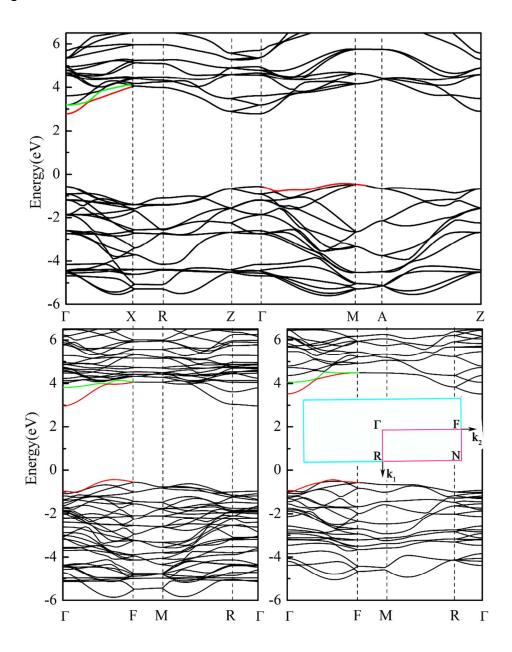
Electronic and Optical Properties of TiO2 Solid-Solution Nanosheets for

Bandgap Engineering: A Hybrid Functional Study

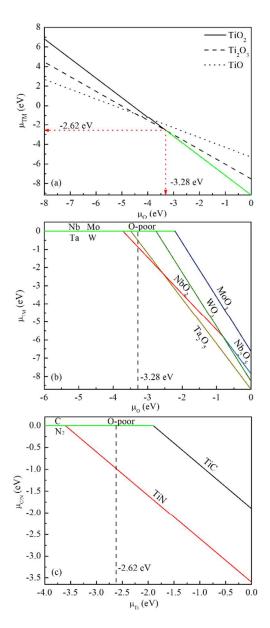
Yanyu Liu^{1,2}, Wei Zhou^{1,2*}, and Naoto Umezawa²

¹Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics

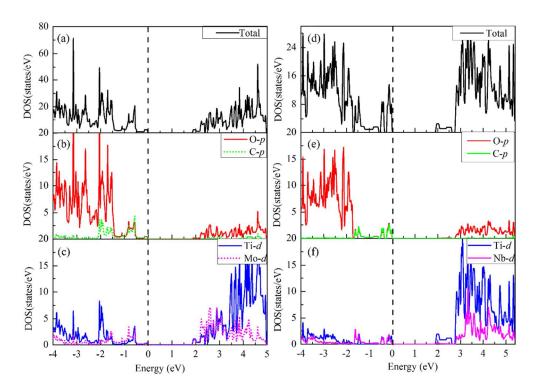
and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, P.R. China

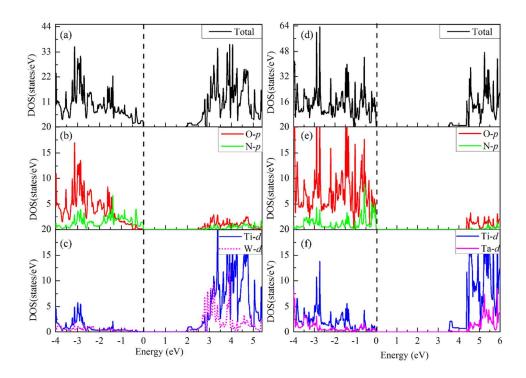

²International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials

Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan


*To whom correspondence should be addressed.

E-mail: weizhou@tju.edu.cn. Phone: +86 (0)22 27408599 Fax: +86 (0)22 27406852.


1


Figure S1. Band structures of the (a) bulk TiO_2 , (b) TiO_2 nanosheet with three atomic layers from HSE06. Inset: First Brillouin zone of TiO_2 nanosheets, (c) TiO_2 nanosheets with two atomic layers (the bulk TiO_2 , the coordinates of the symmetric k-points: Γ (0 0 0), X(0 0.5 0), R(0 0.5 0.5), Z(0 0 0.5), X(0 0.5 0.5), X(0 0.5 0.5), X(0 0 0.5), X(0 0.5 0.5), X(0 0 0.5), X

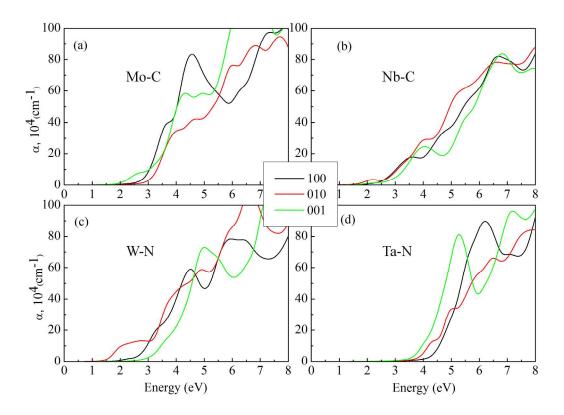

Figure S2. (a) Visualization of the three conditions described by eqn (2)–(4). These conditions are simultaneously satisfied in -3.28 eV $\geq \mu_{\rm O} \geq$ 0 eV and -9.18 eV $\geq \mu_{\rm Ti} \geq$ -2.62 eV as indicated by a green bold line. (b) the relationship between the transition metal chemical potentials $\mu_{\rm TM}$ and the O chemical potential $\mu_{\rm O}$, as derived from the equilibrium growth of the host: $\mu_{\rm TM} = \left[H\left({\rm TM}_x{\rm O}_y\right) - y\mu_{\rm O}\right]/x$, $\mu_{\rm O}$ at -3.28 eV and 0 eV represent the O-poor and O-rich condition, respectively. (c) the relationship between the C and N chemical potentials $\mu_{\rm CN}$ and the Ti chemical potential $\mu_{\rm Ti}$, as derived from the equilibrium growth of the host: $\mu_{\rm C} = H\left({\rm TiC}\right) - \mu_{\rm Ti}$ and $\mu_{\rm N} = H\left({\rm TiN}\right) - \mu_{\rm Ti}$, $\mu_{\rm Ti}$ at -2.62 eV and -9.18 eV represent the O-poor and O-rich condition, respectively.

Figure S3. Total and projected DOS for (a)-(c) $(TiO_2)_{2/3}(MoOC)_{1/3}$ and (d)-(f) $(TiO_2)_{2/3}(Nb_2O_3C)_{1/3}$ solid solutions from HSE06.

Figure S4. Total and projected DOS for (a)-(c) $(TiO_2)_{2/3}(WN_2)_{1/3}$ and (d)-(f) $(TiO_2)_{2/3}(TaON)_{1/3}$ solid solutions from HSE06.

Figure S5. Optical properties of (a) $(TiO_2)_{2/3}(MoOC)_{1/3}$, (b) $(TiO_2)_{2/3}(Nb_2O_3C)_{1/3}$, (c) $(TiO_2)_{2/3}(WN_2)_{1/3}$ and (d) $(TiO_2)_{2/3}(TaON)_{1/3}$ nanosheets from HSE06.