Supporting Information

Specific Heat Capacities of Two Functional Ionic Liquids and Two Functional Deep Eutectic Solvents for the Absorption of SO₂

Kai Zhang,[†] Haomin Li,[‡] Shuhang Ren,[†] Weize Wu,^{*,†} and Yuyun Bao[†]

[†]State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

[‡]Health Science Center, Peking University, Beijing 100191, China

^{*} Corresponding author. E-mail: wzwu@mail.buct.edu.cn. Tel./Fax: +86 10 64427603.

Chemical Name	Source	CAS Registry number	Mass Fraction Purity/%	Purification Method
Aluminium oxide	Aladdin Chemical Co., Ltd., Shanghai, China	1344-28-1	99.99	none
1,1,3,3-tetramethylguanidine	Aladdin Chemical Co., Ltd., Shanghai, China	80-70-6	99	none
Monoethanolamine	Aladdin Chemical Co., Ltd., Shanghai, China	141-43-5	99	none
Lactic acid	Aladdin Chemical Co., Ltd., Shanghai, China	50-21-5	80-85 ^{<i>a</i>}	none
Betaine	Yuanye Bio-Technology Co., Ltd., Shanghai, China	107-43-7	99	none
L-carnitine	Bio-Technology Co., Ltd., Shanghai, China	541-15-1	99	none
Ethylene glycol	Sinopharm Chemical Reagent Co., Ltd., Beijing, China	107-21-1	99	none
Bet-EG DES	Prepared in the present work	-	98.8	N ₂ sweeping ^b
L-car-EG DES	Prepared in the present work	_	98.5	N ₂ sweeping ^c
TMGL	Prepared in the present work	_	98.3	N ₂ sweeping ^d
MEAL	Prepared in the present work	_	98.0	N ₂ sweeping ^e

Table S1. The Chemicals Used in the Present Study

^{*a*}, The other fraction is water. ^{*b*}, water content in mass fraction is 0.11 %. ^{*c*}, water content in mass fraction is 0.15 %. ^{*d*}, water content in mass fraction is 0.29 %. ^{*e*}, water content in mass fraction is 0.25 %, and the prepared MEAL contains 20.6 % of lactic acid monoethanolamide in mole fraction.

Figure S1. ¹H NMR spectra of DESs and ILs. (a), Bet-EG; (b), L-car-EG; (c), TMGL; (d), MEAL.

Figure S2. Curves of heat flow and measured C_p for EG. **a**, heat flow of equilibrium cell; **b**, measured C_p ; **c**, heat flow of equilibrium cell + aluminium oxide; **d**, heat flow of equilibrium cell + EG.

Figure S3. Curves of heat flow and measured C_p for TMGL. **a**, heat flow of equilibrium cell; **b**, measured C_p ; **c**, heat flow of equilibrium cell + aluminium oxide; **d**, heat flow of equilibrium cell + TMGL.

Figure S4. Curves of heat flow and measured C_p for MEAL. **a**, heat flow of equilibrium cell; **b**, measured C_p ; **c**, heat flow of equilibrium cell + aluminium oxide; **d**, heat flow of equilibrium cell + MEAL.

Figure S5. Curves of heat flow and measured C_p for Bet-EG. **a**, heat flow of equilibrium cell; **b**, measured C_p ; **c**, heat flow of equilibrium cell + aluminium oxide; **d**, heat flow of equilibrium cell + Bet-EG.

Figure S6. Curves of heat flow and measured C_p for L-car-EG. **a**, heat flow of equilibrium cell; **b**, measured C_p ; **c**, heat flow of equilibrium cell + aluminium oxide; **d**, heat flow of equilibrium cell + L-car-EG.