithm 

together with the Levenberg-Marquardt (LM) algorithm were delivered as an alternative to surmount the 

difficulties mentioned above. This method is capable of avoiding convergence to the local minima (sub-optimal 

solutions) during the search process. In the optimization procedure, the independent parameters (e.g. kinetics 

parameters) were subject to upper and lower bounds acting as inequality constraints (�&N ≤ � ≤ �ON). The 

optimization problem aimed at estimating the kinetics parameters in such a way that the objective function was 

not just minimized, but also the global minimum value of the objective function was achieved. The problem 

consisted of APQ+ G ,ARP�+ 0 AS 0 AT. Partial Differential Equations (PDEs) that described the changes of 

concentration of reactants and products, as well as fluid velocity and density along the reactor bed length and 

one Ordinary Differential Equation (ODE) for that of total pressure (��). The term NVWX denotes the total 

number of experimental runs; ARP�+ is the number of responses (i.e. chemical species); AS is the equation related 

to the velocity field and AT is related to that of fluid density. The goal was to find such numerical values of the 

parameters that the model gives the best possible agreement with the experimental data. From the governing 

balance equations in the model, it is clear that the model was non-linear with respect to the parameters and 

variables. For estimation of the kinetic models, the dependent variable (i.e. model responses in the regression 

procedure) were the outlet conversion of CO, the selectivities of CO2, CH4, C2H4, C2H6, C3H6, C3H8, C4H10, 

C5H12, C6H12, C7H16 and overall selectivity of C5+ that represents the overall formation of liquid products. The 

objective function is defined by Equation 8. 
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Where ]
PQ+ and ]
̂ _` are the measured and predicted values of conversions of reactants or the selectivities of 

products, respectively. Due to the complexity of the models, a multi-response objective function was introduced, 

in the following form: 
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Where ‘6’ denotes each component in the reaction mixture; ws,t represents the weighting factor of the response 

‘i’ in experimental run ‘j’, which was used as the experimental scattering varying between different data. Those 

responses with the most accurate measurement and/or with special significance in the regression were provided 

with greater weights. In fact, the weighting factor expressed the relative importance of the response ‘i’ in 

experimental run ‘j’; 	<jH�,
 , �k is the value of model prediction. 



 Data Analysis 3.2.

As explained in section 3.1, to avoid getting trapped in local minima, the globally kinetic parameters of the 

various rival models were estimated using the combined GlobalSearch algorithm and Levenberg-Marquardt 

(LM) algorithm. Then, the statistical tests as well as physicochemical constraints were employed to evaluate the 

significance of the models and kinetic parameters. The optimisation procedure was designed to find the optimal 

minimum value of the objective function defined in section 3.1, which delivered: (i) a reasonable fit to the 

measured values; (ii) physically meaningful values of the kinetic model parameters; (iii) acceptable values of 

statistical parameters, e.g. gS_`vP  for the predicted model as well as 7S_`vP for the estimated kinetic parameters 

and these criteria were studied in the following sections (3.3-3.6). 

 Physicochemical Constraints 3.3.

For scanning the models by parameter optimization, several physicochemical criteria were applied, such as 

those defined for rate constants (K
), adsorption equilibrium constants (L�) and activation energies (M
). Kinetic 

rate constants and adsorption equilibrium constants should be positive. Also, the values of activation energies 

should be positive and for different components e.g. methane, ethane, WGS, higher paraffin and olefins’ 

formation should be in the range of values reported in the previous work 2. 

 Mean Absolute Percentage Deviation (MAPD) 3.4.

Equation 10 indicates the relative residual (RR) percentage error between predicted values and experimental 

data of individual response 'i'. This equation was used to indicate the deviation between the model and 

experiment for each individual response. The RR (%) values for the responses of each model were presented in 

the previous work 2. 
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In order to measure the accuracy of the fit of the models relative to the experimental data, the results were 

analysed quantitatively by the mean absolute percentage deviation (MAPD) using Equation 11. The MAPD (%) 

values were determined for developed mechanistic models as well as for power-law rate expression 
2
 and 

compared with those from literature models. 

�x�y,%. � 	 1APQ+ARP�+ � z� \{]�,
PQ+ � <jH�,
 , �k]�,
PQ+ { G 100a�mno


�� |�pmqo

���  Equation 11 

 F-test Analysis 3.5.

In addition to providing an excellent fit to the experiments, all the models should be significantly relevant and 

physically meaningful. One way to assure the significance of the predicted model results is the statistical 



analysis called the F-test, where the significances of the overall regression were statistically determined. The F-

test was used to see if the fit has any significance at all. The test was performed by taking two factors into 

account: 

I. SST term that is the total sum of squared deviations of the experimental data with respect to their mean 

value. 

II. SSE term that is the residual sum of squared deviations of the experimental results with respect to the 

predicted values by the model. 

Finally, the gR_}�Z for each individual response and the total responses were calculated by Equation 12. The gR_}�Z determined for the models were given in 
2
. 
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In this equation, n is a degree of freedom of a number of data points (APQ+ G ARP�+) and m is corresponding to 

the number of kinetics parameters. It is possible to reject the null hypothesis and hence accept the model. This 

happens when the gR_}�Z determined for the responses are higher than the value of ĝ R�}�^_` which is the 

corresponding tabulated value 
3-5

 (gR_}�Z 	� 	 ĝ R�}�^_`,> � 1, D � >; 1 � �.); ĝ R�}�^_` is the tabulated α-

percentage point of the F-distribution with > � 1 and D � > degrees of freedom. If the calculated value is 

larger than the tabulated value (can be found in 
2
), there is a probability of 1– � (e.g., 99%) that the model is 

adequate and the regression is considered to be meaningful, therefore the model is accepted. Among a set of 

rival models, the one with the highest gR_}�Z would be considered the ‘‘best’’ and that it would be statistically 

adequate. 

 t-test Analysis 3.6.

The t-test was performed to ensure that the kinetics parameters obtained by the optimization, were significantly 

relevant. The estimated kinetics parameters were tested for their significance based on their individual 7S_`vP 

calculated by the procedure below (see Table S1). The parameter with the lowest 7S_`vP is the least significant 

parameter and here a parameter is evaluated as insignificant if its 7S_`vP is less than the 7^R�}�^_` from the 

tabulated values that can be obtained from the literature 
3, 4, 6

. For the optimum kinetics model, the calculated 7S_`vP of the kinetic parameters was determined for the models and presented in 2. The steps for calculating the 7S_`vP of the kinetic parameters are as follows: 

I. Determination of the hypothesized or population mean (µ). When the errors are normally distributed with 

zero mean and constant variance, the random variables are distributed like the normal (Gaussian) 

distribution. At the given probability level (e.g. 99%), the calculated n values have to exceed tabulated 7S_`vP for the parameter to be significantly different from a reference value, which is zero (µ=0). This 



property is used in a two-sided t-test to verify if the estimated parameters differ from a reference value 

(zero), when other parameters are kept constant at their optimal estimated value. 

II. Computation of the sample mean (��) (see Equation 13). 

III. Computation of the sum of the squares of the individual parameters obtained from each experimental run 

(see Equation 14). 

IV. Computation of the sum of the square difference as expressed (see Equation 15).  

V. Computation of the estimated variance of the sample data (see Equation 16). 

VI. Computation of the standard error of the mean (SEM) (see Equation 17). 

VII. Calculation of the 7S_`vP from (see Equation 18). 

VIII. Computation of the degree of freedom (see Equation 19). 

IX. Computation of the critical value for t (called 7�^ZRP or 7^R�}�^_`) with that degree of freedom and 

probability value using a provided table in the literature 
3, 4, 6

. 

X. Comparison of the calculated 7S_`vP of individual kinetic parameters to the tabulated 7^R�}�^_` (can be 

found in 
2
). 

When 7S_`vP � 	 7^R�}�^_`,D � >; 1 � �. the hypothesis that the parameter would be zero can be rejected. The 

quantity 7^R�}�^_`,D � >; 1 � �. is the tabulated � percentage point of the t-distribution with D � > degrees of 

freedom. There are limits on the complete collection of reference values which are not significantly different 

from the optimal estimates, I
 at the selected probability level	1– 	�, provided that the other estimates are kept 

constant upon their optimal estimate. They are symmetrical with respect to the optimal point estimate	I
. Hence, 

the confidence intervals of individual kinetic parameters	at are defined by:	I
 � �g < I
 < I
 0 �g. 

Table S1 Steps through the computation of 7S_`vP to test the level of significance of obtained kinetic parameters 

Step (II) 

 

Equation 13 

Step (III) 

 

Equation 14 

Step (IV) 

 

Equation 15 
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Step (V) 

 

Equation 16 

Step (VI) 

 

Equation 17 

Step (VII) 

 

Equation 18 

Step (VIII) 

Equation 19 
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