
The Na_xMoO₂ Phase Diagram ($1/2 \le x < 1$): An Electrochemical Devil's Staircase

Laura Vitoux^{1,2}, Marie Guignard^{1,2*}, Matthew R. Suchomel^{1,2}, James C. Pramudita³, Neeraj Sharma³, Claude Delmas^{1,2}

¹ CNRS, ICMCB, 87 avenue du Dr A. Schweitzer, 33608 Pessac Cedex, France, ² Université de Bordeaux, ICMCB, 87 avenue du Dr A. Schweitzer, 33608 Pessac Cedex, France. ³ School of Chemistry, UNSW Australia, Sydney, New South Wales 2052, Australia.

Supporting information

Figure S1. Zoom over the X-ray diffraction patterns collected during the (a) Operando in situ experiment and (b) the second in situ experiment. The stacking type adopted by the structure of the Na_xMoO_2 material upon sodium intercalation is determined based on the intensity ratio of diffraction lines issued from (104)_{hex} and (105)_{hex}. The resulting stacking types are indicated next to the phase diagram aside the X-ray diffraction data.

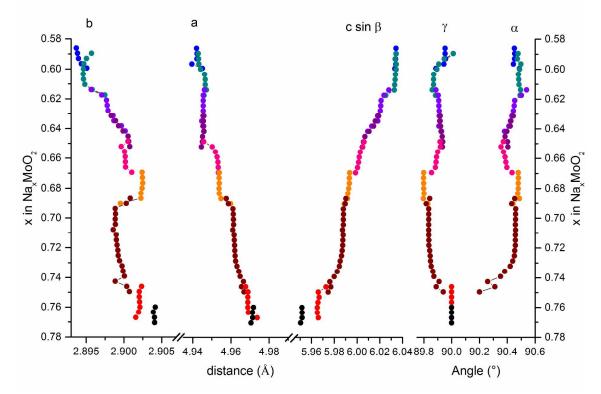


Figure S2. Evolution of the cell parameters of the NaxMoO2 phases upon sodium intercalation.