Supporting Information

Room-temperature fabrication of high-performance amorphous In-Ga-Zn-O/Al₂O₃

thin-film transistors on ultra-smooth and clear nanopaper

Honglong Ning¹, Yong Zeng¹, Yudi Kuang², Zeke Zheng¹, Panpan Zhou², Rihui Yao¹*, Hongke Zhang¹, Wenzhong Bao³*, Gang Chen², Zhiqiang Fang^{1,2,4}*, Junbiao Peng¹

1. State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640 Guangdong, China.

2. State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 Guangdong, China.

3. State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China.

4. Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology, Jinan 250353 Shandong, China.

Email: yaorihui@scut.edu.cn, baowz@fudan.edu.cn, fangzq1230@gmail.com

Figure S1. Capacitance values for sputtering Al₂O₃ insulator layer

Figure S2. Tensile strength of the obtained transparent, clear, and ultra-smooth nanopaper.

Figure S3. TGA curve of transparent nanopaper in nitrogen

Properties	Nanopaper	CPI	Glass
Surface roughness (Ra, nm)	<5	<4	<2
Porosity (%)	20-30	-	-
Transparency (% 550nm)	90-92	85-90	90-92
Maximum stress (MPa)	100-300	50- 150	30-70
Young modulus (GPa)	4-30	2-2.7	71
Coefficient of thermal expansion (ppm/K)	5-10	20-30	3-8
Printability	Good	Poor	Poor
Bending radius (mm)	1	5	Rigid
Renewability	Excellent	Bad	-

Table S1 A comparison of nanopaper, PI, and Glass for electronic applications ^[1-6]

 Table S2 Basic properties of our nanopaper

Properties	Nanopaper	
Base weight (g/m^2)	40.0	
Thickness (µm)	30.0	
Tensile strength (MPa)	137.8	
Young's modulus (GPa)	4.9	
Transparency (%, at 550nm)	~90	
Transmission haze (%, at 550nm)	~0.85	
Surface roughness (nm, Rq, 5*5 µm ² scanning area)	1.8	
Maximum operation temperature ($^{\circ}$ C)	200	

References

[1] Inui, T.; Koga, H.; Nogi, M.; Komoda, N.; Suganuma, K.A Miniaturized Flexible Antenna Printed on a High Dielectric Constant Nanopaper Composite. *Adv. Mater.* **2014**, 27, 1112-1116.

[2] Jung, Y. H., Chang, T. H., Zhang, H., Yao, C., Zheng, Q., Yang, V. W., Mi, H.; Kim, M.; Cho, S. J.; Park, D. W.; Jiang, H.; Lee, J.; Qiu, Y.; Zhou, W.; Cai, Z.; Gong, S.; Ma, Z. High-Performance Green Flexible Electronics Based on Biodegradable Cellulose Nanofibril Paper. *Nat. Commun.* 2015, 6, 7170.

[3] Zhu, H.; Luo, W.; Ciesielski, P. N.; Fang, Z.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. *Chem. Rev.* **2016**, 116, 9305-9374.

[4] Shimaoka, T. Development of Transparent Cellulose Nanofiber Film for Flexible Displays. 2015 TAPPI International Conference on Nanotechology for Renewable Materials. June, 22-25, 2015. Hyatt Regency, Altanta, GA, USA.

[5] Huang, J.; Zhu, H.; Chen, Y.; Preston, C.; Rohrbach, K.; Cumings, J.; Hu, L. Highly Transparent and Flexible Nanopaper Transistors. *ACS Nano* **2013**, *7*, 2106-2113.

[6] Ni, H.; Liu, J.; Wang, Z.; Yang, S. A Review on Colorless and Optically Transparent Polyimide Films: Chemistry, Process and Engineering Applications. *J. Ind. Eng. Chem*, 28, 16-27.