Supporting Information

Dual-Functional Electrocatalyst Derived from Iron-Porphyrin-Encapsulated Metal–Organic Frameworks

Jungwon Park, †^a Hyunjoon Lee, †^a Young Eun Bae, †^c Kyoung Chul Park, ^a Hoon Ji, ^b Nak Cheon Jeong, ^b Min Hyung Lee, *^c Oh Joong Kwon, *^{ad} Chang Yeon Lee *^{ad}

^a Department of Energy and Chemical Engineering, Incheon National University, Incheon

22012, Republic of Korea. Email: ojkwon@inu.ac.kr, cylee@inu.ac.kr

^b Department of Emerging Materials Science, DGIST, Daegu 42988, Republic of Korea

^c Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, Republic of Korea. Email: minhlee@khu.ac.kr

^d Innovation Center for Chemical Engineering, Incheon National University, Incheon 22012, Republic of Korea

* Corresponding author. E-mail address: cylee@inu.ac.kr, minhlee@khu.ac.kr, <u>ojkwon@inu.ac.kr</u>

[†] These authors contributed equally

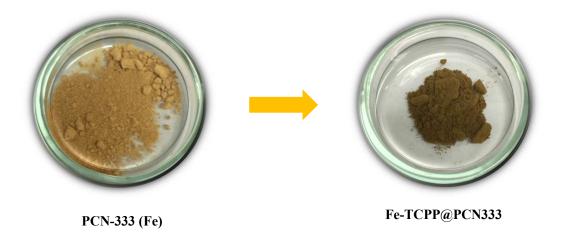


Figure S1. Photograph images of PCN-333 (Fe) and Fe-TCPP@PCN333.

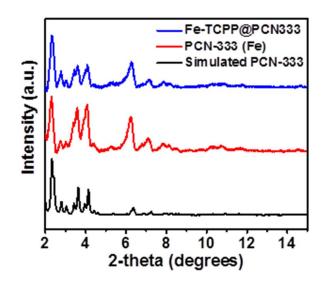


Figure S2. Powder X-ray diffraction patterns of PCN-333 (Fe) and Fe-TCPP@PCN333.

Figure S3. FTIR spectra of Fe-TCPP, PCN-333 (Fe) and Fe-TCPP@PCN333

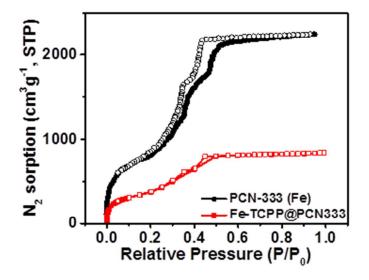


Figure S4. N2 adsorption-desorption isotherms for PCN-333 (Fe) and Fe-TCPP@PCN333

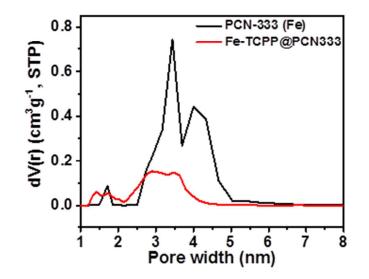


Figure S5. DFT pore size distribution for PCN-333 (Fe) and Fe-TCPP@PCN333 obtained from the N₂ isotherm measured at 77 K.

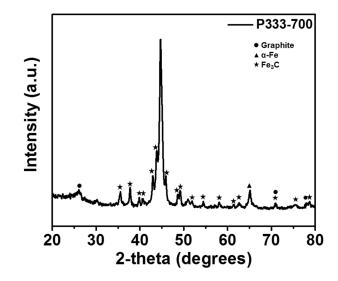


Figure S6. Powder X-ray diffraction pattern of P333-700.

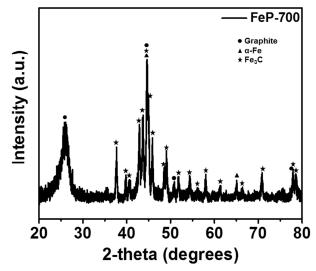


Figure S7. Powder X-ray diffraction pattern of FeP-700.

Figure S8. SEM image of PCN-333 (Fe), P333-700 and FeP-P333-700

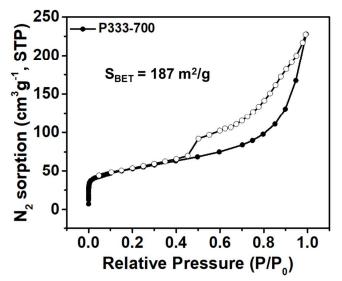


Figure S9. N₂ adsorption-desorption isotherms of P333-700.

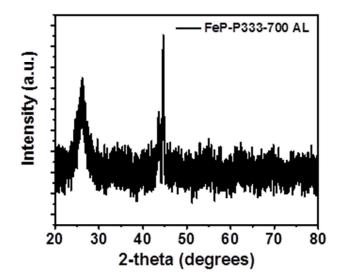


Figure S10. Powder X-ray diffraction pattern of FeP-P333-700 AL.

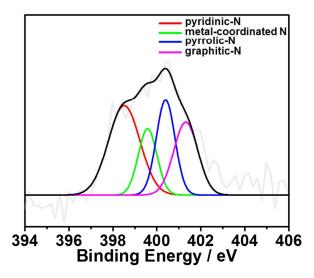
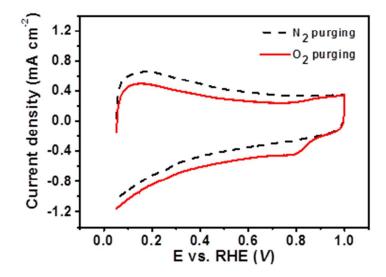
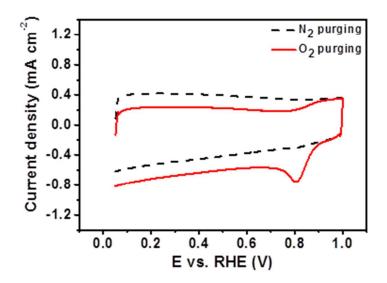
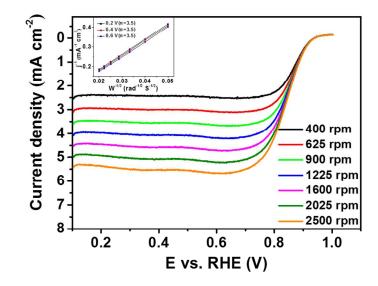
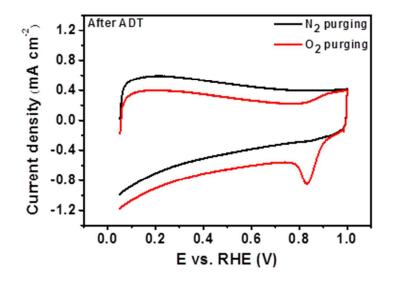
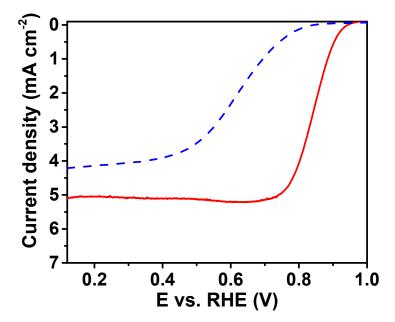
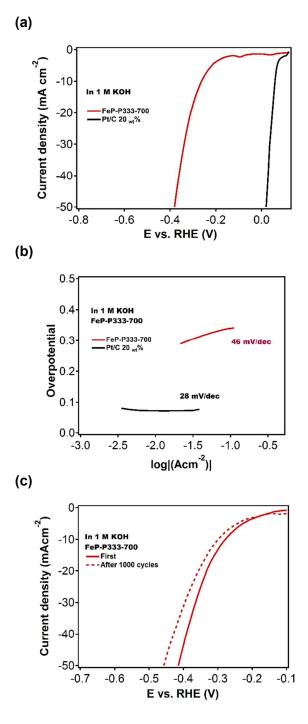


Figure S11. N 1s XPS spectra of FeP-P333-700 AL.


Figure S12. CVs of P333-700 in N_2 and O_2 -saturated 0.1 M aqueous KOH electrolyte solutions at scan rate of 20 mVs⁻¹


Figure S13. CVs of FeP-P333-700 AL in N₂ and O₂-saturated 0.1 M aqueous KOH electrolyte solutions at scan rate of 20 mVs⁻¹.


Figure S14. RDE LSVs curves of FeP-P333-700 AL at various speeds; inset shows corresponding Koutecky-Levich plots (J⁻¹ vs rpm^{-1/2})

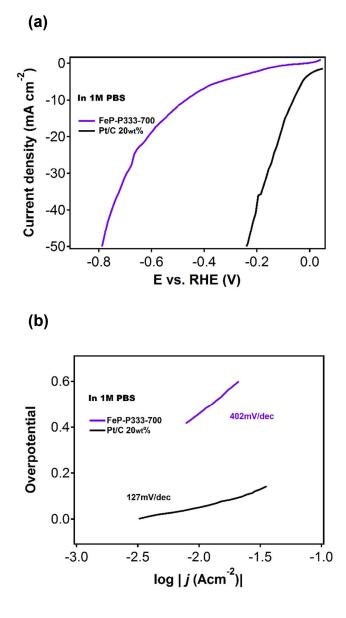

Figure S15. CVs of After ADT FeP-P333-700 in N₂ and O₂-saturated 0.1 M aqueous KOH electrolyte solutions at scan rate of 20 mVs⁻¹

Figure S16. LSV curves of FeP-P333-700 (red solid line) and catalyst derived from physical mixture of metalloporphyrin and PCN-333 (blue dashed line) at a rotation rate of 1600 rpm in O₂-saturated 0.1 M KOH solution

Figure S17. Electrochemical characterization of electrocatalysts FeP-P333-700 in basic electrolyte (1 M KOH, pH 14). (a) Polarization curves and (b) corresponding Tafel plots obtained from the polarization curves. (c) Durability test using consecutive 1000 cycles in 1 M KOH electrolyte with sweeping potential from -0.2 V to -1.0 V vs RHE .

Figure S18. Electrochemical characterization of electrocatalysts FeP-P333-700 in neutral electrolyte (1 M PBS, pH 7). (a) Polarization curves and (b) corresponding Tafel plots obtained from the polarization curves.

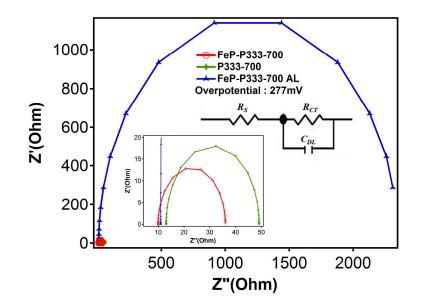


Figure S19. Nyquist plots of electrocatalysts that are fitted to the equivalent circuit shown in the inset.

samples	R _S (Ω)	C _{DL} (mF)	R _{cτ} (Ω)
FeP-P333-700	9.99	0.73503	26.04
P333-700	13.12	0.06535	36.01
FeP-P333-700 AL	11	0.85875	2334

 Table S1. Impedance parameters of catalysts.

Table S2. Catalytic performance comparison of catalysts in different pH condition.

Overpotential (E vs. RHE)	FeP-P333-700		Pt/C 20 _{wt} %	
	10 mA/cm ²	100 mA/cm ²	10 mA/cm ²	100 mA/cm ²
pH 0.1	0.207	0.357	0.017	0.147
pH 7	0.420	0.890	0.065	0.450
pH 14	0.301	0.480	0.057	0.022
Overpotential (E vs. RHE)	P333-700		FeP-P333-700 AL	
	10 mA/cm ²	100 mA/cm ²	10 mA/cm ²	100 mA/cm ²
pH 0.1	0.237	0.412	0.527	0.727

Catalyst	Half-wave potential (V vs. RHE)	Electrolyte	Reference
FeMo Carbide/NG-800	0.642	0.1 M KOH	S1
Fe-W-C	0.727	0.1 M KOH	S2
Carbonized porous cubes	0.78	0.1 M KOH	S3
Fe ₃ C-GNRs	0.78	0.1 M KOH	S4
Fe-C/NG-10%-700-AL	0.793	0.1 M KOH	S5
Fe ₃ C@N-C-900	0.806	0.1 M KOH	S6
Fe ₃ C@NG-800-0.2	0.81	0.1 M KOH	S7
Fe-N-GNFs	0.824	0.1 M KOH	S8
Fe₃C@NCNTs-800	0.825	0.1 M KOH	S9
Fe ₃ C/b-NCNT	0.83	0.1 M KOH	S10
Fe ₃ C/C-800	0.83	0.1 M KOH	S11
Fe/Fe ₃ C@C/RGO	0.83	0.1 M KOH	S12
Fe/Fe ₃ C/melamine/ N-KB	0.83	0.1 M KOH	S13
Fe-N-CNFs	0.832	0.1 M KOH	S14
Fe ₃ C@N-CNT assemblies	0.85	0.1 M KOH	S15
Fe ₃ C/NG-800	0.86	0.1 M KOH	S16
FeP@P333-700	0.843	0.1 M KOH	This work

Table S3. Comparison of half-wave potential of the Fe_3C based non-precious electrocatalystsin 0.1 M KOH electrolyte reported in the literatures.

Reference :

[S1] Chen, M.; Liu, J.; Zhou, W.; Lin, J.; Shen, Z. Nitrogen-doped Graphene-Supported
Transition-Metals Carbide Electrocatalysts for Oxygen Reduction Reaction. *Sci. Rep.* 2015, *5*, 10389-10398.

[S2] Yang, J.; Xie, Y.; Wang, R.; Jiang, B.; Tian, C.; Mu, G.; Yin, J.; Wang, B.; Fu, H. Synergistic Effect of Tungsten Carbide and Palladium on Graphene for Promoted Ethanol Electrooxidation. ACS Appl. Mater. Interfaces 2013, 5, 6571–6579.

[S3] Wu, Y.; Zhao, S.; Zhao, K.; Tu, T.; Zheng, J.; Chen, J.; Zhou, H.; Chen, D.; Li, S. Porous Fe-N_x/C Hybrid Derived from Bi-Metal Organic Frameworks as High Efficient Electrocatalyst for Oxygen Reduction Reaction. *J. Power Sources* 2016, *311*, 137-143.

[S4] Fan, X.; Peng, Z.; Ye, R.; Zhou, H.; Guo, X. M₃C (M: Fe, Co, Ni) Nanocrystals Encased

in Graphene Nanoribbons: An Active and Stable Bifunctional Electrocatalyst for Oxygen

Reduction and Hydrogen Evolution Reactions. ACS Nano 2015, 9, 7407–7418.

[S5] Xue, J.; Zhao, L.; Dou, Z.; Yang, Y.; Guan, Y.; Zhu, Z.; Cui, L. Nitrogen-Doped 3D
Porous Carbons with Iron Carbide Nanoparticles Encapsulated in Graphitic Layers Derived
from Functionalized MOF as an Efficient Noble-Metal-Free Oxygen Reduction
Electrocatalysts in Both Acidic and Alkaline Media. *RSC Adv.* 2016, *6*, 110820–110830.
[S6] Liu, Y.-L.; Xu X.-Y.; Sun, P.-C.; Chen, T.-H. N-Doped Porous Carbon Nanosheets with

Embedded Iron Carbide Nanoparticles for Oxygen Reduction Reaction in Acidic Media. *Int. J. Hydrogen Energy* **2015**, *40*, 4531-4539.

[S7] Jiang, H.; Yao, Y.; Zhu, Y.; Liu, Y.; Su, Y.; Yang, X.; Li, C. Iron Carbide Nanoparticles Encapsulated in Mesoporous Fe–N-Doped Graphene-Like Carbon Hybrids as Efficient Bifunctional Oxygen Electrocatalysts. *ACS Appl. Mater. Interfaces* 2015, *7*, 21511–21520.
[S8] Wu, J.; Ma, L.; Yadav, R. M.; Yang, Y.; Zhang, X.; Vajtai, R.; Lou, J.; Ajayan, P. M. Nitrogen-Doped Graphene with Pyridinic Dominance as a Highly Active and Stable
Electrocatalyst for Oxygen Reduction. *ACS Appl. Mater. Interfaces* 2015, *7*, 14763–14769.
[S9] Zhong, G.; Wang, H.; Yu, H.; Peng, F. Nitrogen Doped Carbon Nanotubes with
Encapsulated Ferric Carbide as Excellent Electrocatalyst for Oxygen Reduction Reaction in
Acid and Alkaline Media. *J. Power Sources* 2015, *286*, 495-503.

[S10] Aijaz, A.; Masa, J.; Rösler, C.; Antoni, H.; Fischer, R. A.; Schuhmann, W.; Muhler, M.
MOF-Templated Assembly Approach for Fe₃C Nanoparticles Encapsulated in Bamboo-Like
N-Doped CNTs: Highly Efficient Oxygen Reduction under Acidic and Basic Conditions. *Chem. Eur. J.* 2017, 23, 1–7.

[S11] Hu, Y.; Jensen, J. O.; Zhang, W.; Cleemann, L. N.; Xing, W.; Bjerrum, N. J.; Li, Q.
Hollow Spheres of Iron Carbide Nanoparticles Encased in Graphitic Layers as Oxygen
Reduction Catalysts. *Angew. Chem. Int. Ed.* 2014, *53*, 3675-3679.

[S12] Hou, Y.; Huang, T.; Wen, Z.; Mao, S.; Cui, S.; Chen, J. Metal-Organic Framework-Derived Nitrogen-Doped Core-Shell-Structured Porous Fe/Fe₃C@C Nanoboxes Supported on Graphene Sheets for Efficient Oxygen Reduction Reactions. *Adv. Energy Mater.* **2014**, *4*, 1400337.

[S13] Lee, J.-S.; Park, G. S.; Kim, S. T.; Liu, M.; Cho, J. A Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction: N-Doped Ketjenblack Incorporated into Fe/Fe₃C-Functionalized Melamine Foam. *Angew. Chem. Int. Ed.* **2013**, *52*, 1026-1030.

[S14] Wu, Z.-Y.; Xu, X.-X.; Hu, B.-C.; Liang, H.-W.; Lin, Y.; Chen, L.-F.; Yu, S. H. Iron Carbide Nanoparticles Encapsulated in Mesoporous Fe-N-Doped Carbon Nanofibers for Efficient Electrocatalysis. *Angew. Chem. Int. Ed.* **2015**, *54*, 8179-8183.

[S15] Guan, B. Y.; Yu, L.; Lou, X. W. A Dual-Metal–Organic-Framework Derived Electrocatalyst for Oxygen Reduction. *Energy Environ. Sci.* **2016**, *9*, 3092-3096.

[S16] Xiao, M.; Zhu, J.; Feng, L.; Liu, C.; Xing, W. Meso/Macroporous Nitrogen-Doped Carbon Architectures with Iron Carbide Encapsulated in Graphitic Layers as an Efficient and Robust Catalyst for the Oxygen Reduction Reaction in Both Acidic and Alkaline Solutions. *Adv. Mater.* 2015, *27*, 2521-2527.