Supporting Information

Copper-Assisted Oxidative Trifluoromethylthiolation of

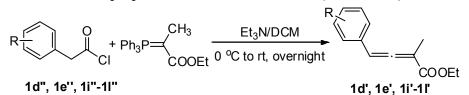
2,3-Allenoic Acids with AgSCF₃

Shen Pan, Yangen Huang, Xiu-Hua Xu, and Feng-Ling Qing

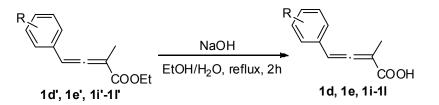
Contents

1.	General Remarks	2
2.	Preparation of 2,3-Allenoic Acids	2
3.	Optimization of Reaction Conditions	6
4.	Cyclic Oxytrifluoromethylthiolation of 2,3-Allenoic Acids with AgSCF3	
5.	Bis-Trifluoromethylthiolation of 2,3-Allenoic Acids with AgSCF ₃	15
6.	Transformation of Compound 3	18
7.	Mechanistic Investigation.	19
8.	Copies of ¹ H, ¹⁹ F, and ¹³ C NMR Spectra for the Products	21
9.	ORTEP Drawing of the X-Ray Crystallographic Structure of 3f	67

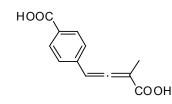
1. General Remarks


¹H and ¹⁹F NMR (CFCl₃ as external standard and low field is positive) spectra were recorded on a Bruker AM 400 spectrometer or 600 spectrometer. ¹³C NMR spectra were recorded on a Bruker AM 400 spectrometer or Bruker AM 600 spectrometer. Chemical shifts (δ) were reported in ppm, and coupling constants (*J*) were in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. The NMR yield was determined by ¹⁹F NMR using (trifluoromethyl)benzene as an internal standard before working up the reaction. High resolution mass spectra (HRMS) were performed using a GC/MS TOF high-resolution mass spectrometer equipped with a liquid chromatography system or as electron spray ionization using a Thermo Fischer Scientific LTQ FT Ultra instrument in DART-positive mode.

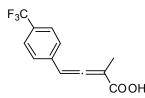
Materials: Unless otherwise noted, all reagents were obtained commercially and used without further purification. CH_3CN was distilled from CaH_2 and stored with 4 Å molecular sieves. Reactions were performed under an atmosphere of N_2 using glassware that was flame-dried under vacuum. AgSCF₃ was prepared following the literature¹.


2. Preparation of 2,3-Allenoic Acids

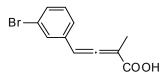
The 2,3-allenoic acids 1a-1c,² 1f-1h,² 1m,² 1n-1q,³ 1r-1t,⁴ 1v,⁵ and $1w^6$ were prepared in accordance with methods described in the references.


General methods for preparation of 2,3-allenoic acids (1d, 1e, 1i-1l)²

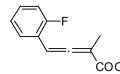
Typical Procedure. The mixture of ethyl 2-(triphenylphosphoranylidene) propanoate (2.90 g, 8 mmol, 1.0 equiv) and Et₃N (0.81 g, 8 mmol, 1.0 equiv) in DCM (80 mL) was stirred at 0 °C for 20 minutes. Then, a solution of 1d'', 1e'', 1i''-1I'' (10 mmol, 1.25 equiv) in DCM (15 mL) was added dropwise and the reaction mixture was stirred at room temperature overnight. The reaction mixture was diluted with EtOAc, and extracted with saturated aqueous NaCl solution, and extracted with EtOAc. The combined organic layers were dried with Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The resulting crude product was purified by flash chromatography on silica gel (PE/EA = 20:1) to give 1d', 1e', 1i'-1I'.



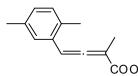
Typical Procedure. To a round-bottom flask, **1d'**, **1e'**, **1i'-1l'** (5 mmol, 1.0 equiv), EtOH (15 mL), H₂O (15 mL), and NaOH (0.3 g, 7.5 mmol, 1.5 equiv) were added sequentially and the resulting solution was heated to reflux. After 2 h, the reaction was completed as monitored by TLC. The reaction mixture was diluted with EtOAc, and extracted with saturated aqueous NaHCO₃ solution. The aqueous layer was separated, acidified to pH 2.0 by addition of HCl (1 N), and extracted with DCM. The combined organic layers were dried with Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The resulting crude product was purified by flash chromatography on silica gel (PE/EA = 5:1 with HOAc (1 %, v/v)) to give **1d**, **1e**, **1i-1l**.


4-(3-Carboxybuta-1,2-dien-1-yl)benzoic acid (1d)

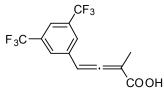
Compound 1d was obtained as a white solid (228.2 mg, 21%), PE/EA = 5:1 with HOAc (1 %, v/v) as eluent for the column chromatography. Mp 188-190 °C. ¹H NMR (600 MHz, DMSO) δ 12.83 (s, 2H), 7.93 (d, *J* = 8.4 Hz, 2H), 7.41 (d, *J* = 8.4 Hz, 2H), 6.82 (q, *J* = 2.9 Hz, 1H), 1.91 (d, *J* = 3.0 Hz, 3H). ¹³C NMR (151 MHz, DMSO) δ 212.9, 167.9, 167.5, 137.7, 130.4, 130.1, 127.6, 99.7, 96.4, 15.2. MS (ESI) m/z: 219 [M+H]⁺. HRMS (ESI) m/z: Calcd for C₁₂H₁₁O₄ 219.0652; found [M+H]⁺: 219.0651.


2-Methyl-4-(4-(trifluoromethyl)phenyl)buta-2,3-dienoic acid (1e)

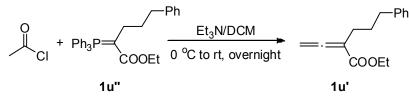
Compound **1e** was obtained as a white solid (678.8 mg, 56%), PE/EA = 5:1 with HOAc (1 %, v/v) as eluent for the column chromatography. Mp 123-125 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.24 (s, 1H), 7.50 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 6.49 (q, *J* = 2.7 Hz, 1H), 1.93 (d, *J* = 2.9 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -62.6 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 214.1, 172.2, 135.8, 129.9 (q, *J* = 32.5 Hz), 127.6, 125.8 (q, *J* = 7.6 Hz), 124.0 (q, *J* = 273.8 Hz), 99.6, 96.9, 14.5. MS (ESI) m/z: 243 [M+H]⁺. HRMS (ESI) m/z: Calcd for C₁₂H₁₀F₃O₂ 243.0627; found [M+H]⁺: 243.0626.


4-(3-Bromophenyl)-2-methylbuta-2,3-dienoic acid (1i)

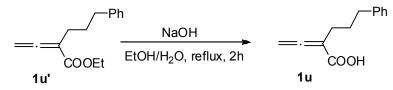
Compound **1i** was obtained as a white solid (810.1 mg, 64%), PE/EA = 5:1 with HOAc (1 %, v/v) as eluent for the column chromatography. Mp 103-105 °C. ¹H NMR (600 MHz, CDCl₃) δ 11.56 (s, 1H), 7.45 (d, J = 1.4 Hz, 1H), 7.42-7.39 (m, 1H), 7.25-7.21 (m, 2H), 6.51 (q, J = 2.9 Hz, 1H), 2.03 (d, J = 3.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 213.7, 172.4, 134.1, 130.9, 130.3, 130.2, 126.1, 123.0, 99.6, 96.7, 14.7. MS (ESI) m/z: 253 [M+H]⁺. HRMS (ESI) m/z: Calcd for C₁₁H₁₀BrO₂ 252.9859, found [M+H]⁺: 252.9856.


4-(2-Fluorophenyl)-2-methylbuta-2,3-dienoic acid (1j)

Compound **1j** was obtained as a white solid (729.3 mg, 76%), PE/EA = 5:1 with HOAc (1 %, v/v) as eluent for the column chromatography. Mp 107-109 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.61 (s, 1H), 7.25-7.21 (m, 1H), 7.19-7.10 (m, 1H), 7.03-6.94 (m, 2H), 6.65 (q, *J* = 2.8 Hz, 1H), 1.91 (d, *J* = 3.0 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -117.2--117.4 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 213.2, 171.6, 158.8 (d, *J* = 251.5 Hz), 128.4 (d, *J* = 8.1 Hz), 128.0 (d, *J* = 3.0 Hz), 123.3 (d, *J* = 3.0 Hz), 118.5, 114.8 (d, *J* = 21.2 Hz), 97.9, 89.5 (d, *J* = 6.1 Hz), 13.6. MS (ESI) m/z: 193 [M+H]⁺. HRMS (ESI) m/z: Calcd for C₁₁H₁₀FO₂ 193.0659; found [M+H]⁺: 193.0659.



Compound **1k** was obtained as a white solid (858.7 mg, 85%), PE/EA = 5:1 with HOAc (1 %, v/v) as eluent for the column chromatography. Mp 126-128 °C. ¹H NMR (600 MHz, CDCl₃) δ 11.17 (s, 1H), 7.13 (s, 1H), 7.10 (d, *J* = 7.7 Hz, 1H), 7.02 (d, *J* = 7.7 Hz, 1H), 6.73 (q, *J* = 3.0 Hz, 1H), 2.37 (s, 3H), 2.34 (s, 3H), 2.03 (d, *J* = 3.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 214.2, 173.0, 135.8, 132.8, 130.7, 130.0, 128.8, 97.9, 95.4, 20.9, 19.6, 15.0. MS (ESI) m/z: 203 [M+H]⁺. HRMS (ESI) m/z: Calcd for C₁₃H₁₅O₂ 203.1067; found [M+H]⁺: 203.1066.



4-(3,5-Bis(trifluoromethyl)phenyl)-2-methylbuta-2,3-dienoic acid (11) Compound **11** was obtained as a white solid (434.1 mg, 28%), PE/EA = 5:1 with HOAc (1 %, v/v) as eluent for the column chromatography. Mp 147-149 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.89 (s, 1H), 7.68 (s, 1H), 7.61 (s, 2H), 6.55 (q, *J* = 2.8 Hz, 1H), 1.97 (d, *J* = 3.0 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -63.0 (s, 6F). ¹³C NMR (101 MHz, CDCl₃) δ 212.7, 170.6, 133.6, 131.3 (q, *J* = 33.5 Hz), 126.1 (q, *J* = 3.7 Hz), 122.1 (q, *J* = 271.8 Hz), 120.5 (q, *J* = 3.8 Hz), 99.6, 95.1, 13.5. MS (ESI) m/z: 311 [M+H]⁺. HRMS (ESI) m/z: Calcd for C₁₃H₉F₆O₂ 311.0501; found [M+H]⁺: 311.0499.

Preparation of 5-phenyl-2-vinylidenepentanoic acid (1u)⁴

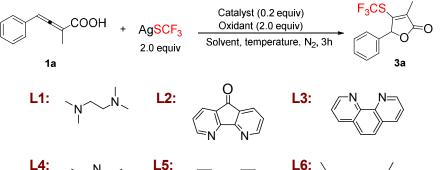
The mixture of 1u'' (3.73 g, 8 mmol, 1.0 equiv) and Et₃N (0.81 g, 8 mmol, 1.0 equiv) in DCM (80 mL) was stirred 0 °C 20 minutes. Then, a solution of acetyl chloride (0.79 g, 10 mmol, 1.25 equiv) in DCM (15 mL) was added dropwise and the reaction mixture was stirred at room temperature overnight. The reaction mixture was diluted with EtOAc, and extracted with saturated aqueous NaCl solution, and extracted with EtOAc. The combined organic layers were dried with Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The resulting crude product was purified by flash chromatography on silica gel (PE/EA = 20:1) to give **1u'** (1.58 g, 86% yield).

To a round-bottom flask, **1u'** (1.15 g, 5 mmol, 1.0 equiv), EtOH (15 mL), H₂O (15 mL), and NaOH (0.3 g, 7.5 mmol, 1.5 equiv) were added sequentially and the resulting solution was heated to reflux. After 2 h, the reaction was completed as monitored by TLC. The reaction mixture was diluted with EtOAc, and extracted with saturated aqueous NaHCO₃ solution. The aqueous layer was separated, acidified to pH 2.0 by addition of HCl (1 N), and extracted with DCM. The combined organic layers were dried with Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The resulting crude product was purified by flash chromatography on silica gel (PE/EA = 5:1 with HOAc (1 %, v/v)) to give **1u** as a white solid (678.8 mg, 67% yield). Mp 67-69 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.36 (s, 1H), 7.18-7.23 (m, 2H),

7.10-7.13 (m, 3H), 5.14 (t, J = 3.0 Hz, 2H), 2.62-2.55 (m, 2H), 2.30-2.09 (m, 2H), 1.82-1.65 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 214.8, 172.8, 142.0, 128.5, 128.4, 125.8, 99.8, 79.6, 35.3, 29.6, 27.3. MS (ESI) m/z: 203 [M+H]⁺. HRMS (ESI) m/z: Calcd for C₁₃H₁₅O₂ 203.1067; found [M+H]⁺: 203.1066.

References:

- 1. Teverovskiy, G.; Surry, D.; Buchwald, S. Angew. Chem., Int. Ed. 2011, 50, 7312.
- 2. Chai, G.; Lu, Z.; Fu, C.; Ma, S. Adv. Synth. Catal. 2009, 351, 1946.


3. Ramaswamy, S.; Hui, R. A.; Jones, J. B. J. Chem. Soc., Chem. Commun. 1986, 1545.

4. Castellano, S.; Fiji, H. G.; Kinderman, S.; Watanabe, M.; Leon, P.; Tamanoi, F.; Kwon, O. J. Am. Chem. Soc. 2007, 129, 5843.

- 5. Miao, B.; Li, G.; Ma. S. Chem. Eur. J. 2015, 21, 17224.
- 6. Noqi, K.; Fujihara, T.; Terao, J.; Tsuji. Y. Chem. Commun. 2014, 50, 13052.

3. Optimization of Reaction Conditions

Optimization of reaction conditions for cyclic oxytrifluoromethylthiolation^a

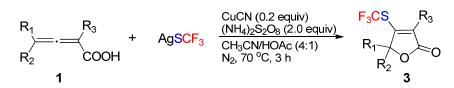
L6:

Entry	Catalyst	Oxidant	Solvent (x:y)	Tem (°C)	Yield $(\%)^b$
1		$(NH_4)_2S_2O_8$	CH ₃ CN	70	22
2		$(NH_4)_2S_2O_8$	DMF	70	Trace
3		$(NH_4)_2S_2O_8$	THF	70	NR
4		$(NH_4)_2S_2O_8$	CH ₃ CN/H ₂ O (1:1)	70	7
5		$(NH_4)_2S_2O_8$	CH ₃ CN/TFA (1:1)	70	NR
6		$(NH_4)_2S_2O_8$	CH ₃ CN/TfOH (1:1)	70	NR
7		$(NH_4)_2S_2O_8$	CH ₃ CN/ HCOOH (1:1)	70	15
8		$(NH_4)_2S_2O_8$	CH ₃ CN /HOAc (1:1)	70	38
9		$(NH_4)_2S_2O_8$	CH ₃ CN/ HOAc (2:1)	70	60
10		$(NH_4)_2S_2O_8$	CH ₃ CN/HOAc (1:2)	70	6
11		$(NH_4)_2S_2O_8$	CH ₃ CN /HOAc (4:1)	70	65
12		$(NH_4)_2S_2O_8$	CH ₃ CN /HOAc (8:1)	70	58

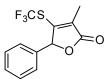
13		$(NH_4)_2S_2O_8$	THF / HOAc (4:1)	70	NR
14		$(NH_4)_2S_2O_8$	DCE / HOAc (4:1)	70	NR
15		$(NH_4)_2S_2O_8$	toluene / HOAc (4:1)	70	NR
16	CuSO ₄	$(NH_4)_2S_2O_8$	CH ₃ CN /HOAc (4:1)	70	68
17	CuTC	$(NH_4)_2S_2O_8$	CH ₃ CN /HOAc (4:1)	70	76
18	Cu(OAc) ₂	$(NH_4)_2S_2O_8$	CH ₃ CN /HOAc (4:1)	70	77
19	Cu(OTf) ₂	$(NH_4)_2S_2O_8$	CH ₃ CN /HOAc (4:1)	70	71
20	CuI	$(NH_4)_2S_2O_8$	CH ₃ CN /HOAc (4:1)	70	67
21	Cu	$(NH_4)_2S_2O_8$	CH ₃ CN /HOAc (4:1)	70	70
22	CuCN	$(\mathrm{NH}_4)_2\mathrm{S}_2\mathrm{O}_8$	CH ₃ CN /HOAc (4:1)	70	85
23	CuCN	$(NH_4)_2S_2O_8$	CH ₃ CN /HOAc (4:1)	50	36
24	CuCN	$(NH_4)_2S_2O_8$	CH ₃ CN /HOAc (4:1)	90	75
25	CuCN	$K_2S_2O_8$	CH ₃ CN /HOAc (4:1)	70	48
26	CuCN	$Na_2S_2O_8$	CH ₃ CN /HOAc (4:1)	70	39
27	CuCN	PIDA	CH ₃ CN /HOAc (4:1)	70	NR
28	CuCN	TBHP	CH ₃ CN /HOAc (4:1)	70	Trace
29 ^c	CuCN	$(NH_4)_2S_2O_8$	CH ₃ CN /HOAc (4:1)	70	61
30 ^d	CuCN	$(NH_4)_2S_2O_8$	CH ₃ CN /HOAc (4:1)	70	85
31	CuCN + Lı	$(NH_4)_2S_2O_8$	CH ₃ CN /HOAc (4:1)	70	70
32	CuCN + L2	$(NH_4)_2S_2O_8$	CH ₃ CN /HOAc (4:1)	70	74
33	$CuCN + L_3$	$(NH_4)_2S_2O_8$	CH ₃ CN /HOAc (4:1)	70	68
34	CuCN + L4	$(NH_4)_2S_2O_8$	CH ₃ CN /HOAc (4:1)	70	59
35	CuCN + L5	$(NH_4)_2S_2O_8$	CH ₃ CN /HOAc (4:1)	70	83
36	CuCN + L6	$(NH_4)_2S_2O_8$	CH ₃ CN /HOAc (4:1)	70	40

^{*a*}Reaction conditions: **1a** (0.1 mmol), AgSCF₃ (0.2 mmol), catalyst (0.02 mmol), oxidant (0.2 mmol), solvent (2.0 mL), under N₂, 70 °C, 3 h. ^{*b*}Yields determined by ¹⁹F NMR spectroscopy using trifluoromethylbenzene as an internal standard. ^{*c*}AgSCF₃ (1.5 mmol). ^{*d*}AgSCF₃ (3.0 mmol).

Optimization of reaction conditions for bis-trifluoromethylthiolation^{*a*}

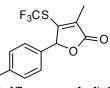

	H H COOH + Bn 1r	Ag <mark>SCF₃ Ox</mark>	talyst (0.2 equiv) idant (3.0 equiv) rent, 70 °C, N ₂ , 3h COOH 4r	F_3CF_3 F_3CS $F_$
	L1:	N_ L2:	L3:	
	L4:	L5:		
Entry	Catalyst	Oxidant	Solvent (x:y)	4r/3r Yield (%) ^b
1	CuCN	$(NH_4)_2S_2O_8$	CH ₃ CN/HOAc (4	16/trace
2	Cu(OAc) ₂	$(NH_4)_2S_2O_8$	CH ₃ CN/HOAc (4	24/trace
3	CuCl ₂	$(NH_4)_2S_2O_8$	CH ₃ CN/HOAc (4:	1) 19/trace

4	CuI	$(NH_4)_2S_2O_8$	CH ₃ CN/HOAc (4:1)	12/trace
5	Cu(OAc) ₂	$(NH_4)_2S_2O_8$	CH ₃ CN/HCOOH (4:1)	28 trace
6	Cu(OAc) ₂	$(NH_4)_2S_2O_8$	CH ₃ CN/HCOOH (9:1)	23/trace
7	Cu(OAc) ₂	$(NH_4)_2S_2O_8$	CH ₃ CN/HCOOH (2:1)	21/trace
8	Cu(OAc) ₂	$(NH_4)_2S_2O_8$	CH ₃ CN/HCOOH (1:1)	17/trace
9	$Cu(OAc)_{2}$	$(NH_4)_2S_2O_8$	CH ₃ CN/H ₂ O/HCOOH (4 :0.5: 1)	35/2
10	$Cu(OAc)_{2}$	$(NH_4)_2S_2O_8$	CH ₃ CN/H ₂ O/HCOOH (4 :1.0: 1)	38/2
11	Cu(OAc) ₂	$(NH_4)_2S_2O_8$	CH ₃ CN/H ₂ O/HCOOH (4 :1.5: 1)	45/3
12	Cu(OAc) ₂	$(NH_4)_2S_2O_8$	CH ₃ CN/H ₂ O/HCOOH (4 :2.0: 1)	51/5
13	Cu(OAc) ₂	$(NH_4)_2S_2O_8$	CH ₃ CN/H ₂ O/HCOOH (4 :3.0: 1)	45/5
14		$(NH_4)_2S_2O_8$	CH ₃ CN/H ₂ O/HCOOH (4 :2.0: 1)	NR
15	Cu(OAc) ₂	$K_2S_2O_8$	CH ₃ CN/H ₂ O/HCOOH (4 :2.0: 1)	45/4
16	Cu(OAc) ₂	$Na_2S_2O_8$	CH ₃ CN/H ₂ O/HCOOH (4 :2.0: 1)	41/4
17	Cu(OAc) ₂	PIDA	CH ₃ CN/H ₂ O/HCOOH (4 :2.0: 1)	NR
18	Cu(OAc) ₂	TBHP	CH ₃ CN/H ₂ O/HCOOH (4 :2.0: 1)	trace
19	$Cu(OAc)_2 + L_1$	$(NH_4)_2S_2O_8$	CH ₃ CN/H ₂ O/HCOOH (4 :2.0: 1)	35/5
20	$Cu(OAc)_2 + L_2$	$(NH_4)_2S_2O_8$	CH ₃ CN/H ₂ O/HCOOH (4 :2.0: 1)	45/6
21	$Cu(OAc)_2 + L_3$	$(NH_4)_2S_2O_8$	CH ₃ CN/H ₂ O/HCOOH (4 :2.0: 1)	39/5
22	$Cu(OAc)_2 + L_4$	$(NH_4)_2S_2O_8$	CH ₃ CN/H ₂ O/HCOOH (4 :2.0: 1)	38/6
23	$Cu(OAc)_2 + L_5$	$(NH_4)_2S_2O_8$	CH ₃ CN/H ₂ O/HCOOH (4 :2.0: 1)	12/3
24	$Cu(OAc)_2 + L6$	$(NH_4)_2S_2O_8$	CH ₃ CN/H ₂ O/HCOOH (4 :2.0: 1)	14/3

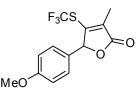

^{*a*}Reaction conditions: **1r** (0.1 mmol), AgSCF₃ (0.3 mmol), catalyst (0.02 mmol), oxidant (0.3 mmol), solvent (2.8 mL), under N₂, 70 °C, 3 h. ^{*b*}Yields determined by ¹⁹F NMR spectroscopy using trifluoromethylbenzene as an internal standard.

4. Cyclic Oxytrifluoromethylthiolation of 2,3-Allenoic Aicds with

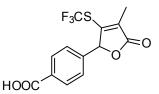
AgSCF₃



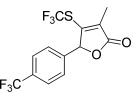
A 25 mL Schlenk tube equipped with a magnetic stir bar was charged with 2,3-allenoic acid (0.2 mmol, 1.0 equiv), CuCN (3.6 mg, 0.04 mmol, 0.2 equiv), AgSCF₃ (83.6 mg, 0.4 mmol, 2.0 equiv), and $(NH_4)_2S_2O_8$ (91.3 mg, 0.4 mmol, 2.0 equiv). The tube was sealed with a septum, evacuated, and backfilled with nitrogen three times. Then CH₃CN (3.2 mL) and HOAc (0.8 mL) was added by a syringe. The mixture was stirred at 70 °C for 3 h. A saturated ammonium chloride aqueous solution (5 mL) was added. The resulting mixture was filtered by Celite, eluted with ethyl acetate. The organic phase was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced vacuum. The residue was purified with silica gel column chromatography to provide the pure product.



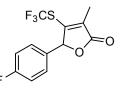
3-Methyl-5-phenyl-4-((trifluoromethyl)thio)furan-2(5H)-one (3a)


Compound **3a** was obtained as a yellow oil (44.3 mg, 81%), with PE/EA = 30:1 as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.28 (m, 3H), 7.15-7.12 (m, 2H), 5.81 (d, *J* = 1.8 Hz, 1H), 2.06 (d, *J* = 1.9 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -37.8 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 169.9, 144.5, 137.5, 132.0, 128.9, 128.0, 127.1 (q, *J* = 311.2 Hz), 126.3, 84.2 (d, *J* = 0.7 Hz), 9.6. IR (KBr): v 2960, 2923, 2858, 1767, 1507, 1448, 1301, 1139, 1098, 1045, 989, 757, 697, 516 cm⁻¹. MS (EI) m/z: 274 [M]⁺. HRMS (EI) m/z: Calcd for C₁₂H₉F₃O₂S 274.0275; found: 274.0276.

3-Methyl-5-(*p*-tolyl)-4-((trifluoromethyl)thio)furan-2(5*H*)-one (3b) Compound 3b was obtained as a yellow oil (43.3 mg, 75%), with PE/EA = 30:1 as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.10 (d, *J* = 7.9 Hz, 2H), 7.00 (d, *J* = 8.1 Hz, 2H), 5.77 (d, *J* = 1.6 Hz, 1H), 2.25 (s, 3H), 2.04 (d, *J* = 1.8 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -37.9 (s, 3F). ¹³C NMR (151 MHz, CDCl₃) δ 171.0, 145.6 (d, *J* = 1.7 Hz), 140.0, 138.3, 130.0, 129.8, 128.2 (q, *J* = 311.1 Hz), 127.3, 85.2, 21.3, 10.6. IR (KBr): v 2962, 2920, 2878, 1668, 1516, 1488, 1301, 1261, 1140, 1100, 987, 815, 745, 632, 517 cm⁻¹. MS (EI) m/z: 288 [M]⁺. HRMS (EI) m/z: Calcd for C₁₃H₁₁F₃O₂S 288.0432; found: 288.0437.

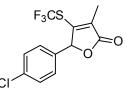


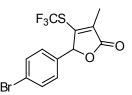
5-(4-Methoxyphenyl)-3-methyl-4-((trifluoromethyl)thio)furan-2(5*H***)-one (3c) Compound 3c was obtained as a yellow oil (31.6 mg, 52%), with PE/EA = 30:1 as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) \delta 7.05 (d,** *J* **= 8.7 Hz, 2H), 6.84 (d,** *J* **= 8.8 Hz, 2H), 5.79 (d,** *J* **= 1.7 Hz, 1H), 3.74 (s, 3H), 2.07 (d,** *J* **= 1.9 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) \delta -37.8 (s, 3F). ¹³C NMR (151 MHz, CDCl₃) \delta 170.0, 159.8, 144.6 (d,** *J* **= 1.8 Hz), 137.2, 127.8, 127.1 (q,** *J* **= 311.1 Hz), 123.7, 113.5, 84.1, 54.3, 9.6. IR (KBr): v 2960, 2925, 2872, 1767, 1624, 1515, 1306, 1250, 1140, 1100, 983, 830, 797, 613, 539 cm⁻¹. MS (EI) m/z: 304 [M]⁺. HRMS (EI) m/z: Calcd for C₁₃H₁₁F₃O₃S 304.0381; found: 304.0383.**


4-(4-Methyl-5-oxo-3-((trifluoromethyl)thio)-2,5-dihydrofuran-2-yl)benzoic acid (3d)

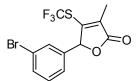
Compound **3d** was obtained as a white solid (25.7 mg, 40%), with PE/EA = 10:1 as eluent for the column chromatography. Mp 150-152 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 8.09 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.3 Hz, 2H), 5.90 (d, *J* = 1.6 Hz, 1H), 2.10 (d, *J* = 1.8 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -37.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 170.7, 145.1 (d, *J* = 1.9 Hz), 139.2, 138.8, 130.9, 130.7, 128.0 (q, *J* = 311.2 Hz), 127.3, 84.3, 10.8. IR (KBr): v 2958, 2920, 2873, 2567, 1772, 1695, 1425, 1286, 1143, 1101, 1047, 999, 860, 734, 704, 513 cm⁻¹. MS (ESI) m/z: 319 [M+H]⁺. HRMS (ESI) m/z: Calcd for C₁₃H₁₀F₃O₄S 319.0246; found [M+H]⁺: 319.0245.

3-Methyl-5-(4-(trifluoromethyl)phenyl)-4-((trifluoromethyl)thio)furan-2(5*H*)-one (3e)

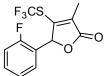

Compound **3e** was obtained as a yellow oil (36.2 mg, 53%), with PE/EA = 30:1 as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 8.2 Hz, 2H), 5.87 (d, *J* = 1.7 Hz, 1H), 2.09 (d, *J* = 1.9 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -37.8 (s, 3F), -62.9 (s, 3F). ¹³C NMR (151 MHz, CDCl₃) δ 169.5, 144.0 (d, *J* = 1.6 Hz), 138.2, 136.1, 131.1 (q, *J* = 32.8 Hz), 127.0 (q, *J* = 311.4 Hz), 126.6, 125.1 (q, *J* = 3.8 Hz), 122.7 (q, *J* = 272.4 Hz), 83.1, 9.7. IR (KBr): v 2961, 2924, 2865, 1773, 1634, 1422, 1325, 1101, 1065, 1003, 910, 830, 739, 636 cm⁻¹. MS (EI) m/z: 342 [M]⁺. HRMS (EI) m/z: Calcd for C₁₃H₈F₆O₂S 342.0149; found: 342.0142.


5-(4-Fluorophenyl)-3-methyl-4-((trifluoromethyl)thio)furan-2(5H)-one (3f)

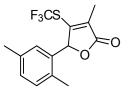
Compound **3f** was obtained as a white solid (40.3 mg, 69%), with PE/EA = 30:1 as eluent for the column chromatography. Mp 69-71 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.17-7.10 (m, 2H), 7.06-6.99 (m, 2H), 5.81 (d, *J* = 1.7 Hz, 1H), 2.07 (d, *J* = 1.9 Hz,


3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -37.8 (s, 3F), -110.7--110.8 (m, 1F). ¹³C NMR (151 MHz, CDCl₃) δ 170.7, 163.5 (d, J = 249.2 Hz), 145.4 (d, J = 1.4 Hz), 138.6, 129.3, 129.2, 128.8 (d, J = 4.5 Hz), 128.1 (q, J = 311.3 Hz), 116.3, 116.1, 84.4, 10.7. IR (KBr): v 2960, 2921, 2852, 1770, 1616, 1512, 1301, 1234, 1141, 1099, 997, 834, 796, 524 cm⁻¹. MS (EI) m/z: 292 [M]⁺. HRMS (EI) m/z: Calcd for C₁₂H₈F₄O₂S 292.0181; found: 292.0175.

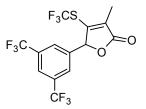
5-(4-Chlorophenyl)-3-methyl-4-((trifluoromethyl)thio)furan-2(5H)-one (3g) Compound **3g** was obtained as a yellow oil (44.4 mg, 72%), with PE/EA = 30:1 as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 8.5 Hz, 2H), 7.08 (d, *J* = 8.5 Hz, 2H), 5.78 (d, *J* = 1.6 Hz, 1H), 2.05 (d, *J* = 1.9 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -37.8 (s, 3F). ¹³C NMR (151 MHz, CDCl₃) δ 170.6, 145.2 (d, *J* = 1.7 Hz), 138.8, 135.9, 131.6, 129.3, 128.6, 128.1 (q, *J* = 311.3 Hz), 84.3, 10.7. IR (KBr): v 2979, 2925, 2852, 1769, 1613, 1493, 1347, 1169, 1100, 1082, 992, 821, 733, 647, 513 cm⁻¹. MS (EI) m/z: 308 [M]⁺. HRMS (EI) m/z: Calcd for C₁₂H₈ClF₃O₂S 307.9886; found: 307.9889.



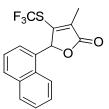
5-(4-Bromophenyl)-3-methyl-4-((trifluoromethyl)thio)furan-2(5*H***)-one (3h) Compound 3h was obtained as a white solid (52.0 mg, 74%), with PE/EA = 30:1 as eluent for the column chromatography. Mp 40-42 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.5 Hz, 2H), 7.03 (d, J = 8.4 Hz, 2H), 5.78 (d, J = 1.7 Hz, 1H), 2.07 (d, J = 1.9 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -37.7 (s, 3F). ¹³C NMR (151 MHz, CDCl₃) δ 170.6, 145.2 (d, J = 1.7 Hz), 138.8, 132.3, 132.1, 128.8, 128.1 (q, J = 311.4 Hz), 124.2, 84.4, 10.7. IR (KBr): v 2980, 2963, 2858, 1770, 1667, 1535, 1490, 1301, 1260, 1140, 1100, 1068, 1004, 780, 747, 624, 505 cm⁻¹. MS (EI) m/z: 352 [M]⁺. HRMS (EI) m/z: Calcd for C₁₂H₈BrF₃O₂S 351.9380; found: 351.9366.**



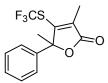
5-(3-Bromophenyl)-3-methyl-4-((trifluoromethyl)thio)furan-2(5H)-one (3i)


Compound **3i** was obtained as a yellow oil (42.8 mg, 61%), with PE/EA = 30:1 as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (ddd, *J* = 8.0, 1.7, 1.0 Hz, 1H), 7.27 (t, *J* = 1.7 Hz, 1H), 7.19 (t, *J* = 7.8 Hz, 1H), 7.10 (d, *J* = 7.8 Hz, 1H), 5.76 (d, *J* = 1.8 Hz, 1H), 2.06 (d, *J* = 1.9 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -37.8 (s, 3F). ¹³C NMR (151 MHz, CDCl₃) δ 170.6, 145.0 (d, *J* = 1.7 Hz), 139.1, 135.3, 133.1, 130.6, 130.0, 128.1 (q, *J* = 311.4 Hz), 126.1, 123.0, 84.2, 10.7. IR (KBr): v 2962, 2932, 2856, 1769, 1546, 1431, 1296, 1140, 1098, 997, 876, 784, 697, 646 cm⁻¹. MS (EI) m/z: 352 [M]⁺. HRMS (EI) m/z: Calcd for C₁₂H₈BrF₃O₂S 351.9380; found: 351.9375.

5-(2-Fluorophenyl)-3-methyl-4-((trifluoromethyl)thio)furan-2(5*H***)-one (3j**) Compound **3j** was obtained as a yellow oil (38.0 mg, 65%), with PE/EA = 30:1 as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.29 (m, 1H), 7.13-6.99 (m, 3H), 6.11 (d, *J* = 1.9 Hz, 1H), 2.07 (d, *J* = 2.0 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -38.1 (s, 3F), -117.63--117.98 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 160.7 (d, *J* = 251.5 Hz), 143.4 (d, *J* = 1.6 Hz), 138.2, 130.9 (d, *J* = 9.1 Hz), 127.8 (d, *J* = 3.0 Hz), 127.0 (q, *J* = 311.2 Hz), 123.7 (d, *J* = 1.6 Hz), 119.4 (d, *J* = 12.1 Hz), 115.3 (d, *J* = 21.2 Hz), 78.7 (d, *J* = 2.3 Hz), 9.6. IR (KBr): v 2961, 2931, 2856, 1770, 1534, 1493, 1459, 1301, 1142, 1100, 1046, 994, 908, 910, 811, 757, 640 cm⁻¹. MS (EI) m/z: 292 [M]⁺. HRMS (EI) m/z: Calcd for C₁₂H₈F₄O₂S 292.0181; found: 292.0180.

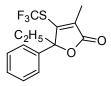


5-(2,5-Dimethylphenyl)-3-methyl-4-((trifluoromethyl)thio)furan-2(5*H***)-one (3k) Compound 3k was obtained as a yellow solid (47.1 mg, 78%), with PE/EA = 30:1 as eluent for the column chromatography. Mp 65-67 °C. ¹H NMR (400 MHz, CDCl₃) \delta 7.07-7.01 (m, 2H), 6.58 (s, 1H), 6.12 (q,** *J* **= 1.9 Hz, 1H), 2.34 (s, 3H), 2.20 (s, 3H), 2.11 (d,** *J* **= 1.9 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) \delta -38.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) \delta 170.2, 144.1 (d,** *J* **= 1.9 Hz), 138.3, 135.3, 133.5, 130.2, 129.6, 129.5, 127.2 (q,** *J* **= 311.1 Hz), 125.9, 81.1, 19.9, 17.6, 9.7. IR (KBr): v 2961, 2923, 2856, 1768, 1505, 1477, 1296, 1260, 1138, 1100, 981, 805, 749, 651, 541 cm⁻¹. MS (EI) m/z: 302 [M]⁺. HRMS (EI) m/z: Calcd for C₁₄H₁₃F₃O₂S 302.0588; found: 302.0583.**

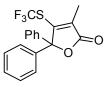


5-(3,5-Bis(trifluoromethyl)phenyl)-3-methyl-4-((trifluoromethyl)thio)furan-2(5*H*) -one (3l)

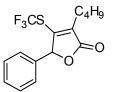
Compound **31** was obtained as a yellow oil (32.9 mg, 40%), with PE/EA = 30:1 as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.63 (s, 2H), 5.93 (d, *J* = 1.8 Hz, 1H), 2.12 (d, *J* = 1.9 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -37.7 (s, 3F), -63.0 (s, 6F). ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 143.3 (d, *J* = 1.7 Hz), 139.1, 135.0, 131.7 (q, *J* = 34.0 Hz), 126.9 (q, *J* = 311.6 Hz), 126.3 (d, *J* = 3.1 Hz), 122.9 (dt, *J* = 7.6, 3.8 Hz), 121.8 (q, *J* = 272.9 Hz), 82.3, 9.9. IR (KBr): v 2963, 2928. 2864, 1779, 1657, 1484, 1380, 1239, 1278, 1135, 1099, 1013, 905, 797, 733, 681 cm⁻¹. MS (EI) m/z: 410 [M]⁺. HRMS (EI) m/z: Calcd for C₁₄H₇F₉O₂S 410.0023; found: 410.0018.


3-Methyl-5-(naphthalen-1-yl)-4-((trifluoromethyl)thio)furan-2(5H)-one (3m) Compound **3m** was obtained as a yellow oil (31.0 mg, 48%), with PE/EA = 30:1 as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.4 Hz, 1H), 7.82 (d, *J* = 8.2 Hz, 2H), 7.56-7.44 (m, 2H), 7.39-7.33 (m, 1H), 7.10 (dd, *J* = 7.2, 0.6 Hz, 1H), 6.69 (d, *J* = 1.9 Hz, 1H), 2.13 (d, *J* = 1.8 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -38.0 (s, 3F). ¹³C NMR (151 MHz, CDCl₃) δ 171.0, 145.2 (d, *J* = 1.8 Hz), 139.6, 134.0, 131.9, 130.8, 129.1, 128.8, 128.2 (q, *J* = 311.3 Hz), 127.3, 126.4, 125.4, 125.2, 122.4, 81.4, 10.9. IR (KBr): v 2962, 2919, 2853, 1766, 1628, 1554, 1356, 1295, 1140, 1098, 1016, 976, 795, 774, 641, 540 cm⁻¹. MS (EI) m/z: 324 [M]⁺. HRMS (EI) m/z: Calcd for C₁₆H₁₁F₃O₂S 324.0432; found: 324.0435.

3,5-Dimethyl-5-phenyl-4-((trifluoromethyl)thio)furan-2(5*H*)-one (3n)


Compound **3n** was obtained as a yellow oil (40.6 mg, 70%), with PE/EA = 30:1 as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.23 (m,

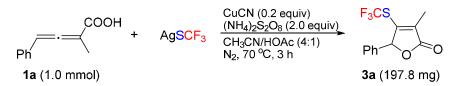
5H), 2.03 (d, J = 0.9 Hz, 3H), 1.86 (s, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -37.4 (s, 3F). ¹³C NMR (151 MHz, CDCl₃) δ 170.8, 150.0 (d, J = 1.3 Hz), 138.6, 136.7, 129.0, 128.8, 128.2 (q, J = 311.4 Hz), 125.4, 89.4, 23.5, 11.2 (d, J = 1.5 Hz). IR (KBr): v 2962, 2923, 2856, 1763, 1505, 1474, 1292, 1142, 1097, 1063, 1023, 923, 800, 769, 696, 660 cm⁻¹. MS (EI) m/z: 288 [M]⁺. HRMS (EI) m/z: Calcd for C₁₃H₁₁F₃O₂S 288.0432; found: 288.0437.



5-Ethyl-3-methyl-5-phenyl-4-((trifluoromethyl)thio)furan-2(5H)-one (3o)

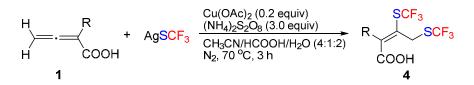
Compound **30** was obtained as a yellow oil (52.6 mg, 87%), with PE/EA = 30:1 as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.21 (m, 5H), 2.38 (dq, *J* = 14.7, 7.4 Hz, 1H), 2.05 (dq, *J* = 14.4, 7.2 Hz, 1H), 2.00 (d, *J* = 0.9 Hz, 3H), 0.81 (t, *J* = 7.3 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -37.0 (s, 3F). ¹³C NMR (151 MHz, CDCl₃) δ 171.1, 149.2 (d, *J* = 1.4 Hz), 138.7, 136.1, 128.8, 128.7, 128.2 (q, *J* = 311.6 Hz), 125.4, 91.9, 29.2, 11.1 (d, *J* = 1.5 Hz), 7.5. IR (KBr): v 2958, 2920, 2861, 1766, 1521, 1495, 1290, 1167, 1097, 1030, 975, 801, 767, 698, 498 cm⁻¹. MS (EI) m/z: 302 [M]⁺. HRMS (EI) m/z: Calcd for C₁₄H₁₃F₃O₂S 302.0588; found: 302.0579.

3-Methyl-5,5-diphenyl-4-((trifluoromethyl)thio)furan-2(5*H***)-one (3**p) Compound **3**p was obtained as a yellow solid (63.0 mg, 90%), with PE/EA = 30:1 as eluent for the column chromatography. Mp 67-69 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.27 (m, 6H), 7.21-7.17 (m, 4H), 2.12 (d, *J* = 1.2 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -37.2 (s, 3F). ¹³C NMR (151 MHz, CDCl₃) δ 170.5, 148.4 (d, *J* = 1.2 Hz), 139.4, 137.4, 129.3, 128.6, 127.8, 127.7 (q, *J* = 312.7 Hz), 94.0, 11.6 (d, *J* = 1.9 Hz). IR (KBr): v 2960, 2927, 2850, 1771, 1515, 1448, 1290, 1152, 1099, 985, 759, 698, 652 cm⁻¹. MS (EI) m/z: 350 [M]⁺. HRMS (EI) m/z: Calcd for C₁₈H₁₃F₃O₂S 350.0588; found: 350.0580.

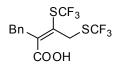


3-Butyl-5-phenyl-4-((trifluoromethyl)thio)furan-2(5H)-one (3q)

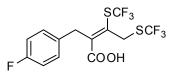
Compound **3q** was obtained as a yellow oil (48.1 mg, 76%), with PE/EA = 30:1 as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.30 (m, 3H), 7.14-7.08 (m, 2H), 5.82 (s, 1H), 2.54-2.40 (m, 2H), 1.60-1.46 (m, 2H), 1.30 (dq, J = 14.8, 7.4 Hz, 2H), 0.87 (t, J = 7.3 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -37.8 (s, 3F). ¹³C NMR (151 MHz, CDCl₃) δ 170.5, 145.5 (d, J = 1.7 Hz), 142.1, 133.3, 129.9, 129.1, 128.0 (q, J = 311.1 Hz), 127.3, 84.9, 29.8, 25.0, 22.5, 13.7. IR (KBr): v 2962, 2931. 2860, 1769, 1543, 1457, 1315, 1263, 1140, 1104, 1003, 944, 802, 757, 697, 645 cm⁻¹. MS (EI) m/z: 316 [M]⁺. HRMS (EI) m/z: Calcd for C₁₅H₁₅F₃O₂S 316.0745; found [M]⁺: 316.0740.


Cyclic Oxytrifluoromethylthiolation of 2,3-Allenoic Acid 1a on a 1.0

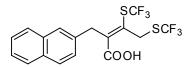
mmol Scale:


2-Methyl-4-phenylbuta-2,3-dienoic acid (174.2 mg, 1.0 mmol, 1.0 equiv), CuCN (17.9 mg, 0.2 mmol, 0.2 equiv), AgSCF₃ (417.9 mg, 2.0 mmol, 2.0 equiv), and $(NH_4)_2S_2O_8$ (456.4 mg, 2.0 mmol, 2.0 equiv) were added to a Schlneck tube. The tube was sealed with a septum, evacuated, and backfilled with nitrogen three times. Then CH₃CN (16 mL) and HOAc (4 mL) was added by a syringe. The mixture was stirred at 70 °C for 3 h. A saturated ammonium chloride aqueous solution (15 mL) was added. The resulting mixture was filtered by Celite, eluted with ethyl acetate. The organic phase was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced vacuum. The residue was purified with silica gel column chromatography (PE/EA = 30:1) to give **3a** (197.8 mg, 72%) as a yellow oil.

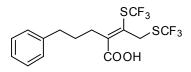
5. Bis-Trifluoromethylthiolation of 2,3-Allenoic Acids with AgSCF₃

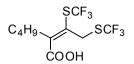

A 25 mL Schlenk tube equipped with a magnetic stir bar was charged with 2,3-allenoic acid (0.2 mmol, 1.0 equiv), $Cu(OAc)_2$ (7.3 mg, 0.04 mmol, 0.2 equiv), AgSCF₃ (125.4 mg, 0.6 mmol, 3.0 equiv), and $(NH_4)_2S_2O_8$ (136.9 mg, 0.6 mmol, 3.0 equiv). The tube was sealed with a septum, evacuated, and backfilled with nitrogen three times. Then CH₃CN (3.2 mL), HCOOH (0.8 mL) and H₂O (1.6 mL) were added

by a syringe. The mixture was stirred at 70 $^{\circ}$ C for 3 h. A saturated ammonium chloride aqueous solution (5 mL) was added. The resulting mixture was filtered by Celite, eluted with ethyl acetate. The organic phase was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced vacuum. The residue was purified with silica gel column chromatography to provide the pure product.

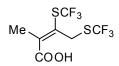


(E)-2-Benzyl-3,4-bis((trifluoromethyl)thio)but-2-enoic acid (4r)


Compound **4r** was obtained as a yellow solid (37.6 mg, 50%), with PE/EA = 5:1 as eluent for the column chromatography. Mp 73-75 °C. ¹H NMR (600 MHz, CDCl₃) δ 10.64 (s, 1H), 7.32 (t, *J* = 7.4 Hz, 2H), 7.27 (t, *J* = 7.4 Hz, 1H), 7.14 (d, *J* = 7.3 Hz, 2H), 4.28 (s, 2H), 4.17 (s, 2H). ¹⁹F NMR (377 MHz, CDCl₃) δ -39.3 (s, 3F), -40.8 (s, 3F). ¹³C NMR (151 MHz, CDCl₃) δ 170.8, 145.3, 136.1, 134.1, 130.4 (q, *J* = 307.4 Hz), 129.0 (q, *J* = 310.8 Hz), 128.8, 128.3, 127.1, 38.8, 34.9. IR (KBr): v 2962, 2921, 2861, 1764, 1586, 1454, 1352, 1251, 1119, 1095, 1036, 958, 752, 697, 467 cm⁻¹. MS (ESI) m/z: 375 [M-H]⁻. HRMS (ESI) m/z: Calcd for C₁₃H₉F₆O₂S₂ 374.9973, found [M-H]⁻: 374.9953.


(*E*)-2-(4-Fluorobenzyl)-3,4-bis((trifluoromethyl)thio)but-2-enoic acid (4s) Compound 4s was obtained as a yellow oil (49.6 mg, 63%), with PE/EA = 5:1 as eluent for the column chromatography. ¹H NMR (600 MHz, CDCl₃) δ 9.00 (s, 1H), 7.11-7.09 (m, 2H), 7.03-6.99 (m, 2H), 4.27 (s, 2H), 4.12 (s, 2H). ¹⁹F NMR (377 MHz, CDCl₃) δ -38.5 (s, 3F), -41.1 (s, 3F), -115.3--115.4 (m, 1F). ¹³C NMR (151 MHz, CDCl₃) δ 170.1, 161.9 (d, *J* = 246.1 Hz), 145.1, 134.2, 131.7 (d, *J* = 3.0 Hz), 130.3 (q, *J* = 307.4 Hz), 129.9 (d, *J* = 7.5 Hz), 128.9 (q, *J* = 311.1 Hz), 115.7 (d, *J* = 37.8 Hz), 38.1, 35.0. IR (KBr): v 2960, 2927, 2857, 1701, 1605, 1510, 1405, 1260, 1159, 1096, 1016, 954, 802, 756 cm⁻¹. MS (ESI) m/z: 393 [M-H]⁻. HRMS (ESI) m/z: Calcd for C₁₃H₈F₇O₂S₂ 392.9859, found [M-H]⁻: 392.9866.

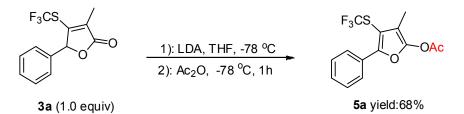
(*E*)-2-(Naphthalen-2-ylmethyl)-3,4-bis((trifluoromethyl)thio)but-2-enoic acid (4t) Compound 4t was obtained as a yellow solid (38.3 mg, 45%), with PE/EA = 5:1 as eluent for the column chromatography. Mp 117-119 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 1H), 7.74-7.63 (m, 3H), 7.43 (s, 1H), 7.41-7.34 (m, 2H), 7.15 (dd, J = 8.4, 1.7 Hz, 1H), 4.20 (s, 2H), 4.18 (s, 2H). ¹⁹F NMR (377 MHz, CDCl₃) δ -38.4 (s, 3F), -41.0 (s, 3F). ¹³C NMR (151 MHz, CDCl₃) δ 170.3, 144.9, 134.6, 133.6, 133.5, 132.4, 130.3 (q, *J* = 307.4 Hz), 129.0 (q, *J* = 314.2 Hz), 128.6, 127.7, 127.6, 126.8, 126.5, 126.3, 125.9, 38.9, 35.0. IR (KBr): v 2960, 2925, 2855, 1704, 1522, 1463, 1261, 1160, 1099, 974, 907, 807, 732, 649 cm⁻¹. MS (ESI) m/z: 425 [M-H]⁻. HRMS (ESI) m/z: Calcd for C₁₇H₁₁F₆O₂S₂ 425.0114, found [M-H]⁻: 425.0110.



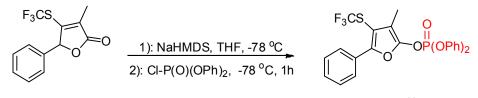
(*E*)-2-(1,2-Bis((trifluoromethyl)thio)ethylidene)-5-phenylpentanoic acid (4u) Compound 4u was obtained as a yellow oil (36.4 mg, 45%), with PE/EA = 5:1 as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 9.53 (s, 1H), 7.23-7.09 (m, 5H), 4.11 (s, 2H), 2.75-2.66 (m, 2H), 2.59 (t, *J* = 7.7 Hz, 2H), 1.78-1.68 (m, 2H). ¹⁹F NMR (377 MHz, CDCl₃) δ -38.9 (s, 3F), -41.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 146.3, 140.0, 131.4, 129.3 (q, *J* = 307.4 Hz), 128.0 (q, *J* = 310.5 Hz), 127.4, 127.3, 125.1, 34.4, 34.1, 32.1, 28.9. IR (KBr): v 2961, 2926, 2849, 1717, 1633, 1426, 1323, 1264, 1154, 1099, 971, 908, 754, 698, 646 cm⁻¹. MS (ESI) m/z: 403 [M-H]⁻. HRMS (ESI) m/z: Calcd for C₁₅H₁₃F₆O₂S₂ 403.0277; found [M-H]⁻: 403.0269.

(E)-2-(1,2-Bis((trifluoromethyl)thio)ethylidene)hexanoic acid (4v)

Compound **4v** was obtained as a colorless oil (27.3 mg, 40%), with PE/EA = 5:1 as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 4.11 (s, 2H), 2.80-2.47 (m, 2H), 1.47-1.24 (m, 4H), 0.86 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -38.7 (s, 3F), -40.9 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 147.2, 130.2, 129.4 (q, *J* = 306.9 Hz), 128.1 (q, *J* = 310.4 Hz), 34.2, 32.3, 29.3, 21.4, 12.7. IR (KBr): v 2953, 2921, 2846, 1681, 1260, 1100, 905, 796, 657 cm⁻¹. MS (ESI) m/z: 341 [M-H]⁻. HRMS (ESI) m/z: Calcd for C₁₀H₁₁F₆O₂S₂ 341.0110; found [M-H]⁻: 341.0104.



(E)-2-Methyl-3,4-bis((trifluoromethyl)thio)but-2-enoic acid (4w)


Compound 4w was obtained as a colorless oil (31.4 mg, 48%), with PE/EA = 5:1 as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 4.19 (s, 2H), 2.27 (s, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -39.1 (s, 3F), -41.2 (s, 3F).

¹³C NMR (101 MHz, CDCl₃) δ 170.3, 142.3, 132.2 (d, J = 1.1 Hz), 129.4 (q, J = 307.4 Hz), 128.3 (q, J = 310.4 Hz), 34.5, 19.0. IR (KBr): v 2960, 2927, 2859, 1703, 1278, 1103, 1007, 807, 757 cm⁻¹. MS (ESI) m/z: 299 [M-H]⁻. HRMS (ESI) m/z: Calcd for C₇H₅F₆O₂S₂ 298.9641; found [M-H]⁻: 298.9639.

6. Transformation of Compound 3a

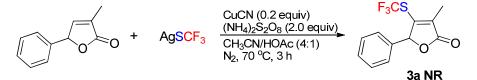
3-Methyl-5-phenyl-4-((trifluoromethyl)thio)furan-2-yl acetate (5a): A solution of LDA (1.5M in THF, 0.16 mL, 1.2 equiv) in THF (2.0 mL) was slowly added a solution of **3a** (54.9 mg, 0.2 mmol, 1.0 equiv) in dry THF (1.0 mL) at -78 °C. After the reaction mixture was stirred for 0.5 h at -78 °C, Ac₂O (40.9 mg, 0.4 mmol, 2.0 equiv) was added slowly. The mixture was stirred at -78 °C for 1 h. Then, saturated ammonium chloride aqueous solution was added. The resulting mixture was eluted with ethyl acetate. The organic phase was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced vacuum. The residue was purified with silica gel column chromatography (PE/EA = 40:1) to give product **5a** as a yellow oil (42.9 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 7.3 Hz, 2H), 7.38-7.27 (m, 3H), 2.29 (s, 3H), 1.90 (s, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -42.8 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 145.5, 141.6, 127.9, 127.5, 127.4, 127.2, 126.2 (q, *J* = 310.0 Hz), 125.6, 107.8, 34.8, 19.2. IR (KBr): v 2968, 2922, 2840, 1767, 1531, 1432, 1267, 1139, 1100, 1014, 843, 793, 697, 565 cm⁻¹. MS (ESI) m/z: 317 [M+H]⁺. HRMS (ESI) m/z: Calcd for C₁₄H₁₂F₃O₃S 317.0454; found [M+H]⁺: 317.0453.

3a (1.0 equiv)

6a yield:87%

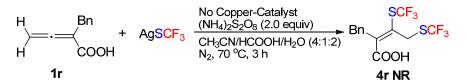
3-Methyl-5-phenyl-4-((trifluoromethyl)thio)furan-2-yl diphenyl phosphate (6a): A solution of NaHMDS (2.0 M in THF, 0.12 mL, 1.2 equiv) in THF (2.0 mL) was slowly added a solution of **3a** (54.9 mg, 0.2 mmol, 1.0 equiv) in dry THF (1.0 mL) at -78 °C. After the reaction mixture was stirred for 0.5 h at -78 °C, aqueous Cl-P(O)(OPh)₂ (88.1 mg, 0.4 mmol, 2.0 equiv) solution was added slowly. The mixture was stirred at -78 °C for 1 h. Then, saturated ammonium chloride aqueous solution was added. The resulting mixture was eluted with ethyl acetate. The organic phase was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced vacuum. The residue was purified with silica gel column chromatography (PE/EA = 20:1) to give product **6a** as a yellow oil (107.5 mg, 87% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.76 (m, 2H), 7.35-7.26 (m, 7H), 7.25-7.14 (m, 6H), 1.86 (d, *J* = 2.5 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -42.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 150.4, 149.1, 149.1, 144.6, 144.5, 129.0, 128.1 (q, *J* = 310.9 Hz), 128.0, 127.5, 125.5, 125.1, 125.0, 119.1, 119.0, 105.3, 105.2, 102.8, 5.8. ³¹P NMR (162 MHz, CDCl₃) δ -18.3 (s, 1P). IR (KBr): v 2966, 2925, 2857, 1762, 1549, 1433, 1259, 1099, 1032, 845, 759, 667, 482 cm⁻¹. MS (ESI) m/z: 524 [M+NH₄]⁺. HRMS (ESI) m/z: Calcd for C₂₄H₁₂F₃NO₅PS 524.0900; found [M+NH₄]⁺: 524.0900.

7. Mechanistic Investigation.

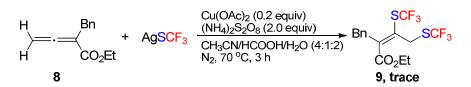


The experimental procedures for radical capture with 1,4-benzoquinone:

2-Methyl-4-phenylbuta-2,3-dienoic acid **1a** (34.8 mg, 0.2 mmol, 1.0 equiv), CuCN (3.6 mg, 0.04 mmol, 0.2 equiv), AgSCF₃ (83.6 mg, 0.4 mmol, 2.0 equiv), $(NH_4)_2S_2O_8$ (91.3 mg, 0.4 mmol, 2.0 equiv), and 1,4-benzoquinone (21.6 mg, 0.2 mmol, 1.0 equiv) were added to a Schlenk tube. The tube was sealed with a septum, evacuated, and backfilled with nitrogen three times. Then CH₃CN (3.2 mL) and HOAc (0.8 mL) was added by a syringe. The mixture was stirred at 70 °C for 3 h. Only trace of the desired product **3a** was detected.


The experimental procedures for radical capture with BHT:

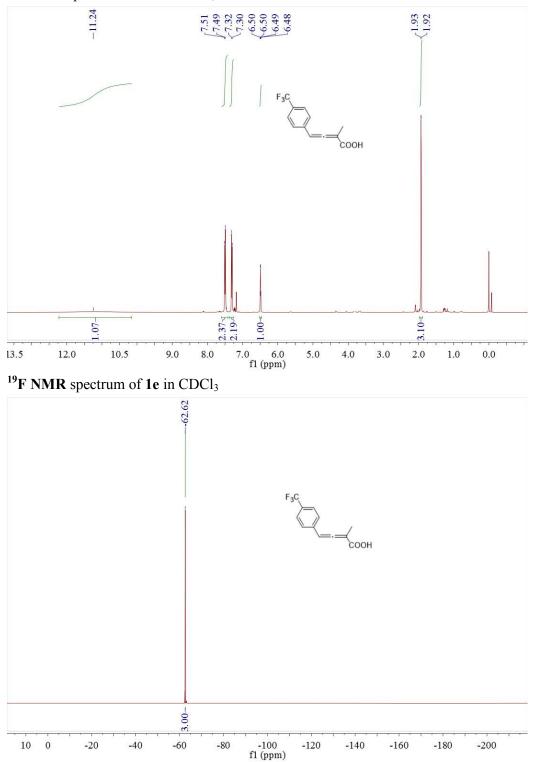
2-Methyl-4-phenylbuta-2,3-dienoic acid **1a** (34.8 mg, 0.2 mmol, 1.0 equiv), CuCN (3.6 mg, 0.04 mmol, 0.2 equiv), AgSCF₃ (83.6 mg, 0.4 mmol, 2.0 equiv), $(NH_4)_2S_2O_8$ (91.3 mg, 0.4 mmol, 2.0 equiv), and BHT (40.5 mg, 0.2 mmol, 1.0 equiv) were added to a Schlenk tube. The tube was sealed with a septum, evacuated, and backfilled with nitrogen three times. Then CH₃CN (3.2 mL) and HOAc (0.8 mL) was added by a syringe. The mixture was stirred at 70 °C for 3 h. Only trace of the desired product **3a** was detected.

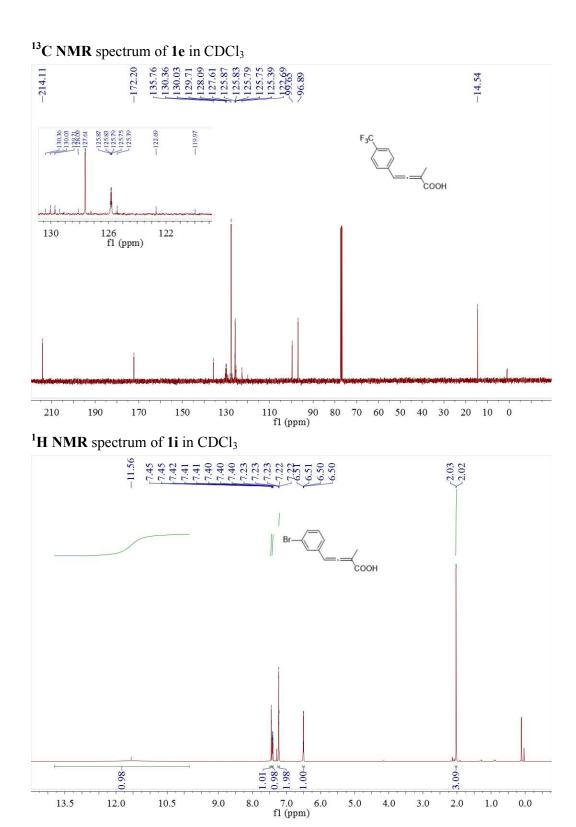


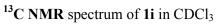
3-Methyl-5-phenylfuran-2(5*H*)-one (34.8 mg, 0.2 mmol, 1.0 equiv), CuCN (3.6 mg, 0.04 mmol, 0.2 equiv), AgSCF₃ (83.6 mg, 0.4 mmol, 2.0 equiv) and $(NH_4)_2S_2O_8$ (91.3 mg, 0.4 mmol, 2.0 equiv) were added to a Schlenk tube. The tube was sealed

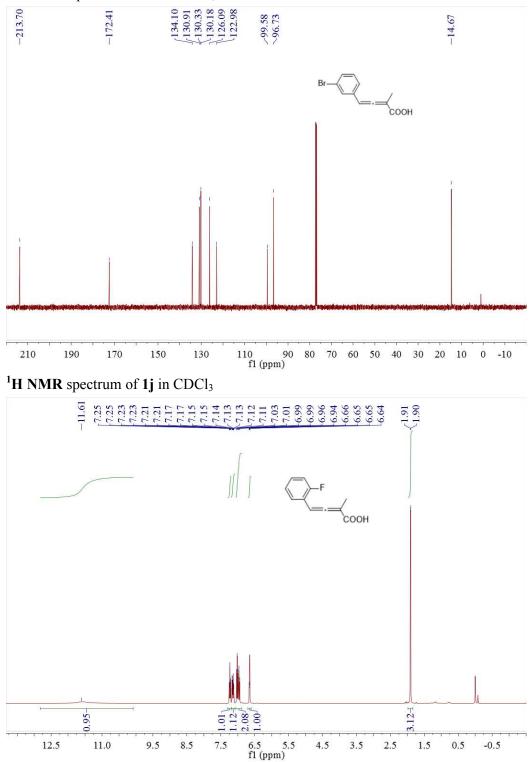
with a septum, evacuated, and backfilled with nitrogen three times. Then CH_3CN (3.2 mL) and HOAc (0.8 mL) was added by a syringe. The mixture was stirred at 70 °C for 3 h. The desired product **3a** was not detected.


2-Benzylbuta-2,3-dienoic acid **1r** (34.8 mg, 0.2 mmol, 1.0 equiv), AgSCF₃ (125.3 mg, 0.6 mmol, 3.0 equiv) and $(NH_4)_2S_2O_8$ (136.9 mg, 0.6 mmol, 3.0 equiv) were added to a Schlenk tube. The tube was sealed with a septum, evacuated, and backfilled with nitrogen three times. Then CH₃CN (3.2 mL), HCOOH (0.8 mL) and H₂O (1.6 ml) was added by a syringe. The mixture was stirred at 70 °C for 3 h. The desired product **4r** was not detected.

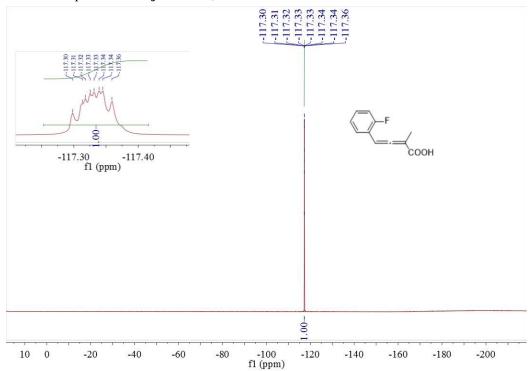

A 25 mL Schlenk tube equipped with a magnetic stir bar was charged with **8** (40.4 mg, 0.2 mmol, 1.0 equiv), $Cu(OAc)_2$ (7.3 mg, 0.04 mmol, 0.2 equiv), $AgSCF_3$ (125.4 mg, 0.6 mmol, 3.0 equiv), and $(NH_4)_2S_2O_8$ (136.9 mg, 0.6 mmol, 3.0 equiv). The tube was sealed with a septum, evacuated, and backfilled with nitrogen three times. Then CH_3CN (3.2 mL), HCOOH (0.8 mL) and H_2O (1.6 mL) were added by a syringe. The mixture was stirred at 70 °C for 3 h. Only trace of the desired product **9** was detected.

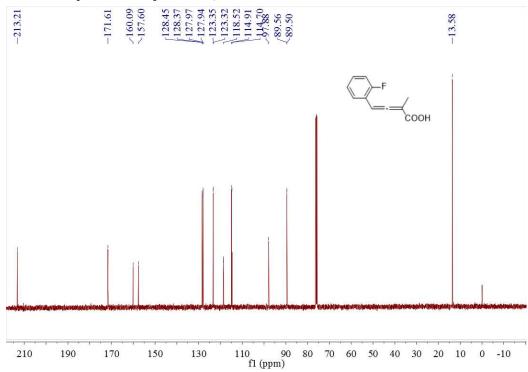

8. Copies of ¹H, ¹⁹F, and ¹³C NMR Spectra for the Products

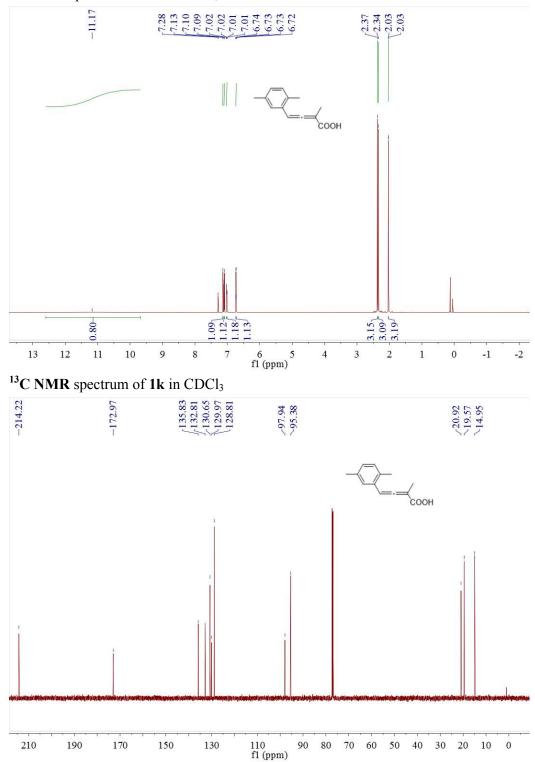

¹H NMR spectrum of 1d in DMSO



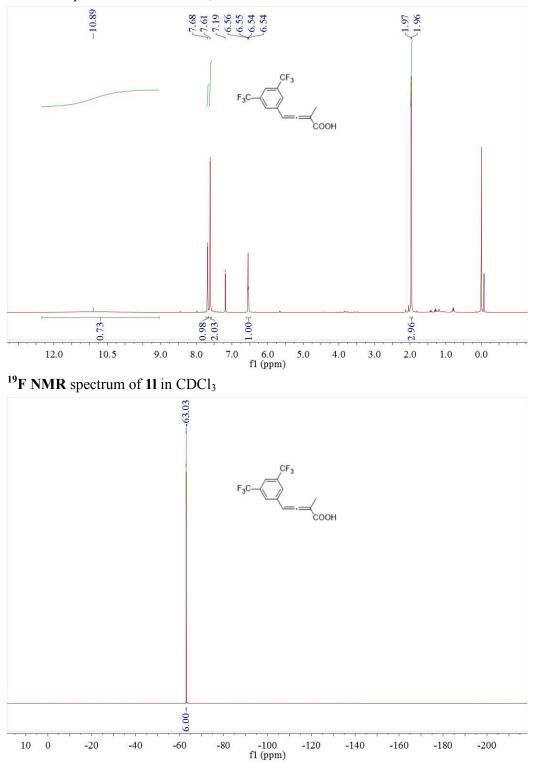
¹H NMR spectrum of 1e in CDCl₃



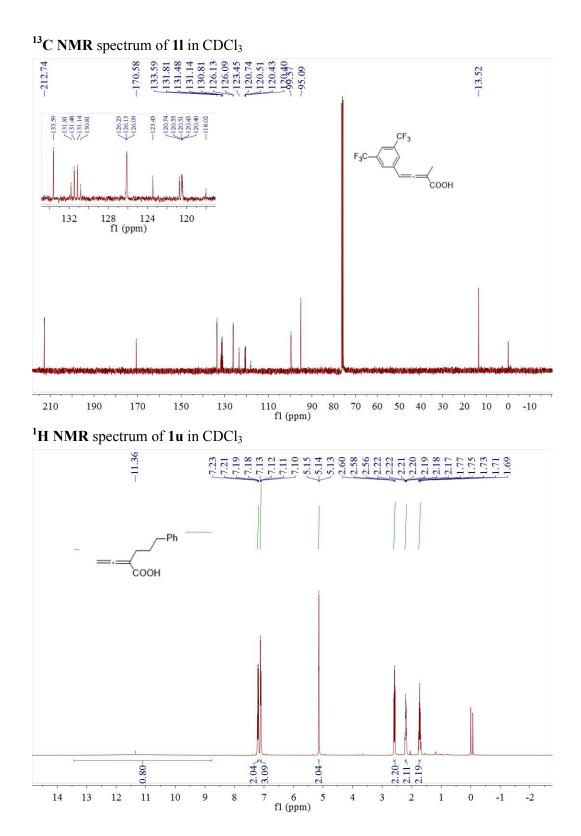



¹⁹F NMR spectrum of 1j in CDCl₃

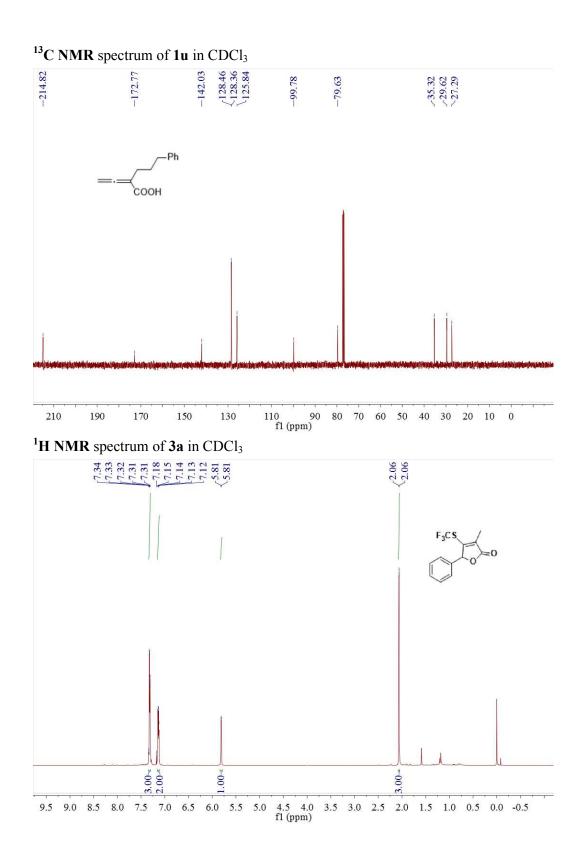
¹³C NMR spectrum of 1j in CDCl₃

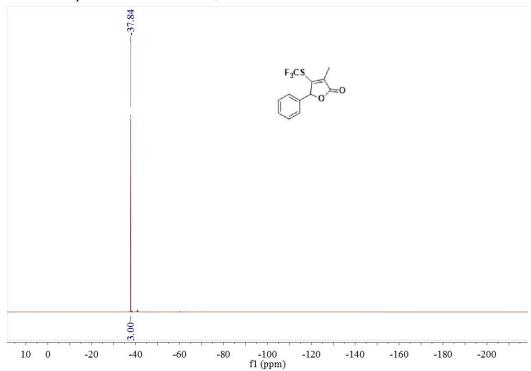


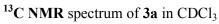
¹H NMR spectrum of 1k in CDCl₃

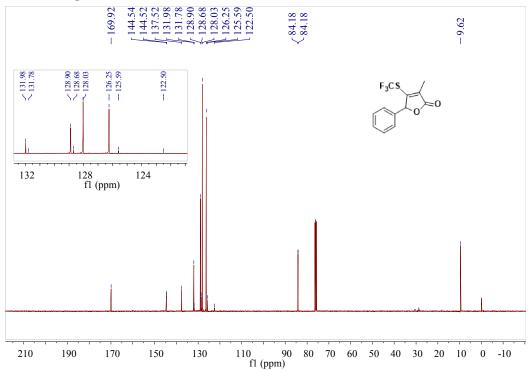


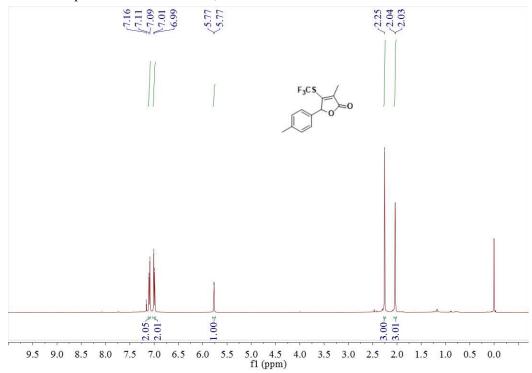
S26

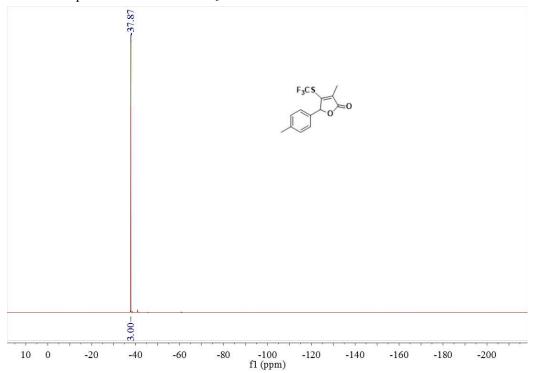

¹H NMR spectrum of 11 in CDCl₃

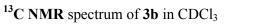

S27

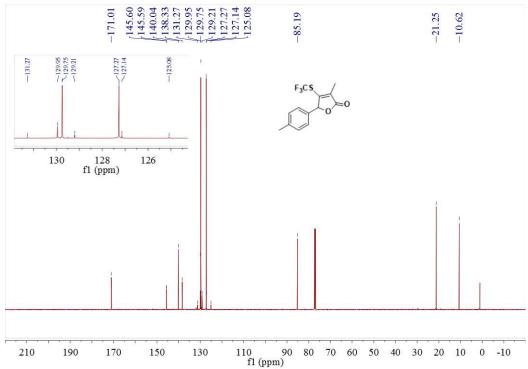


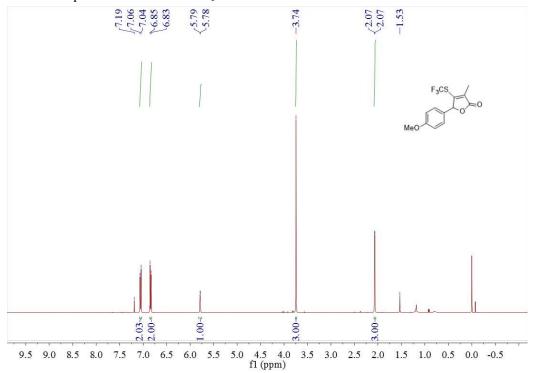

S28

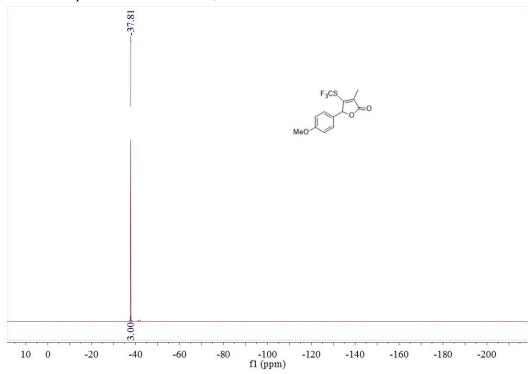

¹⁹F NMR spectrum of 3a in CDCl₃

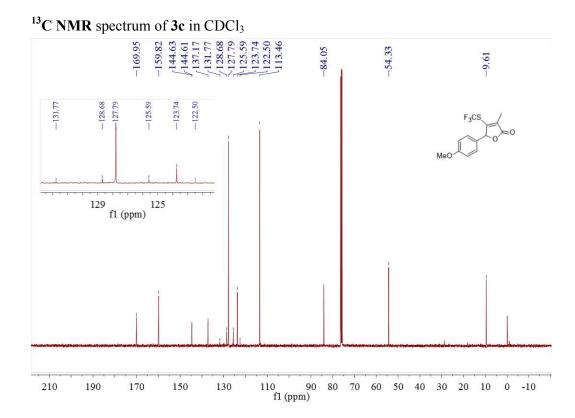


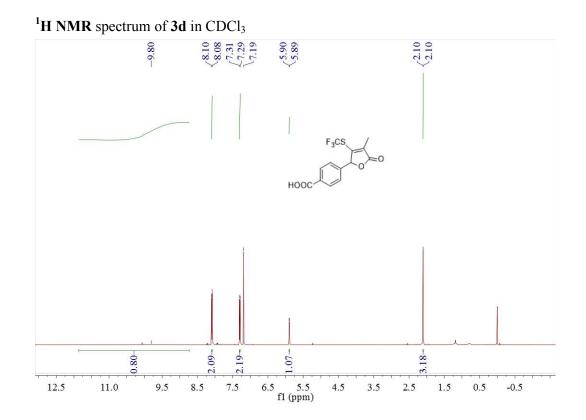


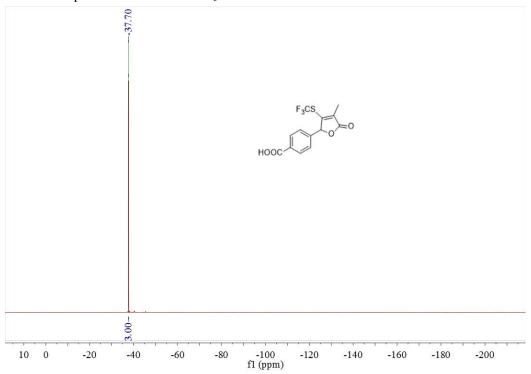

¹H NMR spectrum of 3b in CDCl₃

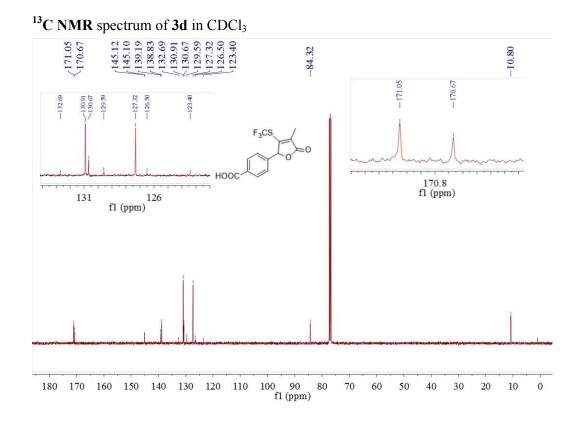

 ^{19}F NMR spectrum of 3b in CDCl_3

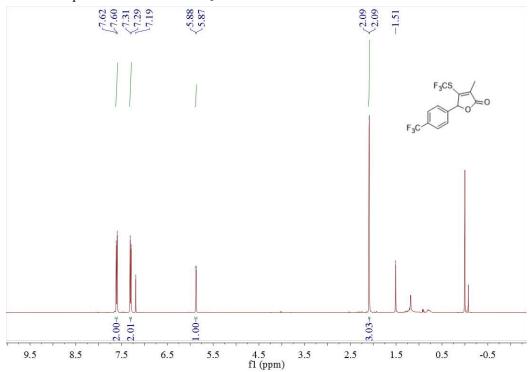




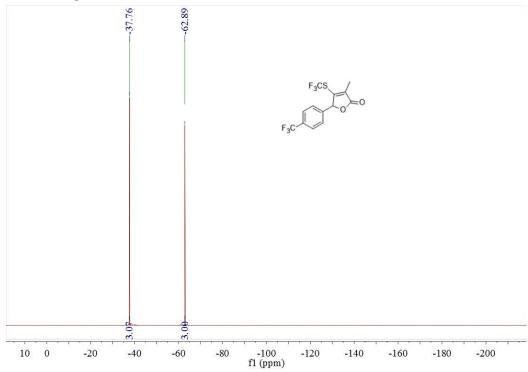

¹H NMR spectrum of **3c** in CDCl₃

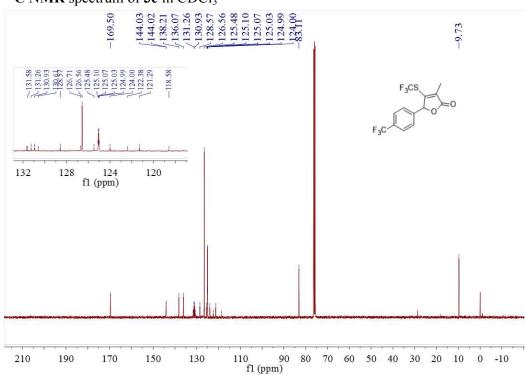

 ^{19}F NMR spectrum of 3c in CDCl₃

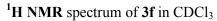


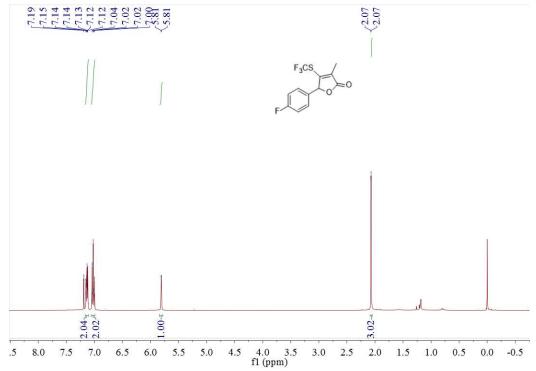


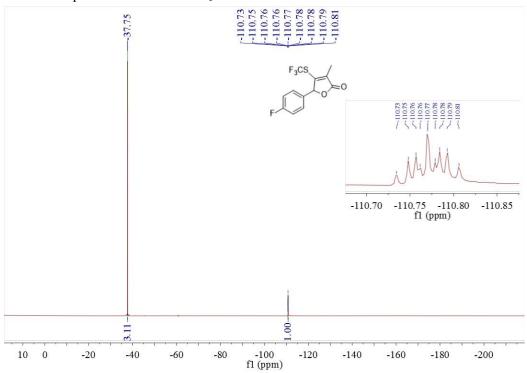
¹⁹F NMR spectrum of 3d in CDCl₃

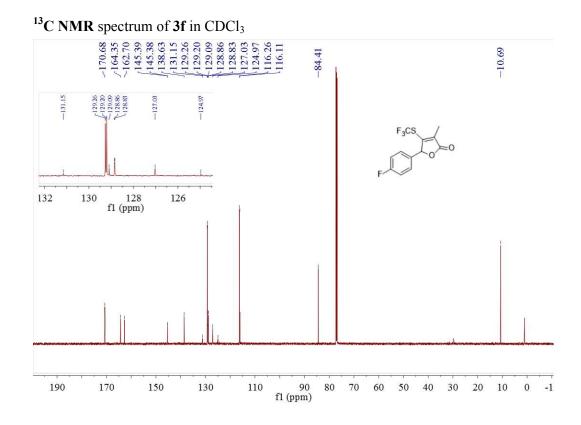


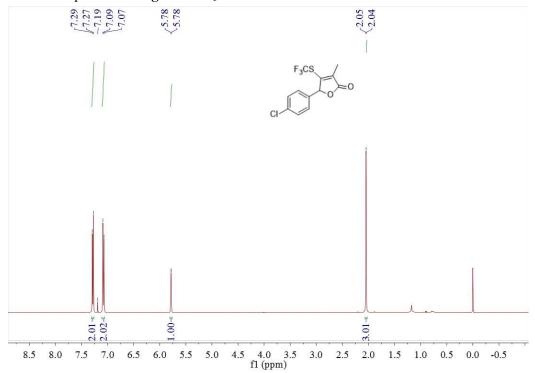

¹H NMR spectrum of **3e** in CDCl₃



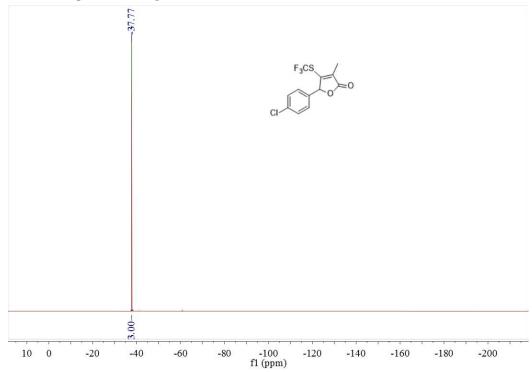

¹⁹F NMR spectrum of **3e** in CDCl₃

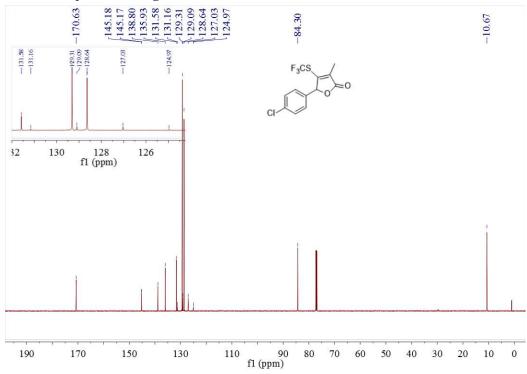

¹³C NMR spectrum of 3e in CDCl₃

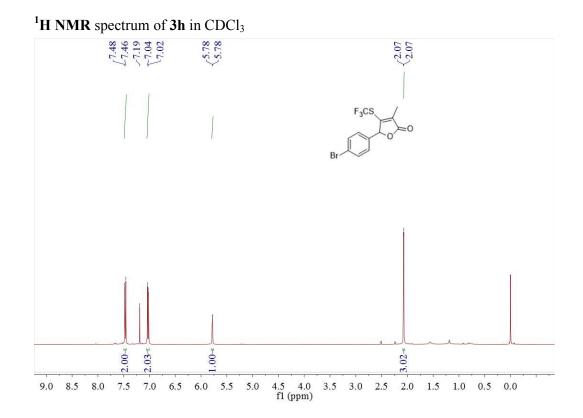




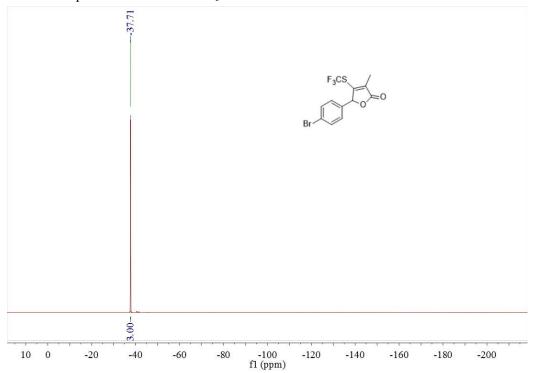
 ^{19}F NMR spectrum of 3f in CDCl_3

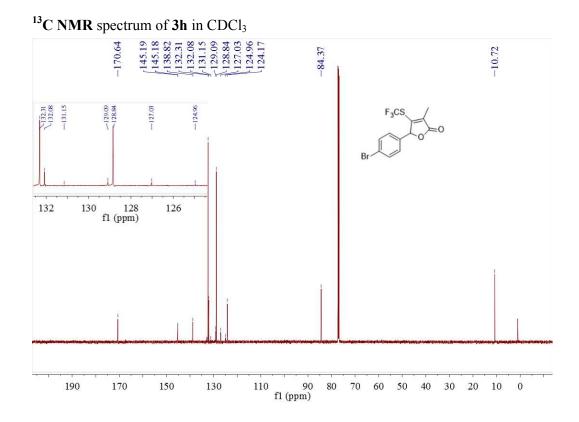


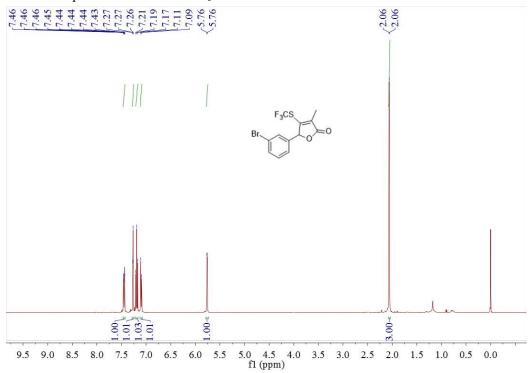

¹H NMR spectrum of 3g in CDCl₃



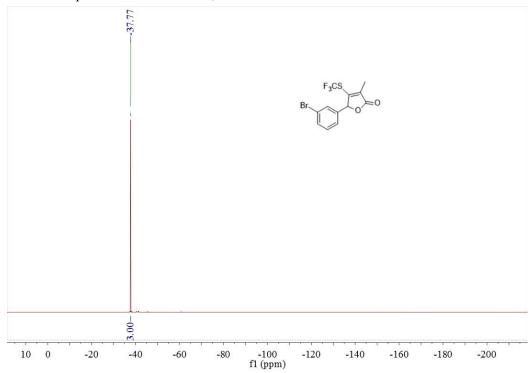
^{19}F NMR spectrum of 3g in CDCl₃

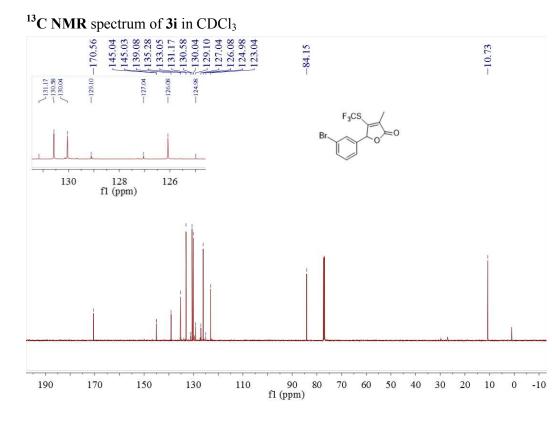



¹³C NMR spectrum of 3g in CDCl₃

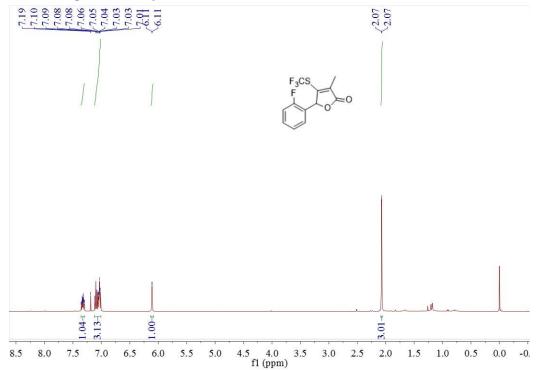


¹⁹F NMR spectrum of **3h** in CDCl₃

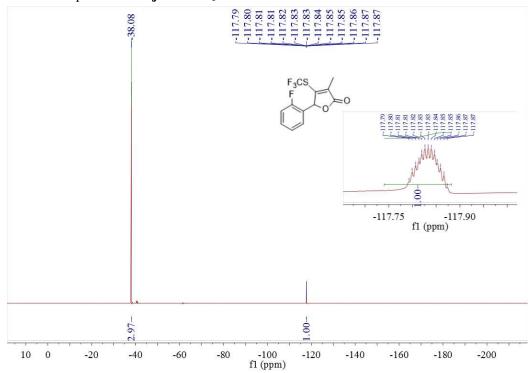


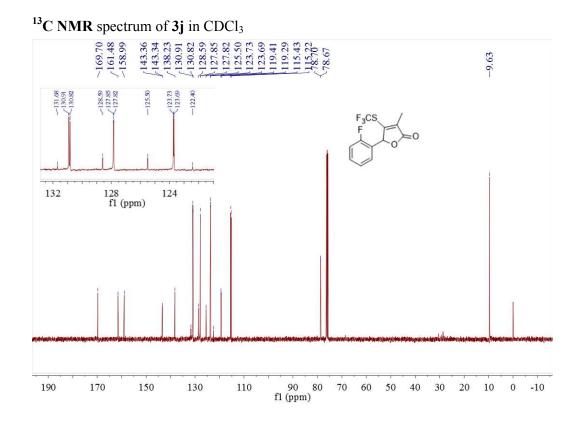


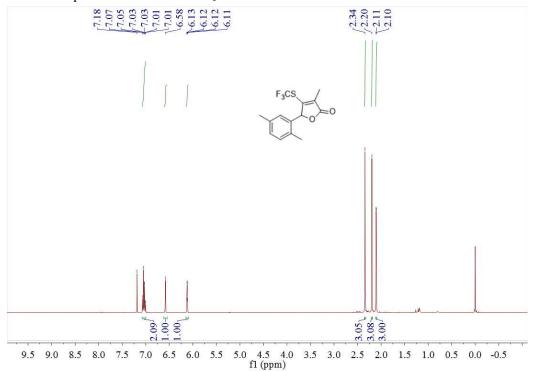
¹H NMR spectrum of **3i** in CDCl₃



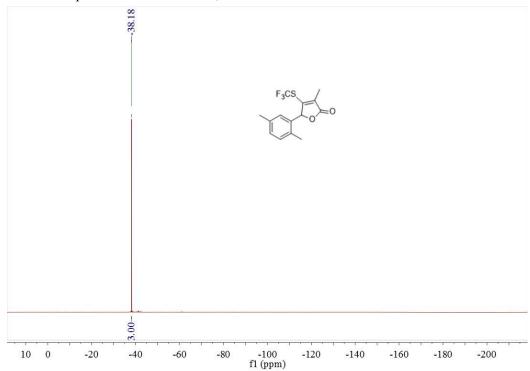
¹⁹F NMR spectrum of **3i** in CDCl₃

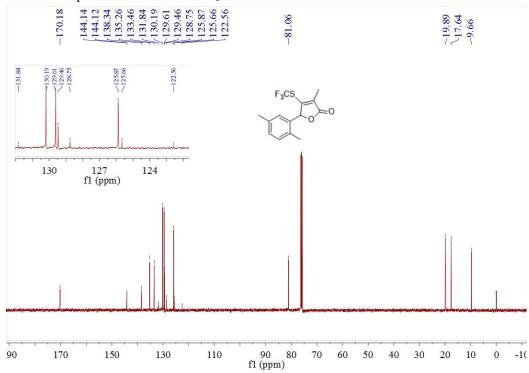




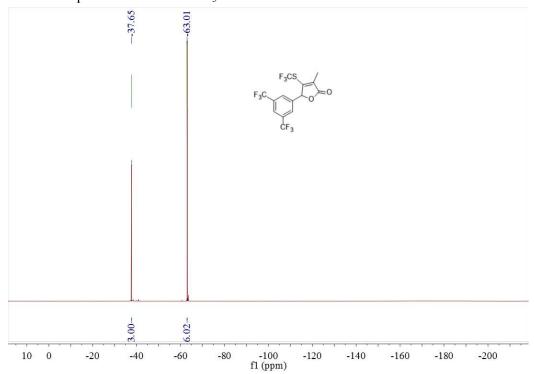


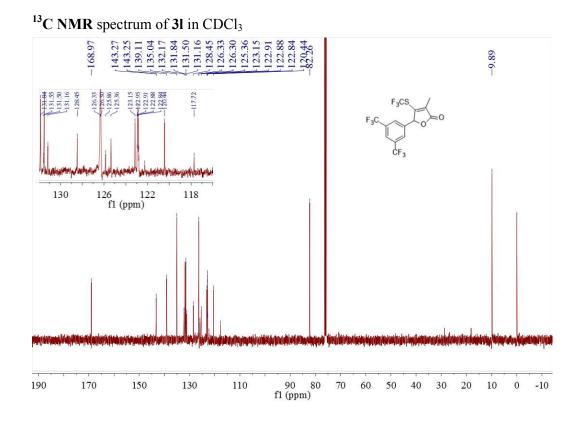
 ^{19}F NMR spectrum of 3j in CDCl_3



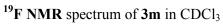

¹H NMR spectrum of **3**k in CDCl₃

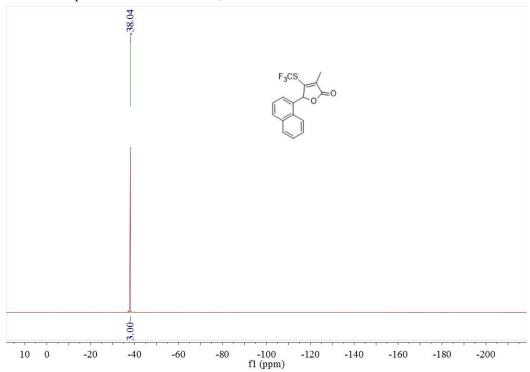
¹⁹F NMR spectrum of 3k in CDCl₃

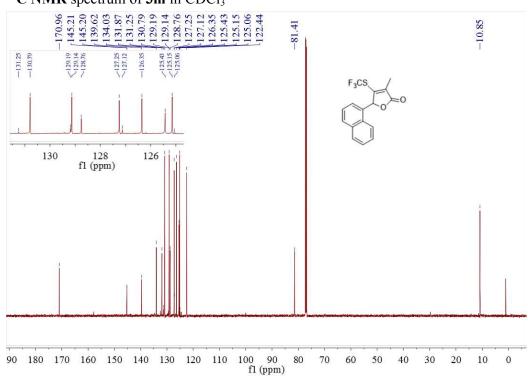

¹³C NMR spectrum of 3k in CDCl₃

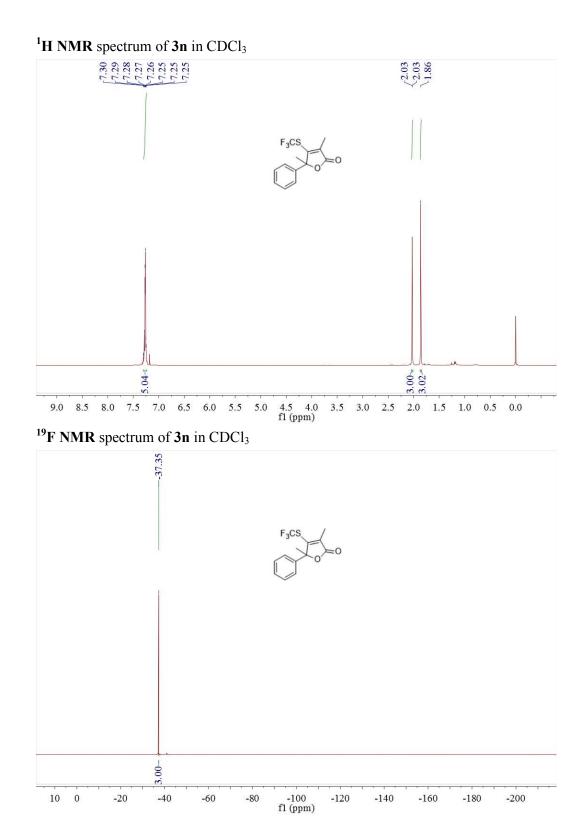


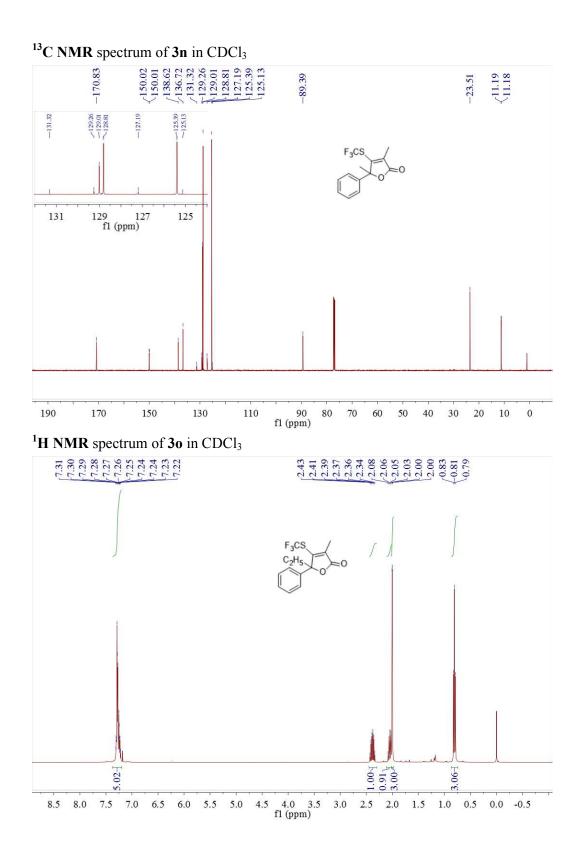
¹H NMR spectrum of **3l** in CDCl₃

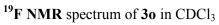


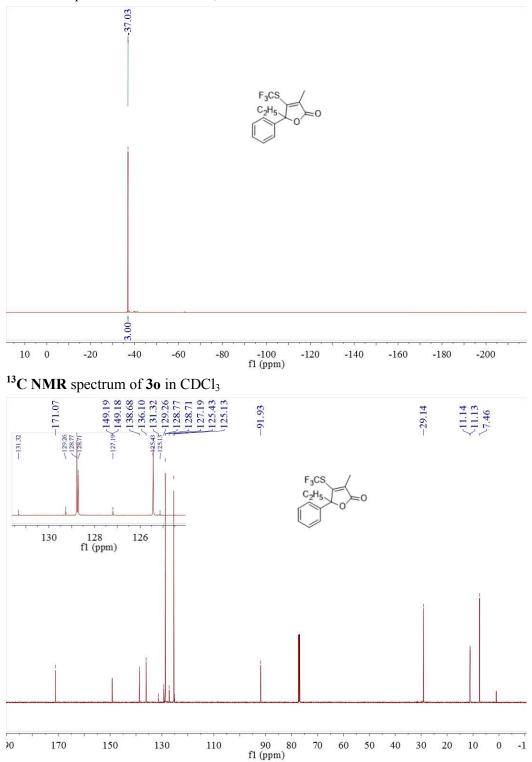

¹⁹F NMR spectrum of **31** in CDCl₃

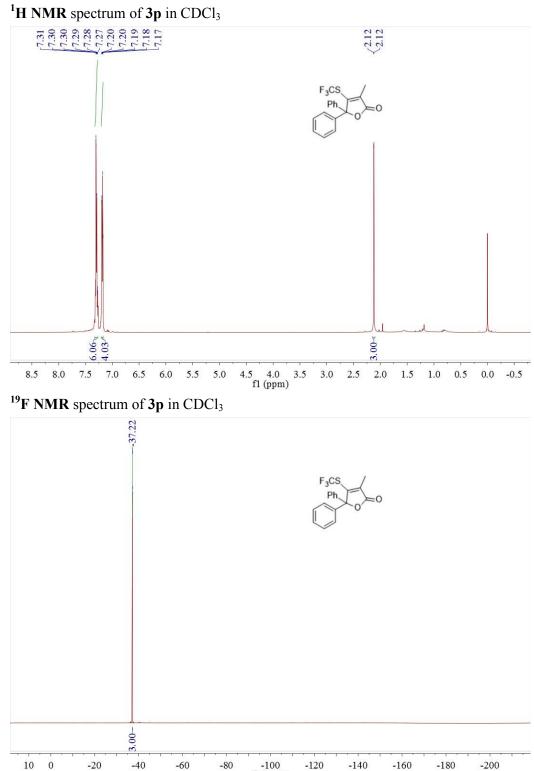


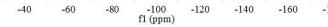

¹H NMR spectrum of 3m in CDCl₃ $g_{0} = g_{1} =$

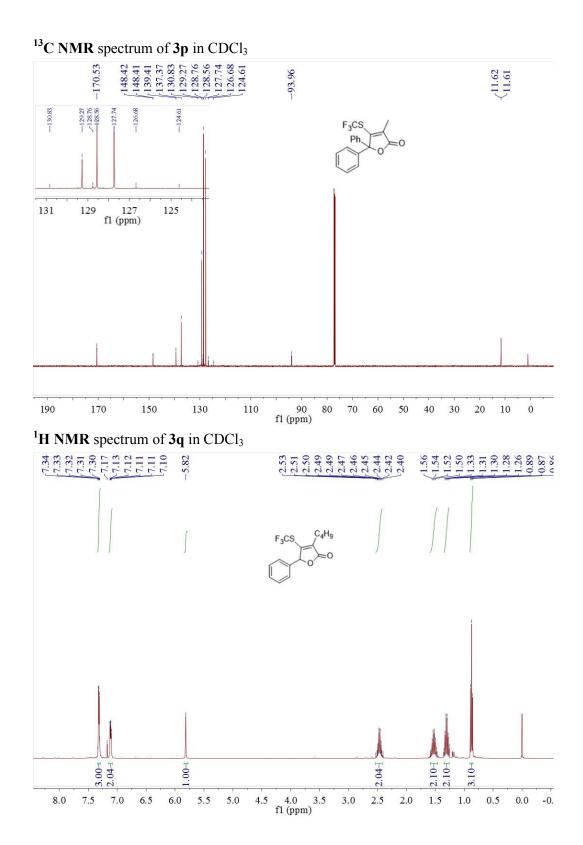


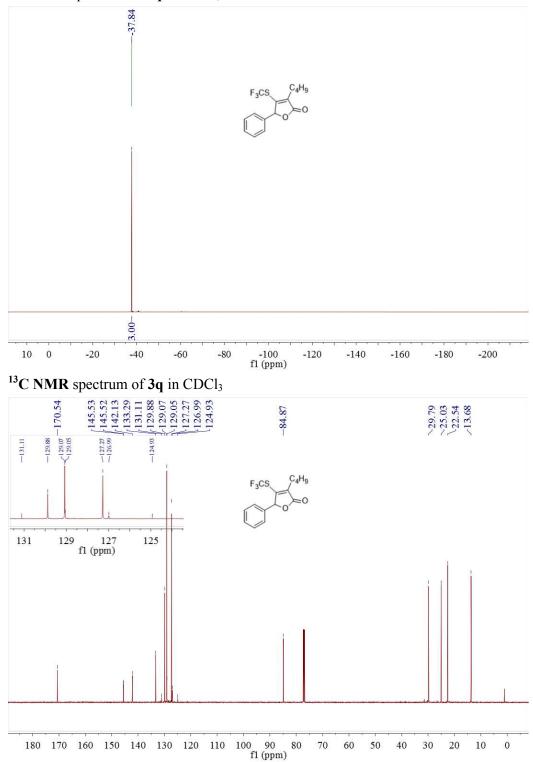

¹³C NMR spectrum of **3m** in CDCl₃

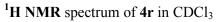


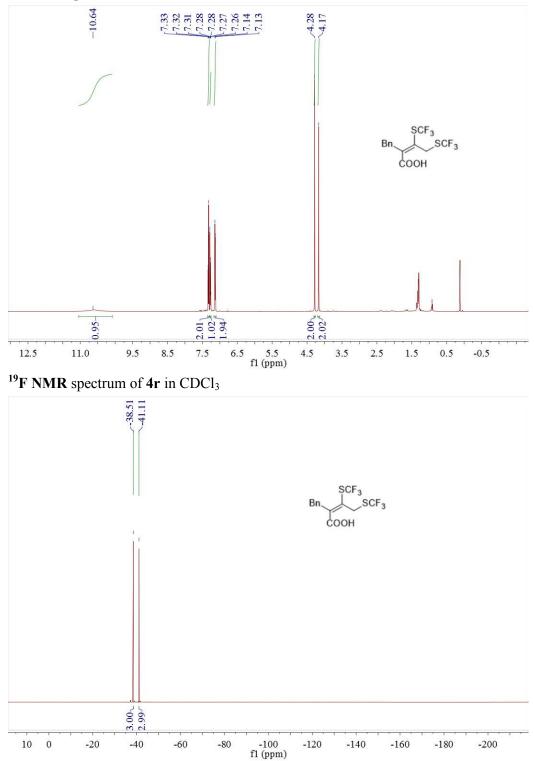


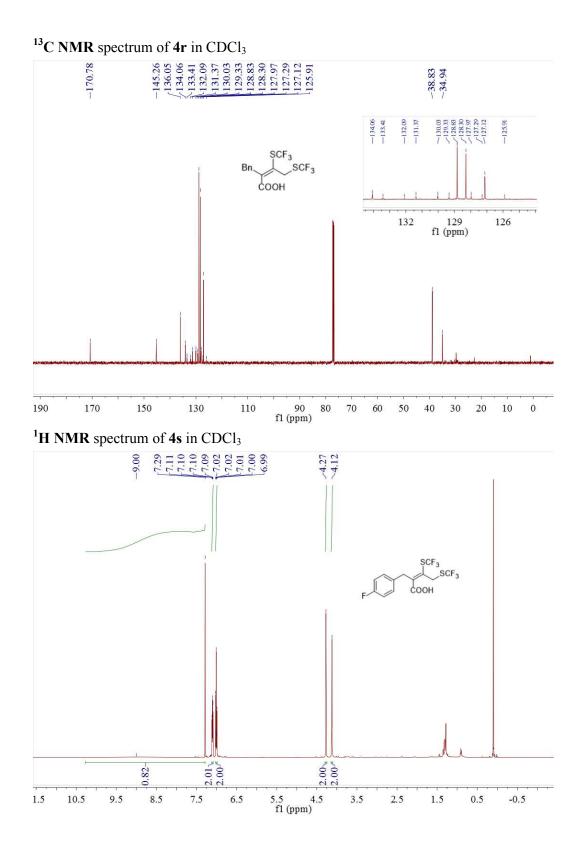

S49



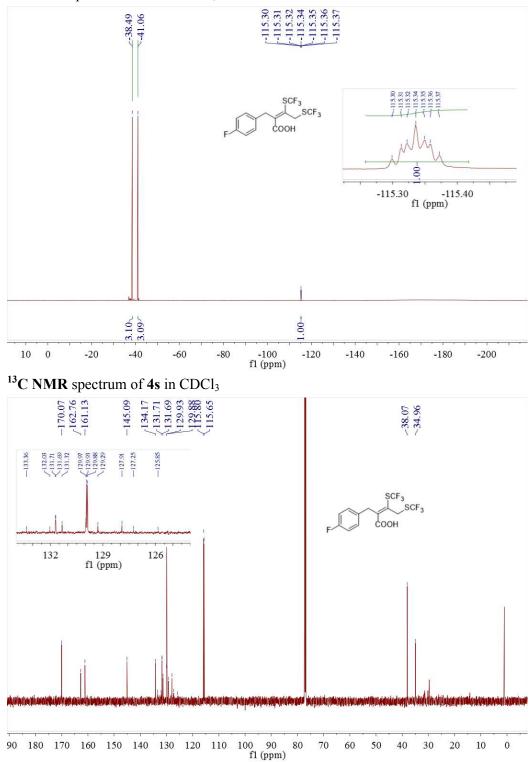


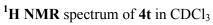


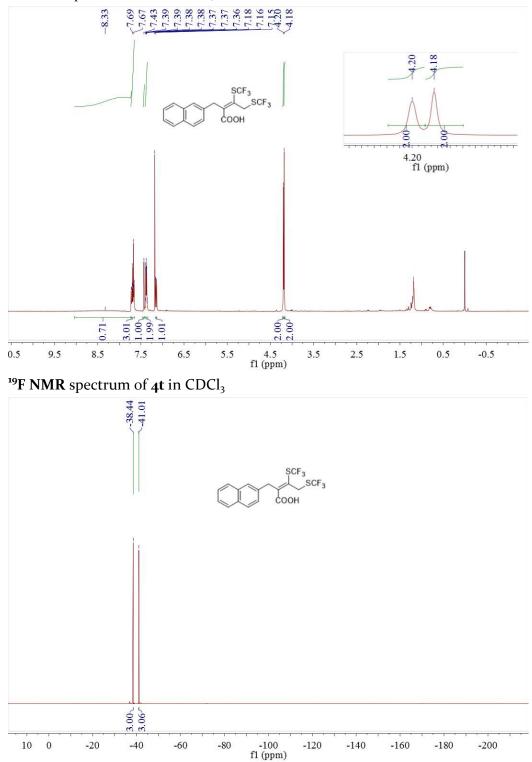


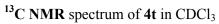


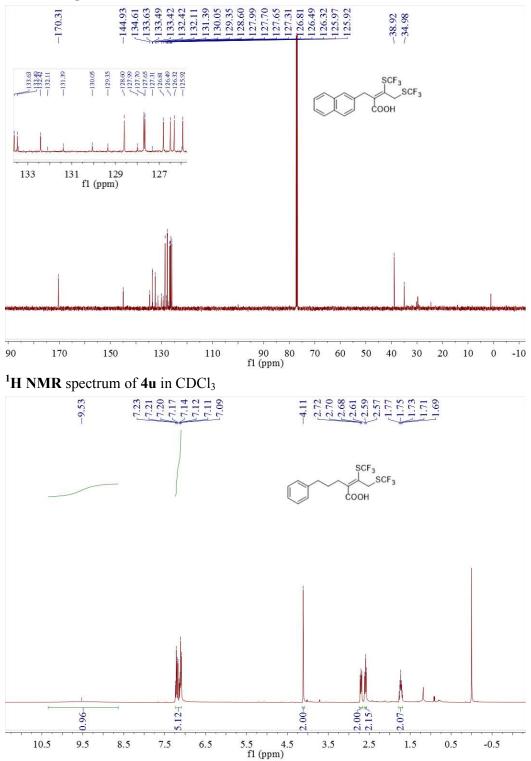
¹⁹F NMR spectrum of 3q in CDCl₃

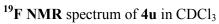


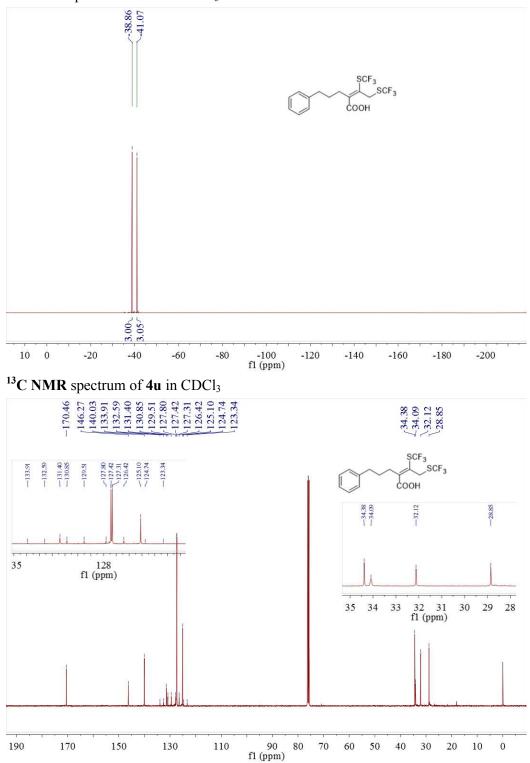


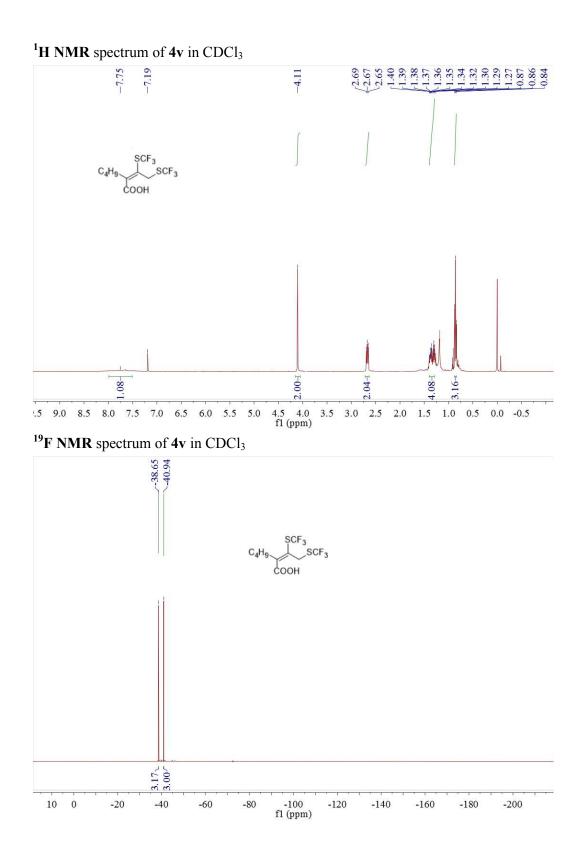


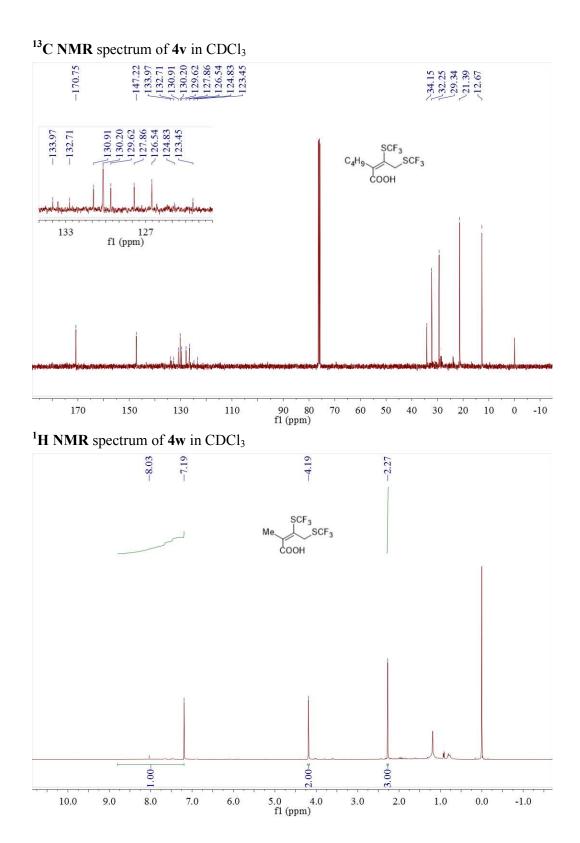

S56

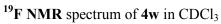

¹⁹F NMR spectrum of 4s in CDCl₃

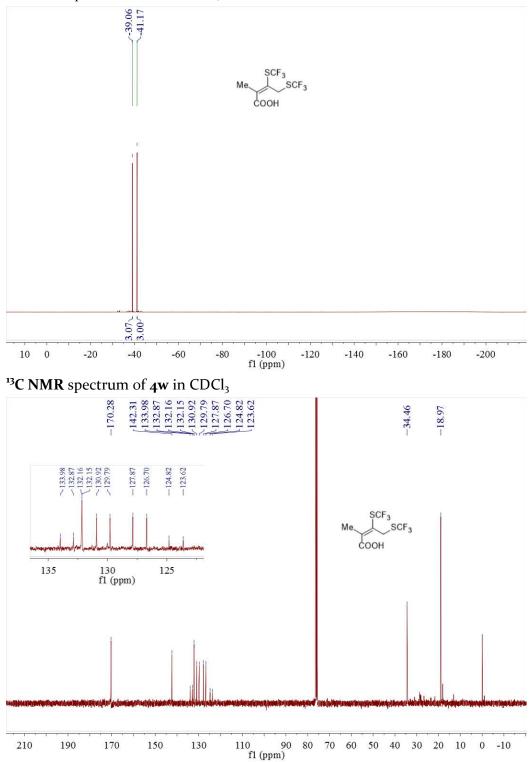


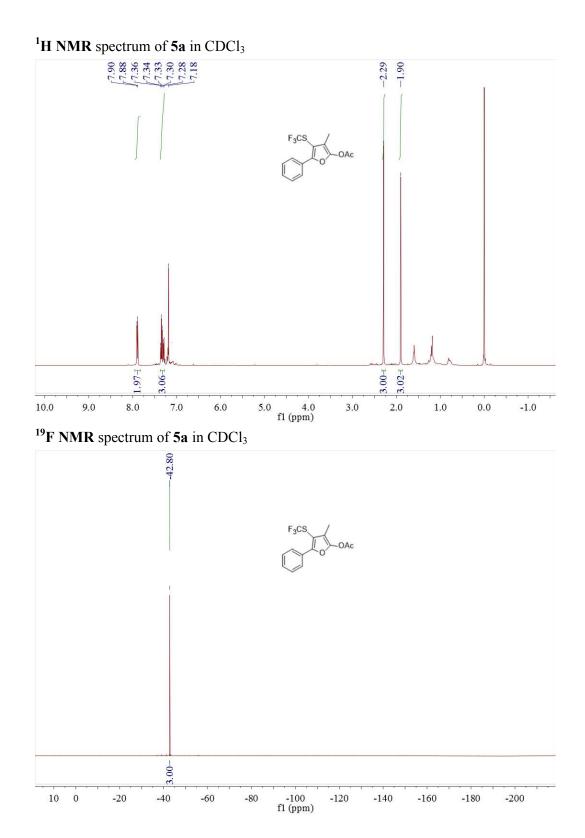


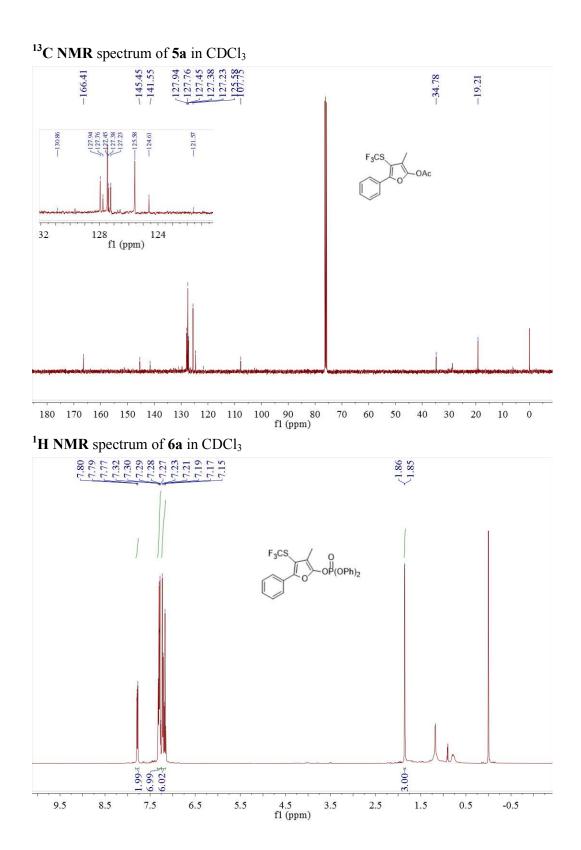


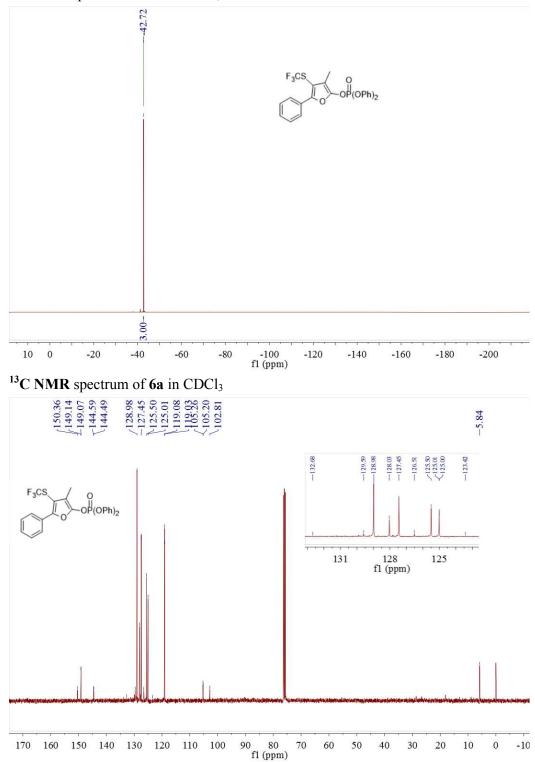


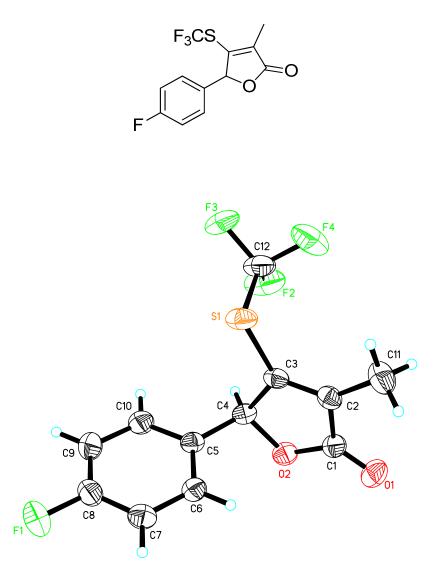












¹⁹F NMR spectrum of 6a in CDCl₃

9. ORTEP Drawing of the X-Ray Crystallographic Structure of 3f

CCDC 1559240 contains the supplementary crystallographic data for the target compound **3f**. This data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.