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Figure S1. Photograph images of PCN-333 (Fe) and Fe-TCPP@PCN333. 

 

 

 

 
 

Figure S2. Powder X-ray diffraction patterns of PCN-333 (Fe) and Fe-TCPP@PCN333. 
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Figure S3. FTIR spectra of Fe-TCPP, PCN-333 (Fe) and Fe-TCPP@PCN333 

 

 

 

 
 

Figure S4. N2 adsorption-desorption isotherms for PCN-333 (Fe) and Fe-TCPP@PCN333 
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Figure S5. DFT pore size distribution for PCN-333 (Fe) and Fe-TCPP@PCN333 obtained 

from the N2 isotherm measured at 77 K. 

 

 

 

 
 

Figure S6. Powder X-ray diffraction pattern of P333-700. 
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Figure S7. Powder X-ray diffraction pattern of FeP-700. 

 

 

 
 

Figure S8. SEM image of PCN-333 (Fe), P333-700 and FeP-P333-700 

 

 

 
Figure S9. N2 adsorption–desorption isotherms of P333-700. 
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Figure S10. Powder X-ray diffraction pattern of FeP-P333-700 AL. 

 

 

 
Figure S11. N 1s XPS spectra of FeP-P333-700 AL. 
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Figure S12. CVs of P333-700 in N2 and O2-saturated 0.1 M aqueous KOH electrolyte 

solutions at scan rate of 20 mVs
-1 

 

 
 

Figure S13. CVs of FeP-P333-700 AL in N2 and O2-saturated 0.1 M aqueous KOH 

electrolyte solutions at scan rate of 20 mVs
-1
. 
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Figure S14. RDE LSVs curves of FeP-P333-700 AL at various speeds; inset shows 

corresponding Koutecky-Levich plots (J
-1
 vs rpm

-1/2
) 

 

 

 
 

Figure S15. CVs of After ADT FeP-P333-700 in N2 and O2-saturated 0.1 M aqueous KOH 

electrolyte solutions at scan rate of 20 mVs
-1 
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Figure S16. LSV curves of FeP-P333-700 (red solid line) and catalyst derived from physical 

mixture of metalloporphyrin and PCN-333 (blue dashed line) at a rotation rate of 1600 rpm in 

O2-saturated 0.1 M KOH solution
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(a) 

 
(b) 
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Figure S17. Electrochemical characterization of electrocatalysts FeP-P333-700 in basic 

electrolyte (1 M KOH, pH 14). (a) Polarization curves and (b) corresponding Tafel plots 

obtained from the polarization curves. (c) Durability test using consecutive 1000 cycles in 1 

M KOH electrolyte with sweeping potential from -0.2 V to -1.0 V vs RHE . 
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Figure S18. Electrochemical characterization of electrocatalysts FeP-P333-700 in neutral 

electrolyte (1 M PBS, pH 7). (a) Polarization curves and (b) corresponding Tafel plots 

obtained from the polarization curves. 
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Figure S19. Nyquist plots of electrocatalysts that are fitted to the equivalent circuit shown in 

the inset. 

 

 

Table S1. Impedance parameters of catalysts. 

 

samples RS (Ω) CDL (mF) RCT (Ω) 

FeP-P333-700 9.99 0.73503 26.04 

P333-700 13.12 0.06535 36.01 

FeP-P333-700 AL 11 0.85875 2334 

 

 

Table S2. Catalytic performance comparison of catalysts in different pH condition. 

 

Overpotential 
(E vs. RHE) 

FeP-P333-700 Pt/C 20wt% 

10 mA/cm
2
 100 mA/cm

2
 10 mA/cm

2
 100 mA/cm

2
 

pH 0.1 0.207 0.357 0.017 0.147 

pH 7 0.420 0.890 0.065 0.450 

pH 14 0.301 0.480 0.057 0.022 

Overpotential 
(E vs. RHE) 

P333-700 FeP-P333-700 AL 

10 mA/cm
2
 100 mA/cm

2
 10 mA/cm

2
 100 mA/cm

2
 

pH 0.1 0.237 0.412 0.527 0.727 
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Table S3. Comparison of half-wave potential of the Fe3C based non-precious electrocatalysts 

in 0.1 M KOH electrolyte reported in the literatures. 
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