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Summary. Here we present the phenomenological models used in the paper, together with the
calculations of the dose-response parameters and further details on the parameter fitting.

1 Phenomenological model for metabolite biosensors

As shown in Figure 1A of the main text, we model metabolite biosensors as a cascade of two modules:
a sensing module, which describes the interaction between the metabolite (M) and transcription factor
(TF ), and a regulation module, which describes the interaction between the transcription factor and
protein expression (P ). We describe the dose-response curve P (M) as the composition of two Hill
functions, P = f2(f1(M)), where TF = f1(M) is the activity level of the transcription factor for a
given amount of metabolite M , and P = f2(TF ) is the output expression for a given concentration of
transcription factor. Depending on whether the interactions are inhibitory or activatory, we use the
following Hill functions

Inhibitory : fi(x) = bi +
ai

1 + (Ki · x)ni
, for i = {1, 2}, (1)

Acivatory : fi(x) = bi +
ai · (Ki · x)ni

1 + (Ki · x)ni
, for i = {1, 2}, (2)

where the parameters describe different aspects of the sensing and regulation modules (see main text).
The dose-response curves for the four architectures in Figure 1A are thus

• Activated-Repressor (AR)

f2(f1(M)) = b2 +
a2

1 +
(
K2 ·

(
b1 + a1·(K1·M)n1

1+(K1·M)n1

))n2
, (3)

• Repressed-Activator (RA)

f2(f1(M)) = b2 +
a2 ·

(
K2 ·

(
b1 + a1

1+(K1·M)n1

))n2

1 +
(
K2 ·

(
b1 + a1

1+(K1·M)n1

))n2
, (4)

• Repressed-Repressor (RR)

f2(f1(M)) = b2 +
a2

1 +
(
K2 ·

(
b1 + a1

1+(K1·M)n1

))n2
, (5)

• Activated-Activator (AA)

f2(f1(M)) = b2 +
a2 ·

(
K2 ·

(
b1 + a1·(K1·M)n1

1+(K1·M)n1

))n2

1 +
(
K2 ·

(
b1 + a1·(K1·M)n1

1+(K1·M)n1

))n2
. (6)
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It can be shown that the composite functions in (3)–(6) have the following properties: they have
one minimum and one maximum, they are monotonically decreasing (AR and RA) or increasing (AA
and RR), and they have a single inflection point. As a result, the composite functions are qualitatively
similar to sigmoid functions, and hence we can precisely define the dose-response parameters, as shown
next.

2 Formulas for the dose-response parameters

Basal output (b). The basal expression, defined as the minimum value of the dose-response curve,
can be computed by evaluating the expressions in (3)–(6) for M = 0 or M →∞:

b =


f2(f1(0)) , for AA and RR architectures,

f2(f1(∞)) , for RA and AR architectures,

(7)

which leads to

b =


b2 +

a2
1 +Kn2

2 (b1 + a1)n2
, for AR and RR architectures,

b2 +
a2 · (K2b1)

n2

1 + (K2b1)n2
, for RA and AA architectures.

(8)

Maximum change in output (a). The maximum change in output is the difference between the
maximum and minimum value of the dose-response curve. Similarly as for the basal expression (b),
we derive the formula for a from the definition:

a =


f2(f1(∞))− f2(f1(0)) , for AA and RR architectures,

f2(f1(0))− f2(f1(∞)) , for RA and AR architectures,

(9)

which leads to a formula for a that is identical for all four biosensor architectures

a = a2 ·Kn2
2 ·

(
(b1 + a1)

n2 − bn2
1

(1 +Kn2
2 (b1 + a1)n2) · (1 + (K2b1)n2)

)
. (10)

Biosensor dynamic range (µ). From the previous definitions, the dynamic range can be simply
computed as µ = a/b, with a and b as given in equations (8) and (10). The resulting expressions are

µ =


µ2 ·

((b1+a1)n2−bn2
1 )K

n2
2

(1+µ2+(K2(b1+a1))n2 )·(1+(b1K2)n2 ) , for AR and RR architectures,

µ2 ·
((b1+a1)n2−bn2

1 )K
n2
2

(1+(K2(b1+a1))n2 )·(1+(1+µ2)(b1K2)n2 ) , for RA and AA architectures.

(11)

The formula for µ in the repressed-repressor architecture in equation (11) is the same as equation (5)
in the main text.

Biosensor threshold (θ). We define the threshold as the concentration of metabolite for which
the level of biosensor output expression is 50% of the maximum, relative to the basal. This definition
corresponds to solving the following equation for θ,

f2(f1(θ)) = b+
a

2
, (12)
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where b and a are given in equations (8) and (10), respectively. Solving equation (12) for each
architecture in (3)–(6), we get

θ =



1

K1
· n1

√
a1K2

n2
√
A− 1− b1K2

− 1 , for RA and RR architectures,

1

K1
·

n1

√√√√ 1
a1K2

n2
√
A− 1− b1K2

− 1
, for AR and AA architectures,

(13)

where A is a function of the model parameters

A = 2 · (1 + (K2(b1 + a1))
n2) · (1 + (b1K2)

n2)

2 + ((b1 + a1)n2 + bn2
1 )Kn2

2

. (14)

Biosensor sensitivity (n). We define the sensitivity as the slope of the normalized dose-response
curve

n = 4θ ·
∣∣∣∣ d

dM

(
f2(f1(M))− b

a

)
M=θ

∣∣∣∣ , (15)

where | · | is the absolute value, and (a, b, θ) are the dose-response parameters computed in equations
(8), (10) and (13). The definition in (15) applies to the four biosensor architectures and is inspired by
the observation that in a Hill equation of the form f(x) = (x/θ)n/ (1 + (x/θ)n), it can be shown that
n = 4θ df/dx|x=θ. The definition in (15) leads to explicit formulas for the sensitivity as a function of
tunable parameters, but the resulting expressions are involved and we omit them for brevity.

3 Bounds for dose-response parameters

3.1 Constraints between dynamic range and threshold

In this work we consider the TF-operator affinity (K2) as the main tuneable parameter to adjust
biosensor function. Thus in this section we consider the dose-response parameters as functions of K2,
that is, from the expressions in equations (8)–(13) we write b = b(K2), µ = µ(K2) and θ = θ(K2).
The formulas for the dose-response parameter reveal that dynamic range and threshold are inherently
coupled to each other through the K2 parameter. In Figure SF1 we plot µ(K2) vs θ(K2) and observe
that the shape of the curve depends strongly on the b1 parameter, which represents the basal level of
TF activity. Numerical exploration of the parameter space suggests that for b1 = 0, the (µ, θ)-curve
is monotonic, while a non-zero b1 value leads to a non-monotonic relationship between threshold and
dynamic range. This phenomenon appears in all four biosensor architectures.

From the expression for the basal output in (8), it can be shown that b(K2) is a decreasing
function of K2 for the AR and RR architectures, and an increasing function of K2 for the RA and AA
architectures. In contrast, we found that the function a(K2) defined in (10) is non-monotonic, and
reaches a maximum

amax =
a2 · ((1 + µ1)

n2 − 1)(
(1 + µ1)

n2
2 + 1

)2 , (16)

for an optimal operator affinity

Kmax, a
2 =

1

b1
· 1√

1 + µ1
, (17)

where µ1 = a1/b1. Note that when b1 = 0, the optimal operator affinity Kmax,a
2 → ∞, and thus a

becomes a monotonic function of K2.
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Design constraints on dose-response curves

Activated-repressor biosensor Activated-activator biosensor
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Figure SF 1: Plots of the (µ(K2), θ(K2))-curves for each biosensor architecture and increasing values
of the b1 parameter. The insets show the dose-response curves for different K2 values for a non-zero
value of b1.

3.2 Maximal dynamic range

To compute the operator affinity that maximizes the dynamic range, we solved the equation dµ(K2)/
dK2 = 0 with µ(K2) = a(K2)/b(K2) and a(K2) and b(K2) given in (8) and (10), respectively. We
found that the dynamic range reaches a maximum at

Kmax, µ
2 =


1

b1
· 1√

1 + µ1
· (1 + µ2)

1
2n2 for AR and RR architectures,

1

b1
· 1√

1 + µ1
· 1

(1 + µ2)
1

2n2

for RA and AA architectures.

(18)

The maximal dynamic range is then

µmax = µ2 ·
(1 + µ1)

n2 − 1(
(1 + µ1)

n2
2 + (1 + µ2)

1
2

)2 , (19)

where µ2 = a2/b2. The expression in (19) is valid for all four biosensor architectures. Importantly, we
also note that in the limit b1 → 0, the optimal affinity Kmax, µ

2 →∞, which means that dynamic range
becomes a monotonically increasing function of K2, in agreement with the numerical observations in
Figure SF1.

3.3 Bounds for the dose-response threshold

From the expression for θ in equation (13), we note that θ has minimal and maximal values depending
on the extremal values of the function A in (14). It can be shown that dA/dK2 < 0 for all K2 > 0 and
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hence A is a monotonically decreasing function of K2, with a maximum at K2 = 0 and a minimum at
K2 →∞. Assuming all parameters other than K2 are fixed, positive real values, we evaluated A(K2)
for K2 = 0 and K2 →∞, to get the expressions for Amax and Amin, respectively, as

Amax = A(0) = 2
−1
n2 · b1 · (1 + (1 + µ1)

n2)
1
n2 , (20)

Amin = A(∞) = 2
1
n2 · (b1 + a1) ·

1

(1 + (1 + µ1)n2)
1
n2

. (21)

We then computed the maximum and minimum bounds of the response threshold, θmin and θmax, by
substituting Amax and Amin into expression for the threshold θ in (13). The bounds for the threshold
are

• For RA and RR architectures:

θmin =
1

K1
· n1

√
µ1

2
− 1

n2 · (1 + (1 + µ1)n2)
1
n2 − 1

− 1, (22)

θmax =
1

K1
·

n1

√√√√√√
µ1

2
1
n2 ·

(
(1 + µ1)

(1 + (1 + µ1)n2)
1
n2

)
− 1

− 1. (23)

• For AR and AA architectures:

θmin =
1

K1
·

n1

√√√√√√√
1

µ1

2
1
n2 ·

 (1 + µ1)

(1 + (1 + µ1)n2)
1
n2

−1

− 1
, (24)

θmax =
1

K1
·

n1

√√√√√ 1
µ1

2
− 1

n2 · (1 + (1 + µ1)n2)
1
n2 − 1

− 1
. (25)

4 Parameter fitting

The dose-response parameters in Figures 1D and 3C of the main text were obtained from the promoter
characterization data. For each induction curve, we computed the dynamic range (µ) and basal
expression level (b) from the data at zero and full induction with IPTG or TMG. The response
threshold was determined from Hill functions fitted to the data using the Solver routine in MS Excel
for Mac 2016.

The model fits in Figures 1D (green curve) and 3C (blue and yellow curves) were produced as
explained in the Methods section. We used the optimizer fmincon from the Global Optimization
Toolbox in Matlab 2016a. We ran the optimization 500 times with varying initial guesses determined
by the multistart routine in Matlab 2016a. The convergence of the objective function, shown in Fig.
SF2, suggests the optimal solutions are global minimizers in all three parameter fittings. In Table
SF1, we report the parametric constraints employed and the ensemble average across all the runs of
the optimization routine.
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Objective function for global parameter optimization
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Figure SF 2: Evolution of objective function as a function of the iteration number of the optimization
routine. The results show 500 runs of the optimization solver for each model in Fig. 1D and 3C in the
main text, with varying initial conditions. The trace highlighted in red is of the convergence to the
optimal solution with the lowest objective value, the corresponding parameters of which are reported
in the last column of Table SF1. These parameters were used to generate the solid curves in Figs. 1D
(green curve) and 3C (blue and yellow curves).

Table SF 1: Results of parameter fitting. Lower and upper bounds used for parameter optimization,
plus their mean and standard error across 500 runs of the optimization algorithm. The last column
are the parameter values corresponding to the optimal solution with the lowest objective value, and
were used to generate the solid curves in Figs. 1D (green curve) and 3C (blue and yellow curves). All
values are reported to 4 significant figures.

Parameter Lower bound Upper bound Mean ± SE Reported

Model in Figure 1D (green)

b1 0 0.1 3.339·10−2 ± 1.961·10−3 2.588 ·10−8

a1 0 500 348.4 ± 6.448 62.63
K1 10−4 1 1.804·10−1 ± 1.228·10−3 2.112 ·10−1

n1 1 5 2.436 ± 2.132·10−2 3.039
b2 0 20 1.231 ± 5.216·10−2 4.132 ·10−6

a2 0 3 · 103 2149 ± 3.933·10−1 2147
n2 1 3 1.526 ± 2.409·10−2 1.008

Model in Figure 3C (blue)

b1 0 1 9.482·10−2 ± 8.352·10−4 7.931·10−2

K1 10−6 1 3.454·10−3 ± 4.001·10−8 3.454·10−3

Model in Figure 3C (yellow)

b2 0 5 4.065·10−6 ± 7.199·10−7 3.110·10−9

a2 103 104 3002 ± 4.071·10−1 3005
n2 1 3 1.189 ± 2.535·10−4 1.189
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5 Biosensor architectures

Table SF 2: Some examples of engineered biosensors based on metabolite-responsive transcription
factors. Each biosensor can be abstracted into one of the four architectures shown in Fig. 1A. 1TyrR
is a dual-regulator that has been used as an activator and repressor of gene expression in response to
tyrosine. 2BetI has been re-engineered to respond positively or negatively to choline.

Architecture Metabolite (M) Transcription Factor (TF)

Repressed-Activator
Isopentenyl diphosphate AraC-Idi [1]

NADPH SoxR [8]

Activated-Repressor
Tyrosine TyrR1 [1]
Choline BetI2 [7]

Repressed-Repressor

Acyl-CoA FadR [11]
Choline BetI2 [7]
IPTG LacI [6]

Malonyl-CoA FapR [3]

Activated-Activator

Tyrosine TyrR1 [11]
Mevalonate AraC [9]

Alkanes AlkS [5]
Benzoate BenR [10]

L-methionine Lrp [4]
o-acetyl-L-(homo)serine CysR [2]
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