Supporting Information

Enhanced Photoluminescence Emission and Thermal Stability from Introduced Cation Disorder in Phosphors

Chun Che Lin,[†] Yi–Ting Tsai,[†] Hannah E. Johnston,[‡] Mu–Huai Fang,[†] Fengjiao Yu,[§] Wuzong Zhou,[§] Pamela Whitfield,[&] Ye Li,[#] Jing Wang,[#] Ru–Shi Liu,^{*,†, ||} and J. Paul Attfield^{*,‡}

[†]Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
[‡]Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King's Buildings, Mayfield Road, EH9 3JZ Edinburgh, U.K.
[§]School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, U.K.
[&]Oak Ridge National Laboratory, Chemical and Engineering Materials Division, Oak Ridge, TN 37831 USA
[#]MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
^{II} Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan

Corresponding Authors: *Ru-Shi Liu; rsliu@ntu.edu.tw *J. Paul Attfield; j.p.attfield@ed.ac.uk

EXPERIMENTAL METHODS

Synthesis.

A series of nitridosilicates $Sr_{1.98-x}(Ca_{0.55}Ba_{0.45})_xSi_5N_8:Eu_{0.02}$ (x = 0, 0.5, 1.0, 1.5, and 1.98) was synthesized from a stoichiometric mixture of Sr_3N_2 (Materion, 99.5%), Ca_3N_2 (Cerac, 99.0%), Ba_3N_2 (Cerac, 99.5%), EuN (Cerac, 99.9%), and α -Si₃N₄ [Ube Industries, grade SN–E10, $\alpha/(\alpha+\beta) > 95\%$ by weight] by a solid–state reaction. The elemental precursors were weighed and ground in an argon–filled glove box (H₂O < 1 ppm, O₂ < 1 ppm). The mixtures were transferred into boron nitride crucibles and placed in a gas pressure sintering furnace (FVPHP–R–5, FRET–25, Fujidempa Kogyo Co., Ltd.). The temperature was increased from room temperature to 1600 °C with a heating rate of 30 °C/min under 0.51 MPa N₂ atmosphere and was maintained for 2 h. Reddish samples were formed, and they were ground in an agate mortar for measurements. The x = 1.98 sample was found to be a multiphase mixture and was not explored further, but the other four samples were studied as below.

Characterizations.

Synchrotron XRD patterns with wavelength of 0.774907 Å were recorded at the BL01C2 beamline of the National Synchrotron Radiation Research Center, Taiwan. Neutron diffraction data were collected from 2 g samples of $Sr_{1.98-x}(Ca_{0.55}Ba_{0.45})_xSi_5N_8$: Eu_0.02 samples with x = 0, 0.5, 1.0, and 1.5, at 25, 100, 200, 300, and 400 °C on the POWGEN instrument at the SNS facility, USA. Rietveld refinements were made using the general structure analysis system GSAS.¹ Electron microscopy investigations were performed on a JEOL JEM–2011 electron microscope, operating at a voltage of 200 kV. SAED patterns and HRTEM images were recorded with a Gatan 794 CCD camera. The morphology of the as-prepared samples was investigated using a Nova NanoSEM 450 (FEI, Oregon, USA) equipped with highresolution field-emission scanning electron microscope at 10 kV. The chemical compositions of selected samples were analyzed by EDX spectroscopy using a Bruker SDD-EDS detector. Excitation and emission spectra were obtained on a FluoroMax-3 spectrophotometer equipped with a 150 W Xe lamp and Hamamatsu R928 photomultiplier tube. The quantum efficiency (QE) of Sr_{1.98-x}(Ca_{0.55}Ba_{0.45})_xSi₅N₈:Eu_{0.02} samples was determined using a HORIBA Jobin-Yvon spectrofluorimeters with an optical integrating sphere (diameter of 100 mm) showed a reflectance > 99% over 400-1500 nm range (> 95% within 250–2500 nm).² The accessories were made from Teflon (rod and sample holders) or Spectralon (baffle). Temperature-dependent PL emission spectra were accessed using a THMS-600 heating attachment. PL decay curves were recorded by an Edinburgh FLS920 spectrometer at room temperature at an excitation wavelength of 460 nm, using a gated hydrogen arc lamp and a scatter solution to profile the instrument response function. In the TL experiments, the sample was radiated by a 254 nm mercury lamp for 5 min and the TL spectra were recorded promptly by a RISØDA–15B/C TL/PL spectrometer from 25 to 300 °C with a heating rate at 5 °C/s. Raman spectra were measured by a Nicolet Almega XR Raman spectrometer with Olympus–BX51 Microscope.

Table S1. Refined lattice parameters in Å from room temperature refinements of $Sr_{1.98-x}(Ca_{0.55}Ba_{0.45})_xSi_5N_8$: Eu_{0.02} (x = 0, 0.5, 1.0, 1.5) using synchrotron data.

X	0	0.5	1.0	1.5
a (Å)	5.6952(2)	5.6963(1)	5.6950(1)	5.6999(3)
b (Å)	6.8023(2)	6.8056(1)	6.8012(2)	6.7989(4)
c (Å)	9.3081(3)	9.3053(2)	9.3015(2)	9.3062(5)
V (Å ³)	360.60(2)	360.74(2)	360.28(2)	360.65(5)

Table S2. Refined atomic parameters from room temperature refinements of $Sr_{1.98-x}(Ca_{0.55}Ba_{0.45})_xSi_5N_8$:Eu_{0.02} (x = 0, 0.5, 1.0, 1.5) using powder neutron and synchrotron data.

x = 0				
	Х	у	Z	U _{iso} (Å ²)
M1	0	0.8631(9)	-0.0061(8)	0.0078(7)
M2	0	0.8816(9)	0.3637(7)	0.0078(7)
Si1	0.2476(11)	0.6653(6)	0.6749(7)	0.0005(4)
Si2	0	0.0548(10)	0.6762(11)	0.0005(4)
Si3	0	0.4189(14)	0.4573(9)	0.0005(4)
Si4	0	0.411(2)	0.9001(9)	0.0005(4)
N1	0	0.1851(6)	0.5211(6)	0.0051(2)
N2	0.2476(6)	0.9131(3)	0.6676(4)	0.0051(2)
N3	0.2494(8)	0.4455(3)	0.0075(3)	0.0051(2)
N4	0	0.5858(7)	0.7701(5)	0.0051(2)
N5	0	0.1768(8)	0.8333(6)	0.0051(2)
N6	0	0.4210(7)	0.2662(6)	0.0051(2)

 $\chi^2 = 7.51$ and $R_{wp} = 6.21\%$

x =	0.5
------------	-----

	Х	у	Z	U _{iso} (Å ²)
M1	0	0.8673(9)	-0.0034(8)	0.0090(7)
M2	0	0.8807(9)	0.3659(8)	0.0090(7)
Si1	0.2495(11)	0.6646(6)	0.6791(6)	-0.0003(3)
Si2	0	0.0538(10)	0.6754(10)	-0.0003(3)
Si3	0	0.4218(13)	0.4592(8)	-0.0003(3)
Si4	0	0.4097(14)	0.9030(8)	-0.0003(3)
N1	0	0.1897(5)	0.5219(6)	0.0049(2)
N2	0.2477(6)	0.9121(3)	0.6667(4)	0.0049(2)
N3	0.2497(8)	0.4449(3)	0.0078(3)	0.0049(2)
N4	0	0.5874(6)	0.7716(5)	0.0049(2)
N5	0	0.1766(7)	0.8345(5)	0.0049(2)
N6	0	0.4224(7)	0.2685(5)	0.0049(2)

 $\overline{\chi^2 = 6.16}$ and $R_{\rm wp} = 5.57\%$

x = 1.0

	X	у	Z	U _{iso} (Å ²)
M1	0	0.8745(13)	-0.0012(11)	0.0104(10)
M2	0	0.8799(14)	0.3671(11)	0.0104(10)
Si1	0.2531(14)	0.6651(8)	0.6814(7)	-0.0008(4)
Si2	0	0.0545(12)	0.6753(12)	-0.0008(4)
Si3	0	0.4227(16)	0.4612(10)	-0.0008(4)
Si4	0	0.411(2)	0.9048(10)	-0.0008(4)
N1	0	0.1913(7)	0.5240(7)	0.0053(3)
N2	0.2479(7)	0.9114(4)	0.6662(5)	0.0053(3)
N3	0.2490(10)	0.4453(4)	0.0088(4)	0.0053(3)
N4	0	0.5877(8)	0.7730(7)	0.0053(3)
N5	0	0.1750(10)	0.8372(7)	0.0053(3)
N6	0	0.4242(8)	0.2700(7)	0.0053(3)

 $\chi^2 = 9.64$ and $R_{\rm wp} = 6.94\%$

x =	1.5
------------	-----

	Х	у	Z	U _{iso} (Å ²)
M1	0	0.882(2)	-0.0014(14)	0.011(2)
M2	0	0.882(2)	0.370(2)	0.011(2)
Si1	0.253(2)	0.6639(11)	0.6828(10)	0.0001(6)
Si2	0	0.060(2)	0.676(2)	0.0001(6)
Si3	0	0.426(2)	0.4605(14)	0.0001(6)
Si4	0	0.412(2)	0.9090(14)	0.0001(6)
N1	0	0.1912(10)	0.5255(10)	0.0064(4)
N2	0.2470(10)	0.9102(6)	0.6633(6)	0.0064(4)
N3	0.2484(14)	0.4469(6)	0.0102(6)	0.0064(4)
N4	0	0.5853(12)	0.7750(10)	0.0064(4)
N5	0	0.1771(14)	0.8364(10)	0.0064(4)
N6	0	0.4240(13)	0.2714(10)	0.0064(4)

 $\overline{\chi^2 = 14.20}$ and $R_{\rm wp} = 8.18\%$

SIZE Variances a				
X	0	0.5	1.0	1.5
a (Å)	5.6994(1)	5.7003(1)	5.7019(1)	5.7011(2)
b (Å)	6.8087(2)	6.8100(1)	6.8069(2)	6.7965(3)
c (Å)	9.3122(2)	9.3098(2)	9.3134(3)	9.3102(3)
V (Å ³)	361.37(2)	361.40(2)	361.47(2)	360.75(3)
Eu1	0.01	0.01	0.01	0.01
Cal	0.00	0.15(5)	0.47(5)	0.46(2)
Sr1	0.99	0.68(5)	0.21(5)	0.05(2)
Ba1	0.00	0.16(5)	0.31(5)	0.48
Eu2	0.01	0.01	0.01	0.01
Ca2	0.00	0.13(5)	0.08(5)	0.36(2)
Sr2	0.99	0.80(5)	0.77(5)	0.43(2)
Ba2	0.00	0.06(5)	0.14(5)	0.20
<r<sub>Sr>(Å)</r<sub>	1.31	1.31	1.31	1.31
<r<sub>Sr1> (Å)</r<sub>	1.31	1.32	1.30	1.33
$< r_{Sr2} > (Å)$	1.31	1.30	1.32	1.29
σ_{Sr}^2 (Å ²)	0.000	0.005	0.010	0.016
σ_{Sr1}^2 (Å ²)	0.000	0.007	0.016	0.020
σ_{Sr2}^2 (Å ²)	0.000	0.004	0.005	0.011

Table S3. Refined lattice parameters and cation site occupancies from room temperature refinements of $Sr_{1.98-x}(Ca_{0.55}Ba_{0.45})_xSi_5N_8:Eu_{0.02}$ (x = 0, 0.5, 1.0, 1.5) using powder neutron and synchrotron data. Derived global and site mean cation radii and size variances are also shown.

promes.						
	$\mathbf{x} = 0$			x = 0.5		
T (°C)	a	b	c	а	b	с
25	5.7074(1)	6.8211(2)	9.3197(2)	5.7087(1)	6.8189(2)	9.3200(2)
100	5.7102(1)	6.8239(2)	9.3231(2)	5.7111(1)	6.8213(2)	9.3232(2)
200	5.7137(1)	6.8270(2)	9.3274(2)	5.7144(2)	6.8245(2)	9.3277(2)
300	5.7167(1)	6.8308(2)	9.3318(3)	5.7177(1)	6.8280(2)	9.3324(2)
400	5.7196(1)	6.8350(2)	9.3361(3)	5.7206(1)	6.8321(2)	9.3373(2)

Table S4. Refined lattice parameters in Å from variable temperature refinements of $Sr_{1.98-x}(Ca_{0.55}Ba_{0.45})_xSi_5N_8$:Eu_{0.02} (x = 0, 0.5, 1.0, 1.5) using powder neutron diffraction profiles.

X	=	1	•	0
---	---	---	---	---

		A 1.0			A Ito		
_	T (°C)	a	b	c	а	b	с
-	25	5.7073(5)	6.8107(2)	9.3229(3)	5.7020(2)	6.7944(3)	9.3136(4)
	100	5.7094(2)	6.8129(2)	9.3258(3)	5.7040(2)	6.7973(3)	9.3163(4)
	200	5.7128(2)	6.8163(2)	9.3302(3)	5.7072(2)	6.8014(3)	9.3209(4)
	300	5.7160(2)	6.8198(2)	9.3349(3)	5.7106(2)	6.8065(3)	9.3258(4)
	400	5.7193(2)	6.8248(2)	9.3399(3)	5.7136(2)	6.8126(3)	9.3308(4)

Table S5. Photoluminescent properties of two crystallographic sites for $Sr_{1.98-x}(Ca_{0.55}Ba_{0.45})_xSi_5N_8:Eu_{0.02}$ (x = 0, 0.5, 1.0, 1.5) samples.

WHM
cm ⁻¹)
2,421
2,590
2,688
2,733

Figure S1. Rietveld refinement of the $Sr_{1.98-x}(Ca_{0.55}Ba_{0.45})_xSi_5N_8$:Eu_{0.02} at room temperature powder diffraction profiles; synchrotron X–ray diffraction pattern from the BL01C2 beamline with wavelength of 0.774907Å at the NSRRC. (a) x = 0, (b) x = 1.0, and (c) x = 1.5.

Figure S2. Neutron room temperature refinements from the POWGEN beamline at SNS using the $\lambda = 1.066$ Å bank for Sr_{1.98-x}(Ca_{0.55}Ba_{0.45})_xSi₅N₈:Eu_{0.02} (a) x = 0, (b) x = 0.5, (c) x = 1.0, and (d) x = 1.5.

Figure S3. Neutron room temperature refinements from the POWGEN beamline at SNS using the $\lambda = 2.665$ Å bank for Sr_{1.98-x}(Ca_{0.55}Ba_{0.45})_xSi₅N₈:Eu_{0.02} (a) x = 0, (b) x = 1.0, and (c) x = 1.5.

Figure S4. Variation of lattice parameters obtained from neutron diffraction with temperature for $Sr_{1.98-x}(Ca_{0.55}Ba_{0.45})_xSi_5N_8$:Eu_{0.02} with x = 0, 0.5, 1.0, 1.5.

Figure S5. (a) High–resolution transmission electron microscopy (HRTEM) image for a typical crystallite of the x = 0 sample showing high uniform crystallinity. The indicated d–spacing of 5.32 Å is indexed on the (011) plane. (b) Selected area electron diffraction (SAED) pattern, which indicates high uniform crystallinity.

Figure S6. Schematic changes in local cation distributions driven by the A–cation disorder effect, where Eu^{2+} activators tend to migrate to Sr2 sites with increasing substitution of Ca and Ba with x, following the structure refinement results.

Figure S7. SEM images of nitridosilicate (a) $Sr_{0.48}(Ca_{0.55}Ba_{0.45})_{1.5}Si_5N_8$:Eu_{0.02} and (b) commercial $Sr_{1.98}Si_5N_8$:Eu_{0.02} phosphors, showing that larger particles are present in the commercial sample.

REFERENCES

(1) Larson, C.; Von Dreele, R. B. *Generalized Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748*, Los Alamos National Laboratory: Los Alamos, NM, 1994.

(2) Gai, S.; Li, C.; Yang, P.; Lin, J. Chem. Rev. 2014, 114, 2343–2389.