Stereospecific, Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling of
Allylic Pivalates to Deliver Quaternary Stereocenters
Kelsey M. Cobb, Javon M. Rabb-Lynch, Megan E. Hoerrner, Alex Manders, Qi Zhou, Mary P. Watson*
Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 mpwatson@udel.edu
Supporting Information
General Information S2
Optimization Studies S3
Stereospecific Cross Coupling of Allylic Pivalates with Boroxines S6
General Procedure A: Stereospecific, Nickel-Catalyzed Coupling of Allylic Pivalates with Boroxines S6
Determination of Absolute Configuration S22
Preparation of Pivalates S23
General Procedure B: Preparation of Allylic Pivalates (6a-6i). S23
Preparation of Allylic Alcohols S31
General Procedure C: Preparation of (R, E)-3-Methyl-1-phenyl-2-hepten-1-ol (6aa) via CBS Reduction S31
Preparation of Enone Precursors. S37
References S38
NMR Spectra S39
HPLC and SFC Chromatograms. S150

General Information

Reactions were performed in oven-dried vials with Teflon-lined caps or in oven-dried roundbottomed flasks unless otherwise noted. Flasks were fitted with rubber septa, and reactions were conducted under a positive pressure of N_{2}. Stainless steel syringes or cannulae were used to transfer air- and moisture-sensitive liquids. Flash chromatography was performed on silica gel 60 (40-63 $\mu \mathrm{m}, 60 \AA$) unless otherwise noted. Commercial reagents were purchased from Sigma Aldrich, Acros, Fisher, Strem, TCI, Combi Blocks, Alfa Aesar, Oakwood Chemicals, or Cambridge Isotopes Laboratories and used as received with the following exceptions: Sodium methoxide was purchased from Sigma Aldrich and immediately placed in a N_{2}-atmosphere glovebox for storage. $\mathrm{PhMe}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeCN}$, and THF were dried by passing through drying columns. ${ }^{1}$ PhMe and MeCN were then degassed by sparging with N_{2} and stored over activated $4 \AA \mathrm{MS}$ in a N_{2}-atmosphere glovebox. Enantioenriched allylic alcohols are obtained via CBS reduction of ketones according to the procedure reported in the literature. ${ }^{1}$ Oven-dried potassium carbonate was added into CDCl_{3} to remove trace amount of acid. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra and carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded on both 400 MHz and 600 MHz spectrometers. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent $\left(\mathrm{CHCl}_{3}=\delta 7.26\right)$. Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent $\left(\mathrm{CDCl}_{3}=\delta 77.2\right)$. Chemical shifts for fluorine were externally referenced to CFCl_{3} in CDCl_{3} $\left(\mathrm{CFCl}_{3}=\delta 0\right)$. Chemical shifts for silicon were externally referenced to tetramethylsilane in CDCl_{3} (tetramethylsilane $=\delta 0$). Data are represented as follows: chemical shift, multiplicity (br $=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, $h=$ heptet $)$, coupling constants in Hertz (Hz), integration. Infrared (IR) spectra were obtained using FTIR spectrophotometers with material loaded onto a NaCl plate. The mass spectral data were obtained at the University of Delaware mass spectrometry facility. Optical rotations were measured using a 2.5 mL cell with a 0.1 dm path length.

Optimization Studies

General Optimization Procedure. In a N_{2}-atmosphere glovebox, nickel, ligand, and base were weighed into a 1-dram vial fitted with a stir bar. Allylic pivalate ($0.20 \mathrm{mmol}, 1.0$ equiv) and boroxine were added, followed by acetonitrile ($0.5 \mathrm{~mL}, 0.4 \mathrm{M}$). The vial was capped with a Teflon-lined cap and removed from the glovebox. The mixture was stirred at the temperature described below for 3 h , unless otherwise stated. The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ and filtered through a plug of silica gel, which was rinsed with $\mathrm{Et}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$. The filtrate was concentrated. 1,3,5-Trimethoxybenzene (internal standard) and CDCl_{3} were added, and the yield was determined by ${ }^{1} \mathrm{H}$ NMR analysis. An analytical sample of product 8 was prepared via preparatory thin layer chromatography, and the ee of this sample was determined by HPLC using a chiral stationary phase. Changes to this general procedure are noted in the table below.

Entry	[Ni$]$ (mol\%)	Ligand (mol \%)	$\begin{gathered} \mathbf{T} \\ \left({ }^{\circ} \mathbf{C}\right) \end{gathered}$	time (h)	Base (equiv)	$\begin{gathered} \text { Equiv } \\ (\mathbf{A r B O})_{3} \end{gathered}$	$\begin{gathered} \% \\ \text { pdt } \end{gathered}$	$\%$ ee	\% es
1	$\mathrm{Ni}(\mathrm{cod})_{2}(5)$	BnPPh_{2} (11)	70	3	NaOMe (2.0)	1.0	90	54	56
2	$\mathrm{Ni}(\mathrm{cod})_{2}(5)$	PCy_{3} (11)	70	3	NaOMe (2.0)	1.0	95	64	67
3	$\mathrm{Ni}(\mathrm{OTf})_{2}(5)$	PCy_{3} (11)	70	3	KOMe (2.0)	1.0	56	75	79
4	$\mathrm{Ni}(\mathrm{OTf})_{2}(5)$	DPPF (5)	70	3	KOMe (2.0)	1.0	30	89	93
5	$\mathrm{Ni}(\mathrm{OTf})_{2}(5)$	dppb (5)	70	3	KOMe (2.0)	1.0	48	75	79
6	$\mathrm{Ni}(\mathrm{OTf})_{2}(5)$	BISBI (5)	70	3	KOMe (3.0)	1.5	87	90	95

7	$\mathrm{NiCl}_{2} \cdot \mathrm{DME}$ (2)	BISBI (2)	50	16	NaOMe (3.0)	1.5	96	91	95
8	None	None	70	3	NaOMe (3.0)	1.5	0	-	-
9	None	BISBI (2)	70	3	NaOMe (3.0)	1.5	0	-	-

Effect of Boronic Reagent

Entry	ArBX_{2} (equiv)	Temp $\left({ }^{\circ} \mathrm{C}\right)$	$(Z)-\mathbf{6 a}(\%)^{a}$	Hydrolysis product $(\%)^{a}$	$\mathbf{8 (\%) ^ { a }}$	es (\%) b
1	$\operatorname{ArBF}_{3} \mathrm{~K}(1.5)$	70	0	83	Trace	n.d. c
2	$\operatorname{ArBpin}(1.5)$	70	Trace	75	6	n.d. c
3	$\operatorname{ArB}(\mathrm{OH})_{2}(2.0)$	80	13	18	52	79
4	$(\mathrm{ArBO})_{3}(1.5)$	80	12	0	81	81

${ }^{a}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3,5-trimethoxybenzene as internal standard. ${ }^{b}$ es $=$ $\mathrm{ee}_{\text {product }} / \mathrm{ee}_{\text {starting material }}$. Ee of $\mathbf{6 a}$ and $\mathbf{8}$ determined by HPLC using a chiral stationary phase. ${ }^{c}$ n.d. $=$ not determined.

Effect of Starting Material Regiochemistry

Effect of Starting Material Alkene Geometry

Please note: (Z)-6a contains $<5 \%(E)-\mathbf{6 a}$, as determined by ${ }^{1} \mathrm{H}$ NMR.

$\left(\mathrm{Ar}^{2}-\mathrm{BO}\right)_{3}$
$2 \mathrm{~mol} \% \mathrm{Ni}(\mathrm{OTf})_{2}$

(E)-6a

Effect of Leaving Group

Given the success we have previously observed with the pivalate leaving group, we briefly examined other leaving groups. Under similar conditions (please note that the pivalate reaction below uses PrCN instead of MeCN), lower stereochemical fidelity was observed with a carbamate and acetate. In addition, significant hydrolysis of the acetate was observed.

Limitations in Substrate Scope

Stereospecific Cross Coupling of Allylic Pivalates with Boroxines

General Procedure A: Stereospecific, Nickel-Catalyzed Coupling of Allylic Pivalates with Boroxines

In a N_{2}-atmosphere glovebox, NiCl_{2}-DME ($1.8 \mathrm{mg}, 0.008 \mathrm{mmol}, 2 \mathrm{~mol} \%$), BISBI (4.4 mg , $0.008 \mathrm{mmol}, 2 \mathrm{~mol} \%$), and $\mathrm{NaOMe}(64.8 \mathrm{mg}, 1.2 \mathrm{mmol}, 3.0$ equiv) were weighed into a $1-\mathrm{dram}$ vial fitted with a stir bar. Allylic pivalate $\mathbf{6}(0.40 \mathrm{mmol}, 1.0$ equiv $)$ and boroxine $(0.30 \mathrm{mmol}, 1.5$ equiv) were added, followed by acetonitrile $(1.0 \mathrm{~mL}, 0.4 \mathrm{M})$. The vial was capped with a Teflonlined cap and removed from the glovebox. The mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ and filtered through a plug of silica gel, which was rinsed with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The filtrate was concentrated and then purified by silica gel chromatography to give the arylated product.

((S,E)-3-(m-Methoxyphenyl)-3-methyl-1-phenyl-1-heptene (8). Prepared via General Procedure A using pivalate 6a (prepared in 98% ee). The crude material was purified by silica gel chromatography ($1-2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to give compound 8 (run 1: $112.4 \mathrm{mg}, 94 \%$; run 2: $100.0 \mathrm{mg}, 85 \%$) as colorless oil. The enantiomeric excess was determined to be 93% (run 1 :
92% ee; run 2: 94% ee) by chiral HPLC analysis (CHIRACEL IC, $0.4 \mathrm{~mL} / \mathrm{min}, 100 \%$ hexane $\lambda=254 \mathrm{~nm}) ; t_{\mathrm{R}}($ major $)=23.73 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=20.68 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=-17.7\left(\mathrm{c} 1.52, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H})$, $6.99-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=16.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.38(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{dddd}, J=38.7,13.2,11.8,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.47$ $(\mathrm{s}, 3 \mathrm{H}), 1.36-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.10(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6,150.0,139.5,138.0,129.2,128.7,127.2,127.1,126.4$, $119.5,113.6,110.5,55.4,44.2,41.5,27.0,25.8,23.6,14.3$; FTIR (NaCl/thin film) 2957, 2860, 1599, 1252,1050, $693 \mathrm{~cm}^{-1} ;$ HRMS (ESI +) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}: 295.1984$, found: 295.2056.

Product 8 was also prepared on a 1 -mmol scale. In a N_{2}-atmosphere glovebox, $\mathrm{NiCl}_{2} \cdot$ DME ($4.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 2 \mathrm{~mol} \%$), BISBI ($11.0 \mathrm{mg}, 0.020 \mathrm{mmol}, 2 \mathrm{~mol} \%$), and $\mathrm{NaOMe}(162 \mathrm{mg}, 3.0 \mathrm{mmol}, 3.0$ equiv) were weighed into a 2 -dram vial fitted with a stir bar. Allylic pivalate 6a $(97 \%$ ee, $288 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv) and m-(methoxy)phenylboroxine ($603 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.5$ equiv) were added, followed by acetonitrile ($2.5 \mathrm{~mL}, 0.4 \mathrm{M}$). The vial was capped with a Teflon-lined cap and removed from the glovebox. The mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ and filtered through a plug of silica gel, which was rinsed with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$. The filtrate was concentrated and then purified by silica gel chromatography ($2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to give compound $\mathbf{8}(156 \mathrm{mg}, 53 \%)$ as a pale yellow oil. The enantiomeric excess was determined to be 93% ee (96% es). The spectral data for this compound matches that of compound $\mathbf{8}$ above.

N, N-Dimethyl $\{p-[(S, E)$-1-butyl-1-methyl-3-phenyl-2-propenyl]phenyl\}amine
(9). Prepared via General Procedure A using pivalate 6a (prepared in 98\% ee), except that the reaction was stirred at $70{ }^{\circ} \mathrm{C}$ for 16 h . The crude material was purified by silica gel chromatography ($2-5 \% \mathrm{EtOAc} /$ hexanes) to give compound 9 (run 1: $79.9 \mathrm{mg}, 65 \%$; run 2: 76.2 $\mathrm{mg}, 62 \%$) as a yellow oil. The enantiomeric excess was determined to be 90% (run $1: 90 \%$ ee; run 2: 90% ee) by chiral HPLC analysis (CHIRALPAK IC, $0.4 \mathrm{~mL} / \mathrm{min}, 100 \%$ hexanes, $\lambda=254$ $\mathrm{nm}) ; t_{\mathrm{R}}($ major $)=43.77 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=39.09 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=-11.0\left(\mathrm{c} 1.50, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR $(600$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{dd}, J=13.5,8.1 \mathrm{~Hz}, 3 \mathrm{H})$, $6.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 6 \mathrm{H}), 1.89-$ $1.73(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~m}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.26-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.13(\mathrm{~m}, 1 \mathrm{H})$, $0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.9,140.4,138.3,136.1,128.6,127.5$, 126.9, 126.4, 126.3, 112.7, 43.2, 41.6, 40.9, 27.1, 25.9, 23.7, 14.3; FTIR (NaCl/thin film) 2929, 2859, 1613, 1519, $748 \mathrm{~cm}^{-1}$; HRMS (ESI+) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}: 308.2300$, found: 308.2362 .

(S,E)-3-(p-Methoxyphenyl)-3-methyl-1-phenyl-1-heptene (10). Prepared via General Procedure A using pivalate 6a (prepared in 98% ee). The crude material was purified by silica gel chromatography ($1-2 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) to give compound $\mathbf{1 0}$ (run 1: $95.5 \mathrm{mg}, 80 \%$; run 2: $110.3 \mathrm{mg}, 94 \%$) as a colorless oil. The enantiomeric excess was determined to be 93% (run 1: 94% ee; run 2: 91% ee) by chiral HPLC analysis (CHIRALPAK IB, $0.4 \mathrm{~mL} / \mathrm{min}, 100 \%$ hexanes, $\lambda=254 \mathrm{~nm}$); t_{R} (major) $=24.03 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=21.48 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=-16.1\left(\mathrm{c} 1.40, \mathrm{CHCl}_{3}\right)$: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=$ $16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.19$ $(\mathrm{m}, 1 \mathrm{H}), 1.19-1.10(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.8$, $140.2,140.0,138.1,128.7,127.9,127.1,126.8,126.3,113.6,55.4,43.5,41.7,27.0,26.0,23.6$, 14.3; FTIR (NaCl/thin film) 2957, 2931, 1511, 1250, 1035, $828 \mathrm{~cm}^{-1}$; HRMS (ESI+) [M+H $]^{+}$ calculated for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}: 295.1984$, found: 295.2058.

5-[(S,E)-1-Butyl-1-methyl-3-phenyl-2-propenyl]-2H-1,3-benzodioxole (11).
Prepared via General Procedure A using pivalate 6a (prepared in 98% ee). The crude material was purified by silica gel chromatography ($1-2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to give compound $\mathbf{1 1}$ (run 1 :
$114.9 \mathrm{mg}, 93 \%$; run 2: $104.8 \mathrm{mg}, 85 \%$) as a colorless oil. The enantiomeric excess was determined to be 92% (run 1: 93% ee; run $2: 90 \%$ ee) by chiral HPLC analysis (CHIRAIPAK IC, $0.4 \mathrm{~mL} / \mathrm{min}, 100 \%$ hexanes, $\lambda=254 \mathrm{~nm}) ; t_{\mathrm{R}}($ major $)=28.55 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=25.79 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=-$ $15.0\left(\mathrm{c} 0.71, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.21(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.37(\mathrm{~s}, 2 \mathrm{H}), 5.93(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.34-1.26$ $(\mathrm{m}, 2 \mathrm{H}), 1.26-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.18-1.11(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , CDCl_{3}) $\delta 147.7,145.6,142.3,139.7,138.0,128.7,127.2,126.9,126.3,119.8,107.9,107.8$, 101.0, 44.0, 41.7, 27.0, 26.1, 23.6, 14.3; FTIR (NaCl/thin film) 2958, 2870, 1486,1241, 1040 $811,693 \mathrm{~cm}^{-1}$; HRMS (ESI +) [M] $]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2}: 308.1776$, found: 308.1771.

($\boldsymbol{S}, \boldsymbol{E}$)-3-Methyl-1,3-diphenyl-1-heptene (12). Prepared via General Procedure A using pivalate 6a (prepared in 98% ee). The crude material was purified by silica gel chromatography ($0-1 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to give compound 12 (run $1: 94.7 \mathrm{mg}, 90 \%$; run 2: 89.4 $\mathrm{mg}, 84 \%$) as a colorless oil. The enantiomeric excess was determined to be 94% (run 1: $94 \% \mathrm{ee}$; run 2: 93% ee) by chiral HPLC analysis (CHIRAIPAK OJ-3R, $1.0 \mathrm{~mL} / \mathrm{min}, 50-66 \% \mathrm{MeCN}$ in $\left.\mathrm{H}_{2} \mathrm{O}, \lambda=254 \mathrm{~nm}\right) ; t_{\mathrm{R}}$ (major) $=19.11 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $=20.22 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=-17.2\left(\mathrm{c} 1.54, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{~d}, J=7.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=8.1,7.7,1.8$ $\mathrm{Hz}, 4 \mathrm{H}), 7.21(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.77(\mathrm{~m}, 2 \mathrm{H})$, $1.48(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.08(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.2,139.7,138.1,128.7,128.3,127.2,127.1,126.9$, $126.4,126.0,44.1,41.6,27.0,25.8,23.6,14.3$; FTIR (NaCl/thin film) 3057, 2931, 2361, 1494, $607 \mathrm{~cm}^{-1} ;$ HRMS (ESI+) [M] calculated for $\mathrm{C}_{20} \mathrm{H}_{24}: 264.1878$, found: 264.1869.

(S,E)-3-Methyl-1-phenyl-3-[p-(trifluoromethyl)phenyl]-1-heptene
Prepared via General Procedure A using pivalate 6a (prepared in 98\% ee). The crude material
was purified by silica gel chromatography ($0-1 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to give compound $\mathbf{1 3}$ (run 1 : $123.2 \mathrm{mg}, 93 \%$; run $2: 115.6 \mathrm{mg}, 87 \%$) as a colorless oil. The enantiomeric excess was determined to be 88% (run 1: 88% ee; run $2: 88 \%$ ee) by chiral HPLC analysis (CHIRALPAK OJ-3R, $1.0 \mathrm{~mL} / \mathrm{min}, 50-100 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}, \lambda=280 \mathrm{~nm}$); t_{R} (major) $=13.01 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $=12.06$ $\min .[\alpha]_{\mathrm{D}}{ }^{24}=-8.35\left(\mathrm{c} 1.15, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.46(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 2 \mathrm{H})$, $1.96-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.37-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.16(\mathrm{~m}, 1 \mathrm{H}), 1.16-1.05(\mathrm{~m}, 1 \mathrm{H})$, $0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.1,138.4,137.5,128.6,128.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=32.3 \mathrm{~Hz}), 127.6,127.3,127.1,126.2,125.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.7 \mathrm{~Hz}\right), 124.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=272.7 \mathrm{~Hz}\right), 44.2$, 41.3, 26.8, 25.6, 23.4, 14.1; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.3$; FTIR ($\mathrm{NaCl} /$ thin film) 2959, 1617, 1327, 1123, $692 \mathrm{~cm}^{-1}$; HRMS (EI+) [M]+ calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~F}_{3}$: 332.1752, found: 332.1742 .

$\{p-[(S, E)$-1-Butyl-1-methyl-3-phenyl-2-propenyl $]$ phenyl $\}$
phenylformaldehyde (14). Prepared via General Procedure A using pivalate 6a (prepared in 98% ee), except that the reaction mixture was heated at $70^{\circ} \mathrm{C}$ for 16 h . The crude material was purified by silica gel chromatography ($3-5 \%$ EtOAc/hexanes) to give compound 14 (run 1: 123.3 $\mathrm{mg}, 84 \%$; run 2: $131.2 \mathrm{mg}, 89 \%$) as a colorless oil. The enantiomeric excess was determined to be 81% (run 1: 81% ee; run $2: 80 \%$ ee) by chiral HPLC analysis (CHIRALPAK OJ-3R, 1.0 $\mathrm{mL} / \mathrm{min}, 50-100 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}, \lambda=280 \mathrm{~nm}$); t_{R} (major) $=15.71 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $=18.06 \mathrm{~min}$. $[\alpha]_{\mathrm{D}}{ }^{24}=-8.42\left(\mathrm{c} 1.94, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.76$ $(\mathrm{m}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.40(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-$ $1.80(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.21-1.12(\mathrm{~m}, 1 \mathrm{H}), 0.89$ ($\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.6,153.3,138.8,138.1,137.8,135.4$, $132.4,130.3,130.2,128.8,128.4,127.8,127.4,126.9,126.4,44.5,41.6,27.0,25.7,23.6,14.2$; FTIR ($\mathrm{NaCl} /$ /hin film) 2931, 1658, 1277, $701 \mathrm{~cm}^{-1}$; HRMS (ESI+) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}: 369.214$, found: 369.2182 .

Methyl $\quad p-[(S, E)$-1-butyl-1-methyl-3-phenyl-2-propenyl]benzoate (15).
Prepared via General Procedure A using pivalate 6a (prepared in 98% ee). The crude material was purified by silica gel chromatography ($1-2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to give compound $\mathbf{1 5}$ (run 1 : $115.6 \mathrm{mg}, 87 \%$; run 2: $107.3 \mathrm{mg}, 95 \%$) as a colorless oil. The enantiomeric excess was determined to be 92% (run 1: 92% ee; run $2: 91 \%$ ee) by chiral HPLC analysis (CHIRALPAK IA, $1.0 \mathrm{~mL} / \mathrm{min}, 0.1 \%$ isopropanol/hexanes, $\lambda=254 \mathrm{~nm}$); t_{R} (major) $=12.04 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $=10.62$ $\min .[\alpha]_{\mathrm{D}}{ }^{24}=-19.1\left(\mathrm{c} 1.04, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.33(\mathrm{dd}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.26-$ $1.17(\mathrm{~m}, 2 \mathrm{H}), 1.17-1.09(\mathrm{~m}, 1 \mathrm{H}), 1.09-0.99(\mathrm{~m}, 1 \mathrm{H}), 0.79(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.3,153.6,138.8,137.8,129.7,128.8,128.0,127.7,127.4,127.0,126.4,52.2$, $44.5,41.5,27.0,25.7,23.6,14.2$; FTIR (NaCl/thin film) 2955, 2362, 1723, 1279, 1017, $755 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (ESI +) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{2}: 323.1933$, found: 323.2000.

$\{p-[(S, E)$-1-Butyl-1-methyl-3-phenyl-2-propenyl $]$ phenyl $\}$
(diethylamino)formaldehyde (16). Prepared via General Procedure A using pivalate 6a (prepared in 98% ee)), except that the reaction mixture was heated at $70^{\circ} \mathrm{C}$ for $16 \mathrm{~h} .$. The crude material was purified by silica gel chromatography ($20-25 \% \mathrm{EtOAc} /$ hexanes) to give compound 16 (run 1: $104.4 \mathrm{mg}, 72 \%$; run 2: $116.0 \mathrm{mg}, 80 \%$) as a colorless oil. The enantiomeric excess was determined to be 90% (run $1: 91 \%$ ee; run 2: 88% ee) by chiral HPLC analysis (CHIRALPAK $\mathrm{IB}, 1.0 \mathrm{~mL} / \mathrm{min}, 5 \%$ isopropanol $/$ hexanes, $\lambda=254 \mathrm{~nm}$); t_{R} (major) $=9.77 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $=8.67 \mathrm{~min}$. $[\alpha]_{\mathrm{D}}{ }^{24}=-16.9\left(\mathrm{c} 2.42, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J=8.2,6.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.38$
(d, $J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 2 \mathrm{H}), 1.91-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.27(\mathrm{~m}$, $2 \mathrm{H}), 1.27-1.20(\mathrm{~m}, 5 \mathrm{H}), 1.18-1.08(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.6,149.3,139.2,137.8,134.8,128.7,128.6,127.3,126.9,126.4,126.3,44.2,43.5$, 41.5, 39.4, 26.9, 25.7, 23.6, 14.5, 14.3, 13.1; FTIR (NaCl/thin film) 2963, 2870, 1631, 1425, 1095 972, $694 \mathrm{~cm}^{-1}$; HRMS (ESI +) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{NO}: 364.2562$, found: 364.2635 .

$p-[(S, E)$-1-Butyl-1-methyl-3-phenyl-2-propenyl]benzonitrile (17). Prepared via General Procedure A using pivalate 6a (prepared in 98% ee), except that the reaction mixture was heated at $70{ }^{\circ} \mathrm{C}$ for 16 h . The crude material was purified by silica gel chromatography ($3-$ $5 \% \mathrm{EtOAc} /$ hexanes) to give compound 17 (run $1: 104.9 \mathrm{mg}, 90 \%$; run 2: $103.0 \mathrm{mg}, 89 \%$) as a colorless oil. The enantiomeric excess was determined to be 86% (run $1: 88 \%$ ee; run $2: 84 \%$ ee) by chiral HPLC analysis (CHIRALPAK IB, $0.4 \mathrm{~mL} / \mathrm{min}, 100 \%$ hexanes, $\lambda=254 \mathrm{~nm}$); $t_{\mathrm{R}}($ major $)=40.85 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=45.27 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=-19.3\left(\mathrm{c} 1.02, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.36(\mathrm{~m}$, $3 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=16.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.92-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.17(\mathrm{~m}, 1 \mathrm{H}), 1.15-1.06$ $(\mathrm{m}, 1 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 149.8,137.9,137.4,131.7$, $130.7,129.8,129.1,128.8,128.3,127.6,126.4,119.5,112.4,44.2,41.4,26.9,25.6,23.5,14.2$; FTIR ($\mathrm{NaCl} /$ thin film) 2956, 2860, 2228, 1598, $972,749,693 \mathrm{~cm}^{-1}$; HRMS (ESI +) $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}$: 290.1830 , found: 290.1903 .

5-[(S,E)-1-Butyl-1-methyl-3-phenyl-2-propenyl]-1-methyl-1H-indole
Prepared via General Procedure A using pivalate 6a (prepared in 98% ee), except that the reaction mixture was heated at $70^{\circ} \mathrm{C}$ for 16 h . The crude material was purified by silica gel
chromatography ($3-5 \% \mathrm{EtOAc} /$ hexanes) to give compound 18 (run $1: 99.6 \mathrm{mg}, 78 \%$; run 2 : $101.6 \mathrm{mg}, 80 \%$) as a pale yellow oil. The enantiomeric excess was determined to be 89% (run 1 : 89% ee; run 2: 88% ee) by chiral HPLC analysis (CHIRALPAK IC, $0.8 \mathrm{~mL} / \mathrm{min}, 100 \%$ hexanes, $\lambda=254 \mathrm{~nm}) ; t_{\mathrm{R}}($ major $)=33.20 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $=22.56 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=-23.1\left(\mathrm{c} 1.35, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.7 \mathrm{~Hz}$, 2H), $7.29-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=16.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.45(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.92-$ $1.85(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 4 \mathrm{H}), 1.35-1.21(\mathrm{~m}, 3 \mathrm{H}), 1.21-1.12(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 140.8,139.0,138.3,135.3,129.0,128.7,128.5,127.0,126.4,126.3$, 121.3, 118.6, 108.9, 101.1, 44.0, 41.9, 33.0, 27.1, 26.4, 23.7, 14.3; FTIR ($\mathrm{NaCl} /$ thin film) 2957, 869, 1489, 1249, 971, 747, $694 \mathrm{~cm}^{-1} ;$ HRMS (ESI +) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}: 317.2143$, found: 318.2214 .

5-[(S,E)-1-Butyl-1-methyl-3-phenyl-2-propenyl]-1-benzofuran (19). Prepared via General Procedure A using pivalate $\mathbf{6 a}$ (prepared in 98% ee). The crude material was purified by silica gel chromatography ($0-1 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to give compound 19 (run $1: 90.6 \mathrm{mg}, 74 \%$; run 2: $111.0 \mathrm{mg}, 91 \%$) as a colorless oil. The enantiomeric excess was determined to be 89% (run 1: 89% ee; run 2: 89% ee) by chiral HPLC analysis (CHIRALPAK ID, $0.4 \mathrm{~mL} / \mathrm{min}, 100 \%$ hexanes, $\lambda=254 \mathrm{~nm}) ; t_{\mathrm{R}}($ major $)=28.12 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=25.16 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=-20.1\left(\mathrm{c} 2.33, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{dd}, J=16.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.28$ (m, 3H), $7.24-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=2.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J$ $=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.35-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.20$ $(\mathrm{m}, 1 \mathrm{H}), 1.20-1.11(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.5$, $145.2,142.7,140.1,138.0,128.7,127.3,127.2,126.8,126.3,123.7,119.1,111.0,106.9,44.1$, 41.9, 27.1, 26.3, 23.6, 14.3; FTIR (NaCl/thin film) 2956, 2859, 1466, 1262, 1030, $737 \mathrm{~cm}^{-1}$; HRMS (ESI+) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}: 305.1827$, found: 305.1890.

(S,E)-3-(m-Methoxyphenyl)-3-methyl-1-(o-tolyl)-1-heptene (20). Prepared via General Procedure A using pivalate $\mathbf{6 b}$ (prepared in 98% ee), except that the reaction mixture was heated at $70^{\circ} \mathrm{C}$ for 16 h . The crude material was purified by silica gel chromatography (3$5 \%$ EtOAc/hexanes) to give compound 20 (run $1: 113.2 \mathrm{mg}, 92 \%$; run 2: $111.2 \mathrm{mg}, 90 \%$) as a colorless oil. The enantiomeric excess was determined to be 86% (run $1: 86 \%$ ee; run $2: 86 \%$ ee) by chiral HPLC analysis (CHIRALPAK IB, $0.4 \mathrm{~mL} / \mathrm{min}, 100 \%$ hexanes, $\lambda=254 \mathrm{~nm}$); $t_{\mathrm{R}}($ major $)=22.22 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=20.61 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=-9.0\left(\mathrm{c} 1.21, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.26$ (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{dddd}, J=36.0,13.3,11.7,4.7 \mathrm{~Hz}, 2 \mathrm{H})$, $1.48(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.16(\mathrm{~m}, 5 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.5$, $150.0,140.7,137.2,135.2,130.1,129.0,126.9,126.1,125.6,125.0,119.3,113.4,110.4,55.2$, 44.3, 41.4, 26.9, 25.8, 23.5, 19.9, 14.1; FTIR (NaCl/thin film) 2956, 2860, 600, 1484, 1251, 748 cm^{-1}; HRMS (ESI+) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}: 309.2140$, found: 309.2213.

(S,E)-tert-Butyl(3-(3-(3-methoxyphenyl)-3-methylhept-1-en-1-
$\mathbf{y l}$)phenoxy)dimethylsilane (21). Prepared via General Procedure A using pivalate $\mathbf{6 c}$ (prepared in 96% ee). The crude material was purified by silica gel chromatography ($1-2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to give compound 21 (run 1: $103.5 \mathrm{mg}, 61 \%$; run $2: 118.6,70 \%$) as a colorless oil. The enantiomeric excess was determined to be 84% (run $1: 86 \%$ ee; run $2: 82 \%$ ee) by chiral HPLC analysis (CHIRALPAK IC, $0.2 \mathrm{~mL} / \mathrm{min}, 100 \%$ hexanes, $\lambda=254 \mathrm{~nm}$); t_{R} (major) $=38.04 \mathrm{~min}$, $t_{\mathrm{R}}($ minor $)=35.60 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=-11.7\left(\mathrm{c} 2.03, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-$
$6.89(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.38(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}$, $3 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.18-1.11(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6,156.0,150.0,139.51,139.48,129.5$, $129.2,126.9,119.5,119.4,118.8,118.1,113.5,110.5,55.3,44.1,41.5,27.0,25.9,25.8,23.6$, 18.4, 14.3, -4.2; ${ }^{29} \mathrm{Si}$ NMR ($119 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.56$; FTIR ($\mathrm{NaCl} /$ thin film) 2930, 2858, 1598, 1485, 1280, 856, $780 \mathrm{~cm}^{-1}$; HRMS (ESI +) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{O}_{2} \mathrm{Si}: 425.2798$, found: 425.2828.

$p-[(E)$-3-(m-Methoxyphenyl)-3-methyl-1-heptenyl]benzonitrile (22).
Prepared via General Procedure A using pivalate 6d (prepared in 98% ee, unknown absolute configuration). The crude material was purified by silica gel chromatography ($3-5 \%$ $\mathrm{Et}_{2} \mathrm{O} /$ hexanes) to give compound $22(86.5 \mathrm{mg}, 68 \%)$ as a colorless oil. The enantiomeric excess was determined to be 95% by chiral HPLC analysis (CHIRALPAK IB, $1.0 \mathrm{~mL} / \mathrm{min}, 1 \%$ isopropanol/hexanes, $\lambda=254 \mathrm{~nm}) ; t_{\mathrm{R}}($ major $)=11.75 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=15.31 \mathrm{~min}$. The absolute configuration is unknown, because the starting material configuration is unknown. $[\alpha]_{\mathrm{D}}{ }^{24}=-23.2$ (c $1.33, \mathrm{CHCl}_{3}$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.1,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.55(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.48$ ($\mathrm{s}, 3 \mathrm{H}$), $1.30(\mathrm{p}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.24-1.07(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.6,149.0,143.7,142.5,132.5,129.4,126.8,125.7,119.31,119.28,113.7$, $110.5,110.3,55.3,44.4,41.2,26.9,25.3,23.5,14.2$; FTIR (NaCl/thin film) 2932, 2224, 1603, 1290, 1043, $701 \mathrm{~cm}^{-1}$; HRMS (ESI +) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}: 320.1936$, found: 320.1984.

(S,E)-3-(m-Methoxyphenyl)-3-methyl-1-[p-(trifluoromethyl)phenyl]-
1-heptene (23). Prepared via General Procedure A using pivalate 6e (prepared in 97% ee). The crude material was purified by silica gel chromatography ($1-2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to give compound 23 (run 1: $106.4 \mathrm{mg}, 74 \%$; run $2: 96 \mathrm{mg}, 66 \%$) as a colorless oil. There was a 4% impurity of the $\mathrm{S}_{\mathrm{N}} 2$ product observed in this reaction. The enantiomeric excess was determined to be 93% (run 1: 93% ee; run 2: 93%) by chiral HPLC analysis (CHIRALPAK IC, $0.2 \mathrm{~mL} / \mathrm{min}$, 100% hexanes, $\lambda=254 \mathrm{~nm}$); t_{R} (major) $=36.59 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=34.08 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=-16.4$ (c 2.19, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-\mathrm{z} 6.91(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J$ $=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.36-$ $1.25(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.06(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $159.5,149.2,142.2,141.3,129.1,128.8(\mathrm{q}, ~ J=32.6 \mathrm{~Hz}), 126.3,125.8,125.5(\mathrm{q}, J=3.5 \mathrm{~Hz}$), $124.3(\mathrm{q}, J=271.5 \mathrm{~Hz}), 119.2,113.5,110.4,55.2,44.2,41.2,26.8,25.4,23.4,14.1 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHZ}, \mathrm{CDCl}_{3}$) $\delta-62.36$ FTIR (NaCl/thin film) 2958, 1607, 1324, $1123 \mathrm{~cm}^{-1}$; HRMS (EI+) $[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{O}: 362.1858$, found: 362.1872.

3-[(E)-3-(m-Methoxyphenyl)-3-methyl-1-heptenyl]pyridine
(24).

Prepared via General Procedure A using pivalate 6 (prepared in 96% ee, unknown absolute configuration). The crude material was purified by silica gel chromatography (40% EtOAc/hexanes with $5 \% \mathrm{Et}_{3} \mathrm{~N}$) to give compound 24 (run 1: $103.3 \mathrm{mg}, 87 \%$; run 2: 98.8 mg , 84%) as a colorless oil. The enantiomeric excess was determined to be 93% (run $1: 93 \%$ ee; run 2: 93% ee) by chiral HPLC analysis (CHIRALPAK IB, $1.0 \mathrm{~mL} / \mathrm{min}, 1 \%$ isopropanol/hexanes, $\lambda=220 \mathrm{~nm}$); t_{R} (major) $=32.69 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $=23.16 \mathrm{~min}$. The absolute configuration is unknown, because the starting material configuration is unknown. $[\alpha]_{\mathrm{D}}{ }^{24}=+13.4$ (c 1.86, CHCl_{3}): ${ }^{1} \mathrm{H}$ NMR
($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.59(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.46-8.41(\mathrm{~m}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25$ $(\mathrm{m}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.78-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.92-$ $1.84(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.18-$ $1.08(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.7,149.3$, 148.5, $148.3,142.0,133.5,132.7,129.3,123.6,123.5,119.4,113.6,110.6,55.4,44.4,41.4,27.0,25.5$, 23.6, 14.2; FTIR (NaCl/thin film) 2956, 2869, 1605, 1484, 1252, 1044, $702 \mathrm{~cm}^{-1}$; HRMS (ESI+) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}$: 296.1936, found: 296.2009.

5-[(S,E)-3-(m-Methoxyphenyl)-3-methyl-1-heptenyl]-1-benzofuran

(25). Prepared via General Procedure A using pivalate $\mathbf{6 g}$ (prepared in 98% ee). The crude material was purified by silica gel chromatography ($1-2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to give compound 25 (run 1: $120.2 \mathrm{mg}, 90 \%$; run 2: $120.3 \mathrm{mg}, 90 \%$) as a colorless oil. The enantiomeric excess was determined to be 93% (run 1: 93% ee; run 2: 93% ee) by chiral HPLC analysis (CHIRALPAK IC, $1.0 \mathrm{~mL} / \mathrm{min}, 0.1 \%$ isopropanol $/$ hexanes, $\lambda=254 \mathrm{~nm}$); $t_{\mathrm{R}}($ major $)=7.87 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=6.90$ $\min .[\alpha]_{\mathrm{D}}{ }^{24}=-23.9\left(\mathrm{c} 1.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.43$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 1 \mathrm{H})$, $6.94-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.77-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.21-$ $1.12(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.5,154.4,150.0,145.4$, $138.3,133.0,129.0,127.7,127.0,122.8,119.3,118.6,113.4,111.3,110.3,106.6,55.2,44.0$, 41.5, 26.9, 25.7, 23.5, 14.1; FTIR (NaCl/thin film) 2956, 2931, 1606, 1465, 1262, 1031, 765, 701 $\mathrm{cm}^{-1} ;$ HRMS $(\mathrm{ESI}+)[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{2}: 335.1933$, found: 335.2001.

($\boldsymbol{S}, \boldsymbol{E}$)-3-Ethyl-3-(m-methoxyphenyl)-1-phenyl-1-heptene (26). Prepared via General Procedure A using pivalate $\mathbf{6 h}$ (prepared in 98% ee). The crude material was purified by silica gel chromatography ($1-2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to give compound 26 (run $1: 82 \mathrm{mg}, 67 \%$; run 2: $89 \mathrm{mg}, 70 \%$) as a colorless oil. The enantiomeric excess was determined to be 68% (run 1: 68\% ee run 2: 68% ee) by chiral HPLC analysis (CHIRALPAK IF, $0.2 \mathrm{~mL} / \mathrm{min}, 100 \%$ pentane, $\lambda=254 \mathrm{~nm}) ; t_{\mathrm{R}}($ major $)=58.44 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=55.13 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=+4.1\left(\mathrm{c} 1.91, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.17$ (m, 2H), $6.97-$ $6.91(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.79-6.70(\mathrm{~m}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.28(\mathrm{p}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.22-1.05(\mathrm{~m}, 2 \mathrm{H})$, $0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5,148.5$, $138.4,138.2,128.9,128.7,127.9,127.1,126.3,120.3,114.4,110.4,55.3,47.7,37.3,30.5,26.5$, 23.7, 14.3, 8.8; FTIR ($\mathrm{NaCl} /$ thin film) 2957, 2932, 1599, 1485, 1247, 1052, 775, $693 \mathrm{~cm}^{-1}$; HRMS (ESI+) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}: 309.2140$, found: 309.2205 .

(S,E)-1-(m-Methoxyphenyl)-3-methyl-3-phenyl-1-pentene
Prepared via General Procedure A using pivalate 6i (prepared in 97% ee). The crude material was purified by silica gel chromatography ($1-2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to give compound 27 (run 1 : $96.3 \mathrm{mg}, 90 \%$; run $2: 91.6 \mathrm{mg}, 86 \%$) as a colorless oil. The enantiomeric excess was determined to be 89% (run 1: 89% ee; run 2: 88% ee) by chiral HPLC analysis (CHIRALPAK IA, 0.4 $\mathrm{mL} / \mathrm{min}, 100 \%$ hexanes, $\lambda=254 \mathrm{~nm}$); t_{R} (major) $=26.11 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=22.57 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=-16.6$ (c $2.02, \mathrm{CHCl}_{3}$): ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}$), $7.24-7.17$ (m, 2H), 6.99 (dt, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (dd, J $=8.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.82$ $(\mathrm{m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 159.9,147.6$, $139.5,139.4,129.5,128.1,127.0,126.8,125.8,118.9,112.7,111.4,55.2,44.2,33.9,25.0,9.1 ;$ FTIR (NaCl/thin film) 3852, 2964, 2361, 1578, 1156, $699 \mathrm{~cm}^{-1}$; HRMS (ESI+) [M+H] ${ }^{+}$ calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}: 267.1671$, found: 267.1739 .

(S,E)-3-(m-Methoxyphenyl)-3,5-dimethyl-1-phenyl-1-hexene (28). Prepared via General Procedure A using pivalate $\mathbf{6 j}$ (prepared in 98% ee). The crude material was purified by silica gel chromatography ($1-2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to give compound 28 (run $1: 97.9 \mathrm{mg}, 83 \%$; run 2: $100.6 \mathrm{mg}, 85 \%$) as a colorless oil. The enantiomeric excess was determined to be 91% (run 1: 90% ee; run 2: 91% ee) by chiral HPLC analysis (CHIRALPAK IC, $0.4 \mathrm{~mL} / \mathrm{min}, 100 \%$ hexanes, $\lambda=254 \mathrm{~nm}) ; t_{\mathrm{R}}($ major $)=23.38 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=19.99 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=-7.05\left(\mathrm{c} 2.05, \mathrm{CHCl}_{3}\right)$: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J=8.5,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.18$ $(\mathrm{m}, 2 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.72(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=16.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.38(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}$, $3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5$, $150.3,139.7,138.0,129.1,128.7,127.1,126.8,126.3,119.5,113.6,110.5,55.4,50.8,44.6,26.1$, 25.3, 25.2, 25.0; FTIR (NaCl/thin film) 2953, 1599, 1485, 1247, $693 \mathrm{~cm}^{-1}$; HRMS (ESI+) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}: 295.1198$, found: 295.2056.

3-[(S,E)-3-(m-Methoxyphenyl)-3-methyl-5-phenyl-4-pentenyl]-2,2-dimethyloxirane (29). Prepared via General Procedure A using pivalate $\mathbf{6 k}$ (1:1 mixture of diastereomers, each diastereomer prepared in 98% ee). The crude material was purified by silica gel chromatography ($10-15 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) to give compound 29 (run 1: $121.7 \mathrm{mg}, 91 \%, 1: 1 \mathrm{dr}$; run 2: $118.2 \mathrm{mg}, 88 \%, 1: 1 \mathrm{dr}$) as a colorless oil. The enantiomeric excess of diastereomer 1 was determined to be 82% (run $1: 83 \%$ ee; run 2 : 81% ee), and the enantiomeric excess of diastereomer 2 was determined to be 83% (run 1: 84% ee; run 2: 81% ee), by chiral HPLC analysis of the mixture of diastereomers (CHIRALPAK IB, $1.0 \mathrm{~mL} / \mathrm{min}, 0.8 \%$ isopropanol $/$ hexanes, $\lambda=254 \mathrm{~nm}$); $t_{\mathrm{R}}($ major for diastereomer 1$)=12.96 \mathrm{~min}$, $t_{\mathrm{R}}($ minor for diastereomer 1$)=11.43 \mathrm{~min}, t_{\mathrm{R}}($ major for diastereomer 2$)=18.46 \mathrm{~min}, t_{\mathrm{R}}($ minor for diastereomer 2$)=16.35 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=-8.0\left(\mathrm{c} 1.15, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, both diastereomers) $\delta 7.41-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.15(\mathrm{~m}, 8 \mathrm{H}), 6.95(\mathrm{dd}, J=$
7.7, 2.1 Hz, 2H), $6.91(\mathrm{q}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.79-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.80(\mathrm{~s}$, $6 \mathrm{H}), 2.70(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.21-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.41(\mathrm{~m}, 10 \mathrm{H})$, $1.34(\mathrm{~s}, 2 \mathrm{H}), 1.28(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, both diastereomers) $\delta 159.5,149.1,148.9,138.6,138.2,137.6,137.5,129.20,129.18,128.56$, $128.55,127.5,127.23,127.17,127.1,126.2,119.2,119.1,113.4,113.3,110.59,110.56,64.63$, $64.62,58.50,58.47,55.2,43.79,43.76,37.9,37.7,25.5,25.3,24.9,24.5,24.4,18.7,18.6$; FTIR $(\mathrm{NaCl} /$ thin film $) 2963,2361,1599,1486,1251,749,694 \mathrm{~cm}^{-1}$; HRMS (ESI+) $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{2}$: 337.2089, found: 337.2155. Please note that the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are complicated; some peaks of the diastereomers are coincident. Please see attached spectra.

(S,E)-tert-Butyl((4-(3-methoxyphenyl)-4-methyl-6-phenylhex-5-en-1-yl)oxy)dimethylsilane (30). Prepared via General Procedure A using pivalate 61 (prepared in $>99 \%$ ee). The crude material was purified by silica gel chromatography ($1-2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to give compound 30 ($109.1 \mathrm{mg}, 69 \%$) as a colorless oil. The enantiomeric excess was determined to be 89% by chiral HPLC analysis (CHIRALPAK IC, $0.2 \mathrm{~mL} / \mathrm{min}, 100 \%$ hexanes, $\lambda=254 \mathrm{~nm}) ; t_{\mathrm{R}}($ major $)=46.40 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=43.28 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=-8.5\left(\mathrm{c} 1.31, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{dd}, J=8.5,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 2 \mathrm{H})$, $6.96(\mathrm{dd}, J=7.8,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.1,2.6,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.40(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.47$ (s, 4H), 1.41 (dtd, J $=11.8,6.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 159.7, 149.7, 139.2, 138.0, 129.2, 128.7, 127.23, 127.18, 126.4, 119.5, 113.6, 110.7, 63.8, 55.3, 43.9, 37.7, 28.3, 26.2, 25.9, 18.6, -5.1 ; ${ }^{29} \mathrm{Si}$ NMR ($119 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.5$; FTIR ($\mathrm{NaCl} /$ thin film) $1952,2856,1599,1255,1095,835 \mathrm{~cm}^{-1}$; HRMS (ESI+) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{Si}$: 411.2641, found: 411.2680.

(S,1E)-3-(m-Methoxyphenyl)-3,7-dimethyl-1-phenyl-1,6-octadiene ((S)-32). Prepared via General Procedure A using pivalate $(E)-\mathbf{6 m}$ (prepared in 98% ee). The crude material was purified by silica gel chromatography ($1-2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to give compound (S)-32 (run 1: $119.0 \mathrm{mg}, 93 \%$, run 2: $125.2 \mathrm{mg}, 98 \%$) as a colorless oil. The enantiomeric excess was determined to be 93% ee (run 1: 93% ee, run $2: 93 \%$ ee) by chiral HPLC analysis (CHIRALPAK IC, $0.4 \mathrm{~mL} / \mathrm{min}, 100 \%$ hexanes, $\lambda=254 \mathrm{~nm}$); t_{R} (major)=26.31 $\min , t_{\mathrm{R}}($ minor $)=23.16 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=-4.09\left(\mathrm{c} 2.10, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-$ $7.36(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{dt}, J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-$ $6.90(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.72(\mathrm{~m}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.11$ (ddd, $J=4.9,3.6,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.66(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.53(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6,149.7,139.1,138.0,131.7,129.2,128.7,127.2,126.3$, $124.8,119.4,113.5,110.6,55.4,44.2,41.7,25.9,25.7,23.6,17.8$; FTIR ($\mathrm{NaCl} /$ thin film) 2965, 2927, 1599, 1485, 1290, 1049, $693 \mathrm{~cm}^{-1}$; HRMS (EI+) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}$: 321.2140 , found: 321.2208 .

($\boldsymbol{R}, 1 E$)-3-(m-Methoxyphenyl)-3,7-dimethyl-1-phenyl-1,6-octadiene $((\boldsymbol{R}) \mathbf{- 3 2})$. Prepared via General Procedure A using pivalate (Z)- $\mathbf{6 m}$ (prepared in 97% ee). The crude material was purified by silica gel chromatography ($1-2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to give compound (R)-32 (run 1: $95.6 \mathrm{mg}, 75 \%$, run $2: 101.6 \mathrm{mg}, 79 \%$) as a colorless oil. The enantiomeric excess was determined to be 84% (run 1: 84% ee, run $2: 84 \%$ ee) by chiral HPLC analysis (CHIRALPAK IC, $0.4 \mathrm{~mL} / \mathrm{min}, 100 \%$ hexanes, $\lambda=254 \mathrm{~nm}$); t_{R} (major) $=21.94 \mathrm{~min}$, t_{R} (minor) $=25.79 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=+3.43\left(\mathrm{c} 2.17, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.36$ (m, 2H), $7.30(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 8 \mathrm{H}), 6.96(\mathrm{dd}, J=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}$, $1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 1.97-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 159.7,149.7,139.2,138.1,131.6,129.2,128.7,127.3,127.2,126.4,124.9$,
$119.5,113.6,110.7,55.4,44.3,41.8,25.9,25.7,23.7,17.8$. The spectral data for this compound matches that of (S)-31 reported above.

Determination of Absolute Configuration

(\boldsymbol{R})-2-Methyl-2-phenylhexanoic acid (31). The following synthesis was adapted from a literature procedure. ${ }^{2}(S, E)-1-(m$-Methoxyphenyl)-3-methyl-3-phenyl-1-pentene (27) (90.6 mg, $0.34 \mathrm{mmol}, 1.0$ equiv) was dissolved in acetone ($1.6 \mathrm{~mL}, 0.22 \mathrm{M}$). $\mathrm{KMnO}_{4}(0.46 \mathrm{~g}, 2.9 \mathrm{mmol}$, 8.7 equiv) was then added to the solution, which was then stirred overnight at room temperature. The mixture was then cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{EtOH}(0.4 \mathrm{~mL})$ was added dropwise. The mixture was then stirred for an additional hour at room temperature. The mixture was filtered through a pad of Celite, and the Celite bed was washed with water ($2 \times 2 \mathrm{~mL}$) and acetone ($2 \times 2 \mathrm{~mL}$). $\mathrm{HCl}(1$ $\mathrm{M}, 3 \mathrm{~mL}$) was added, and the aqueous layer was extracted with $\mathrm{PhMe}(2 \mathrm{x} 10 \mathrm{~mL})$. The combined organic fractions were then extracted with $1 \mathrm{M} \mathrm{NaOH}(1 \times 15 \mathrm{~mL})$. The aqueous layer was then made acidic with 1 M HCl , and extracted with $\mathrm{PhMe}(3 \mathrm{x} 30 \mathrm{~mL}$). The combined organic fractions were then washed with sat. aq. $\mathrm{NaCl}(1 \times 60 \mathrm{~mL})$, dried with MgSO_{4}, and concentrated. The resulting residue was then purified via silica gel chromatography (20% EtOAc/Hexane) to give compound $\mathbf{3 1}$ as a white solid. The spectral data matched that reported in the literature. ${ }^{3}[\alpha]_{D}{ }^{24}=21.9\left(c 0.42, \mathrm{C}_{6} \mathrm{H}_{6}\right)$. The absolute configuration assigned by comparing the optical rotation with a reported literature value for $(R)-\mathbf{3 1},[\alpha]_{\mathrm{D}}{ }^{20}=32.6\left(\mathrm{c} 0.3, \mathrm{C}_{6} \mathrm{H}_{6}\right) .{ }^{4}$

(S)-Formylphenylmethyl acetate (S2). (R, E)-3-Methyl-1-phenyl-2-heptenyl acetate (S1, 1.9 mmol, 1.0 equiv), prepared from allylic alcohol 6aa, was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (76
$\mathrm{mL}, 0.025 \mathrm{M})$. The solution was cooled to $-78^{\circ} \mathrm{C}$. Ozone was then passed through the solution until there was a persistent blue color. Dimethyl sulfide ($3.8 \mathrm{mmol}, 2.0$ equiv) was then added dropwise to the solution at $-78^{\circ} \mathrm{C}$. The solution was allowed to stir and slowly warm to room temperature over a period of 3 h . The solution was then concentrated, and purified via silica gel chromatography ($30 \% \mathrm{EtOAc} /$ hexanes) to give compound $\mathbf{S} 2$ as a pale yellow oil. The spectral data matched that reported in the literature. $[\alpha]_{\mathrm{D}}{ }^{24}=+123.9$ (c 2.17, acetone). The absolute configuration was assigned by comparing the optical rotation with a reported literature value for (R)-S2, $[\alpha]_{\mathrm{D}}{ }^{24}=119$ (acetone). ${ }^{5}$

Preparation of Pivalates

General Procedure B: Preparation of Allylic Pivalates (6a-6i)

($\boldsymbol{R}, \boldsymbol{E}$)-3-Methyl-1-(phenyl)-2-heptenyl pivalate ($\mathbf{6 a}$). (R, E)-3-methyl-1-phenyl-2-hepten-1-ol ($\mathbf{6 a a}, 1.26 \mathrm{~g}, 12.2 \mathrm{mmol}, 1.0$ equiv, 98% ee) and DMAP ($75 \mathrm{mg}, 0.62 \mathrm{mmol}, 0.10$ equiv) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL}, 0.25 \mathrm{M}) . \mathrm{Et}_{3} \mathrm{~N}(1.72 \mathrm{~mL}, 12.3 \mathrm{mmol}, 2.0$ equiv) and pivaloyl chloride ($0.91 \mathrm{~mL}, 7.39 \mathrm{mmol}, 1.2$ equiv) were then added. The reaction mixture was then stirred for 15 h at room temperature, before $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. The organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 40 \mathrm{~mL})$. The combined organic layers were washed with aq. $\mathrm{NaOH}(2.0 \mathrm{M}, 40$ $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The resulting residue was purified by silica gel chromatography (column wet-packed with $1: 1 \mathrm{Et}_{3} \mathrm{~N}$:hexanes; then run using $2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to give compound $\mathbf{6 a}(1.46 \mathrm{~g}, 82 \%)$ as a pale yellow oil. The enantiomeric excess was assumed to be 98%, because that is the ee of the allylic alcohol precursor. $[\alpha]_{\mathrm{D}}{ }^{24}=-31.3$ (c 1.22, CHCl_{3}): ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=9.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.44$ $-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 177.5,141.1,140.8,128.4,127.4,126.2,123.2,72.4,39.2,38.8,29.7,27.1,22.2,16.8$, 13.9; FTIR (NaCl/thin film) 2958, 2931, 1728, 1151, $697 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}: 289.2084$, found: 289.1252 .

(R,E)-3-Methyl-1-(o-tolyl)-2-heptenyl pivalate (6b). Prepared according to General Procedure B on a 2.75 mmol scale to give $\mathbf{6 b}(607 \mathrm{mg}, 83 \%$) as a yellow oil. The enantiomeric excess was assumed to be 93%, because that is the ee of the allylic alcohol precursor. $[\alpha]_{\mathrm{D}}{ }^{24}=-43.4$ (c 1.54, CHCl_{3}) : ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27$ (s, 2H), 7.19 (s, $2 \mathrm{H}), 6.42(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.75$ (s, 3H), $1.39-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.6,141.5,139.6,135.4,130.6,127.5,126.3,126.1,123.0,70.3,39.4,39.0$, 30.0, 27.3, 22.4, 19.5, 17.0, 14.1; FTIR (NaCl/thin film) 2957, 1726, 1280, 1153, $752 \mathrm{~cm}^{-1}$; HRMS (ESI+) $[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2}: 302.2246$, found: 302.2232.

(R, E)-1-(3-((tert-Butyldimethylsilyl)oxy)phenyl)-3-methylhept-2-
en-1-yl pivalate (6c). Prepared according to General Procedure B on a 4.12 mmol scale to give $\mathbf{6 c}(1.24 \mathrm{~g}, 72 \%)$ as a clear oil. The enantiomeric excess was assumed to be 96%, because that is the ee of the allylic alcohol precursor. $[\alpha]_{\mathrm{D}}{ }^{24}=-28.5$ (c $1.59, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.17(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J$ $=9.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.80(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.7,155.9,142.7,140.9,129.5$, $123.4,119.33,119.31,118.0,72.3,39.4,39.0,29.9,27.3,25.9,22.4,18.4,17.0,14.1,-4.2 ;{ }^{29} \mathrm{Si}$ NMR (119 MHz, CDCl_{3}) $\delta 20.8$; FTIR ($\mathrm{NaCl} /$ thin film) 2957, 2859, 1731, 1278, 1153, 840, 781 $\mathrm{cm}^{-1} ;$ HRMS (ESI +) [M-OPiv] ${ }^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{OSi}: 317.2295$, found: 317.2290.

(E)-1-(p-Cyanophenyl)-3-methyl-2-heptenyl pivalate (6d). Prepared according to General Procedure B on a 0.72 mmol scale to give $\mathbf{6 d}(202 \mathrm{mg}, 89 \%)$ as a yellow oil. The enantiomeric excess was determined to be 98% by chiral HPLC analysis (CHIRALPAK

IA, $1.0 \mathrm{~mL} / \mathrm{min}, 3 \%$ isopropanol/hexane, $\lambda=254 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{R}}($ major $)=4.38 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=5.28 \mathrm{~min}$. The absolute configuration is unknown, because the starting material configuration is unknown. $[\alpha]_{\mathrm{D}}{ }^{24}=-50.6\left(\mathrm{c} 2.62, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.29-5.22(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~d}, J=$ $1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.45-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 177.6,146.6,142.7,132.6,126.9,122.2,119.0,111.4,71.8,39.3$, $39.0,29.8,27.3,22.3,17.1,14.1$; FTIR ($\mathrm{NaCl} /$ thin film) 2958, 2229, 1732, $1148,824 \mathrm{~cm}^{-1}$; HRMS (ESI+) [M-OPiv] ${ }^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}: 212.1434$, found: 212.1430.

($\boldsymbol{R}, \boldsymbol{E}$)-3-Methyl-1-[p-(trifluoromethyl)phenyl]-2-heptenyl pivalate (6e). Prepared according to General Procedure B on a 2.74 mmol scale to give $\mathbf{6 e}(895 \mathrm{mg}, 92 \%)$ as a yellow oil. The enantiomeric excess was determined to be 97% by chiral HPLC analysis (CHIRALPAK IC, $1.0 \mathrm{~mL} / \mathrm{min}, 100 \%$ hexane, $\lambda=210 \mathrm{~nm}$); t_{R} (major) $=14.47 \mathrm{~min}$, t_{R} (minor) $=16.64 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=-32.0\left(\mathrm{c} 2.27, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=9.2,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.45-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.23$ $(\mathrm{s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.6,145.3,142.1,129.8(\mathrm{q}$, $\left.J_{\mathrm{C}-\mathrm{F}}=32.5 \mathrm{~Hz}\right), 126.6,125.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.7 \mathrm{~Hz}\right), 124.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=272.9 \mathrm{~Hz}\right), 122.7,72.0,39.4$, 39.0, 29.8, 27.3, 22.4, 17.0, 14.1; ${ }^{19}$ F NMR ($376 \mathrm{MHz} \mathrm{CDCl}_{3}$) $\delta-62.5$; FTIR ($\mathrm{NaCl} /$ thin film) 2960, 1732, 1325, 1149, $1067 \mathrm{~cm}^{-1}$; HRMS (ESI+) [M-OPiv] ${ }^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~F}_{3}: 255.1355$, found: 225.1348 .

($\boldsymbol{R}, \boldsymbol{E}$)-3-Methyl-1-(3-pyridyl)-2-heptenyl pivalate (6f). Prepared according to General Procedure B on a 1.44 mmol scale to give $\mathbf{6 f}(367 \mathrm{mg}, 88 \%)$ as a yellow oil. The enantiomeric excess was determined to be 96% by chiral HPLC analysis (CHIRALPAK IA, 1.0 $\mathrm{mL} / \mathrm{min}, 3 \%$ isopropanol $/$ hexane, $\lambda=210 \mathrm{~nm}$); t_{R} (major) $=10.90 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=7.82 \mathrm{~min}$. The absolute configuration is unknown, because the starting material configuration is unknown.
$[\alpha]_{\mathrm{D}}{ }^{24}=-38.3\left(\mathrm{c} 1.50, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{dd}$, $J=4.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.32$ (dd, $J=9.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.46-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.31$ $-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.7$, $149.0,148.3,142.3,136.7,134.0,123.5,122.3,70.6,39.3,39.0,29.8,27.3,22.4,17.1,14.1$; FTIR ($\mathrm{NaCl} /$ thin film) $2958,1729,1478,1149,712 \mathrm{~cm}^{-1}$; HRMS (ESI +) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{2}: 290.2042$, found: 290.2088.

($\boldsymbol{R}, \boldsymbol{E}$)-1-(1-Benzofuran-5-yl)-3-methyl-2-heptenyl pivalate (6 g). Prepared according to General Procedure B on a 4.51 mmol scale to give $\mathbf{6 g}(1.36 \mathrm{~g}, 92 \%)$ as a clear oil. The enantiomeric excess was determined to be 98% by chiral HPLC analysis (CHIRALPAK IA, $0.4 \mathrm{~mL} / \mathrm{min}, 1 \%$ isopropanol/hexane, $\lambda=210 \mathrm{~nm}$); t_{R} (major) $=11.47 \mathrm{~min}$, t_{R} (minor) $=12.99 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=-17.8\left(\mathrm{c} 1.06, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75$ (dd, $J=2.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=9.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.99(\mathrm{~m}$, $2 \mathrm{H}), 1.81(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.47-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 177.8,154.5,145.6,140.7,136.0,127.6,123.7$, 123.1, 119.2, 111.5, 106.9, 72.9, 39.4, 39.0, 29.9, 27.3, 22.4, 17.0, 14.1; FTIR (NaCl/thin film) 2958, 2931, 1726, 1155, $737 \mathrm{~cm}^{-1}$; HRMS (ESI+) [M-OPiv] ${ }^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}: 227.1430$, found: 227.1426.

($\boldsymbol{R}, \boldsymbol{E}$)-3-Ethyl-1-phenyl-2-heptenyl pivalate ($\mathbf{6 h}$). Prepared according to General Procedure B on a 1.72 mmol scale to give $\mathbf{6 h}$ as a clear oil. The enantiomeric excess was assumed to be 98%, because that is the ee of the allylic alcohol precursor. $[\alpha]_{\mathrm{D}}{ }^{24}=-31.05$ (c $\left.1.13, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.51$ $(\mathrm{d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.08-$ $2.00(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$,
$0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 177.7,146.8,141.4,128.6,127.6,126.5$, 122.7, 72.2, 38.9, 36.1, 30.1, 27.3, 23.9, 22.5, 14.2, 13.5; FTIR (NaCl/thin film) 2962, 2931, 1728, 1151, $697 \mathrm{~cm}^{-1} ;$ HRMS (ESI+) [M] calculated for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2}$: 302.2240, found: 302.2232.

(R, E)-1-(m-Methoxyphenyl)-3-methyl-2-pentenyl pivalate (6i). Prepared according to General Procedure B on a 1.9 mmol scale to give $\mathbf{6 i}(412 \mathrm{mg}, 74 \%)$ as a clear oil. The enantiomeric excess was assumed to be 97%, because that is the ee of the allylic alcohol precursor. $[\alpha]_{\mathrm{D}}{ }^{24}=-41.1\left(\mathrm{c} 1.55, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.94-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=8.3,2.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.46$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=9.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{~d}$, $J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.5$, $159.6,142.8,142.4,129.5,122.0,118.5,112.7,111.9,72.3,55.2,38.8,32.2,27.2,16.9,12.3$; FTIR (NaCl/thin film) 2967, 2361, 1727, 1487, 1279, 1152, $699 \mathrm{~cm}^{-1}$; HRMS (ESI+) [M] ${ }^{+}$ calculated for: $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}: 290.1882$, found: 290.1872 .

($\boldsymbol{R}, \boldsymbol{E}$)-3,5-Dimethyl-1-phenyl-2-hexenyl pivalate ($\mathbf{6 j}$). Prepared according to General Procedure B on a 4.9 mmol scale to give $\mathbf{6 j}(1.31 \mathrm{~g}, 93 \%)$ as a clear oil. The enantiomeric excess was assumed to be 98%, because that is the ee of the allylic alcohol precursor. $[\alpha]_{\mathrm{D}}{ }^{24}=-39.7\left(\mathrm{c} 1.58, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~d}, J=4.4 \mathrm{~Hz}$, $4 \mathrm{H}), 7.28(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{t}, J=7.1$ Hz, 2H), $1.82-1.71$ (m, 4H), 1.22 (s, 9H), 0.84 (d, $J=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.5,4.0 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.7,141.1,140.0,128.6,127.6,126.3,124.8,72.5,49.5$, $39.0,27.3,26.1,22.7,22.3,16.9$; FTIR ($\mathrm{NaCl} /$ thin film) 2956, 2930, $1729,1152,697 \mathrm{~cm}^{-1}$; HRMS (ESI+) [M-OPiv] ${ }^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{19}$: 187.1481, found: 187.1478 .

(R, E)-5-(3,3-Dimethyl-2-
oxiranyl)-1-(m-methoxyphenyl)-3-methyl-2-pentenyl pivalate (6k). This procedure is adapted from a literature procedure. ${ }^{6}$ Pivalate $(E)-6 \mathbf{m}(1.24 \mathrm{~g}, 3.9 \mathrm{mmol}, 1.0$ equiv) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(28 \mathrm{~mL}, 0.14 \mathrm{M})$ and cooled to $0{ }^{\circ} \mathrm{C}$. 3-Chloroperbenzoic acid $(0.82 \mathrm{~g}, 3.9$ mmol, 1.0 equiv) was then added to the solution, which was then stirred at rt for 4 h . To the resulting mixture was added sat. aq. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. The organic layer was then separated, and the aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic fractions were then washed with water (1 x 40 mL), sat. aq. $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$, and sat. aq. $\mathrm{NaCl}(40 \mathrm{~mL})$. The organic layer was then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The resulting residue was purified by silica gel chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give compound $\mathbf{6 k}$ ($911 \mathrm{mg}, 94 \%, 1: 1 \mathrm{dr}$) as a clear oil. The enantiomeric excess of each diastereomer was assumed to be 98%, because that was the ee of compound $(E)-6 \mathbf{m} \cdot[\alpha]_{\mathrm{D}}{ }^{24}=-37.6\left(\mathrm{c} 1.19, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, both diastereomers) $\delta 7.35-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.29-2.25(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.33(\mathrm{dd}, J=10,2 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-2.03(\mathrm{~m}, 8 \mathrm{H}), 1.82(\mathrm{~s}$, $6 \mathrm{H}), 1.65(\mathrm{~s}, 6 \mathrm{H}), 1.57(\mathrm{~s}, 6 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8,141.0,141.0$, $139.5,128.7,127.8,127.8,127.1,126.4,126.3,124.4,124.3,72.6,72.5,64.1,63.9,58.7,58.6$, 39.0, 36.4, 27.3, 27.2, 27.1, 25.0, 24.9, 18.9, 18.9, 17.1, 17.0; FTIR (NaCl/thin film) 2965, 1728, 1152, $698 \mathrm{~cm}^{-1}$; HRMS (EI+) [M-OPiv]+ calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}: 229.1592$, found: 229.1592. Please note that the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are complicated; some peaks of the diastereomers are coincident. Please see attached spectra.

(R, E)-tert-Butyl((4-(3-methoxyphenyl)-4-methyl-6-phenylhex-5-en-1-yl)oxy)dimethylsilane

(61). This procedure is adapted from a literature procedure. ${ }^{6}$ Pivalate $\mathbf{6 k}(0.91 \mathrm{~g}, 2.75 \mathrm{mmol}, 1.0$ equiv) was dissolved in THF ($4.6 \mathrm{~mL}, 0.6 \mathrm{M}$) and cooled to $0^{\circ} \mathrm{C}$. In a separate flask periodic acid ($627 \mathrm{mg}, 2.75 \mathrm{mmol}, 1.0$ equiv) was dissolved in water ($2.8 \mathrm{~mL}, 1.0 \mathrm{M}$), and then added dropwise to the solution of pivalate $\mathbf{6 k}$ and THF. The mixture was then stirred at $0{ }^{\circ} \mathrm{C}$ for an
additional 45 min . Sat. aq. $\mathrm{NaCl}(5 \mathrm{~mL})$ was then added. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined organic fractions were then washed with $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$ and sat. aq. $\mathrm{NaCl}(2 \times 20 \mathrm{~mL})$. The organic layer was then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The resulting residue was purified via silica gel chromatography (10% $\mathrm{Et}_{2} \mathrm{O} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford compound $\mathbf{S 3}\left(460 \mathrm{mg}, 54 \%\right.$). $[\alpha]_{\mathrm{D}}{ }^{24}=-17.3$ (c 1.31, CHCl_{3}): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.75(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.30$ $(\mathrm{m}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dd}, J=9.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.52$ (m, 2H), $2.41-2.34(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 201.9,177.7,140.7,138.5,128.7,127.8,126.3,124.5,72.3,41.9,39.0,31.7,27.3$, 17.2; FTIR (NaCl/thin film) 2972, 1725, 1151, $698 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) [M-OPiv] ${ }^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}$ 187.1117, found: 187.1111.

Compound S3 ($460 \mathrm{mg}, 1.6 \mathrm{mmol}, 1.0$ equiv) was then dissolved in $\mathrm{MeOH}(18 \mathrm{~mL}, 0.09$ M) and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{NaBH}_{4}(60 \mathrm{mg}, 1.0$ equiv) was then added, and the mixture was stirred for an additional hour at $0^{\circ} \mathrm{C}$. Acetone $(3.0 \mathrm{~mL})$ and water $(9 \mathrm{~mL})$ were added, and the mixture was warmed to room temperature. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic fractions were washed with sat. aq. $\mathrm{NaCl}(2 \mathrm{x} 40 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The resulting residue was then purified via silica gel chromatography (20% EtOAc/hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford compound $\mathbf{S 4}\left(336 \mathrm{mg}, 73 \%\right.$) as a clear oil. $[\alpha]_{\mathrm{D}}{ }^{24}=-$ 27.9 (c 0.59, CHCl_{3}): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H})$, $6.45(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J=9.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 1 \mathrm{H})$, $2.16-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.76-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.8,140.9,140.2,128.7,127.7,126.3,124.1,72.6,62.7,39.0,36.1,30.6$, 27.3, 17.0; FTIR (NaCl/thin film) 3360, 2971, 1727, 1153, $698 \mathrm{~cm}^{-1}$; HRMS (ESI+) [M-OPiv]+ calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}$ calculated: 189.1274 found: 189.1267.

Compound S4 ($292 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv) and imidazole ($272 \mathrm{mg}, 4.0 \mathrm{mmol}, 4.0$ equiv) were then dissolved in DMF ($13 \mathrm{~mL}, 0.08 \mathrm{M}$) at room temperature. TBS-Cl ($166 \mathrm{mg}, 1.1$ mmol, 1.1 equiv) was then added to the solution, which was stirred for an additional 24 h at room temperature. Water $(10 \mathrm{~mL})$ was then added. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 15 mL). The combined organic fractions were then washed with water (2 x 40 mL) and sat. aq. $\mathrm{NaCl}(2 \mathrm{x} 40 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The resulting residue was then
purified via silica gel chromatography (column wet-packed with $1: 1 \mathrm{Et}_{3} \mathrm{~N}$:hexanes; then run using $2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes $)$ to afford compound $\mathbf{6 l}(211.4 \mathrm{mg}, 52 \%)$ as a clear oil. The enantiomeric excess was assumed to be 98%, because that was the ee of compound $(E)-6 \mathbf{m} .[\alpha]_{D}{ }^{24}=-17.5$ (c $\left.0.54, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.47$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dd}, J=9.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.11-2.04(\mathrm{~m}, 2 \mathrm{H})$, $1.82(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8,141.2,140.3,128.6,127.6,126.3,123.7,72.6,62.7,39.0$, 35.8, 30.9, 27.3, 26.1, 18.5, 17.1, -5.1 ; ${ }^{29} \mathrm{Si}$ NMR ($119 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.6$; FTIR ($\mathrm{NaCl} /$ thin film) 2955, 2857, 1729, 1151, 835, $697 \mathrm{~cm}^{-1}$; HRMS (ESI $)$ [M-OPiv] ${ }^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{OSi}: 303.2139$ found: 303.2132 .

($R, 2 E$)-3,7-Dimethyl-1-phenyl-2,6-octadienyl pivalate ((E) 6m). Prepared according to General Procedure B on a 3.7 mmol scale to give $(E) \mathbf{- 6 m}(1.09 \mathrm{~g}$, 93%) as a clear oil. The enantiomeric excess was assumed to be 98%, because that is the ee of the allylic alcohol precursor. $[\alpha]_{\mathrm{D}}{ }^{24}=-55.0\left(\mathrm{c} 0.71, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33$ (d, $J=5.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=9.1,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.04(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.01(\mathrm{~m}, 4 \mathrm{H}), 1.82(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H})$, 1.22 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8,141.2,140.4,131.9,128.6,127.6,126.4$, 123.9, 123.7, 72.5, 39.7, 39.0, 27.3, 26.3, 25.9, 17.9, 17.0; FTIR (NaCl/thin film) 2969, 1728, 1278, 1151, $697 \mathrm{~cm}^{-1}$; HRMS (EI+) [M-OPiv] ${ }^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{21}: 212.1565$, found: 212.1572.

($R, 2 Z$)-3,7-Dimethyl-1-phenyl-2,6-octadienyl pivalate ((Z)-6m). Prepared according to General Procedure B on a 3.38 mmol scale to give (Z) $\mathbf{- 6 m}(88.0 \mathrm{mg}, 88 \%$)
as a clear oil. The enantiomeric excess was assumed to be 97%, because that is the ee of the allylic alcohol precursor. $[\alpha]_{\mathrm{D}}{ }^{24}=-45.8\left(\mathrm{c} 1.46, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~d}$, $J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-$ $5.06(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.65$ (s, 3H), $1.60(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 177.8, 141.2, 140.4, 132.2, 128.6, 127.7, 126.5, 124.3, 124.0, 72.4, 39.0, 32.7, 27.3, 26.8, 25.9, 23.7, 17.9; FTIR (NaCl/thin film) $2969,1728,1278,1151,697 \mathrm{~cm}^{-1}$; HRMS (EI+) [M-OPiv] calculated for: $\mathrm{C}_{16} \mathrm{H}_{21}$: 212.1565 , found: 212.1572 .

Preparation of Allylic Alcohols

General Procedure C: Preparation of (R, E)-3-Methyl-1-phenyl-2-hepten-1-ol (6aa) via CBS Reduction

This procedure is adapted from a literature procedure. ${ }^{1}$ (S)-Diphenyl prolinol ($4.81 \mathrm{~g}, 9.5 \mathrm{mmol}$, 2.0 equiv) and methyl boronic acid ($1.25 \mathrm{~g}, 20.9 \mathrm{mmol}$, 2.2 equiv) were dissolved in toluene ($63.3 \mathrm{~mL}, 0.33 \mathrm{M}$). The flask was fitted with a Dean-Stark apparatus, and the mixture was refluxed for 4 h to form the CBS catalyst. The solution was then cooled to room temperature. In a separate oven-dried round-bottomed flask purged with $\mathrm{N}_{2},(E)$-3-methyl-1-phenyl-2-hepten-1one ($\mathbf{S 5}, 1.92 \mathrm{~g}, 9.5 \mathrm{mmol}$, 1.0 equiv) was dissolved in anhydrous THF ($47 \mathrm{~mL}, 0.2 \mathrm{M}$) with $4 \AA$ molecular sieves and stirred at rt for 2 h . The cooled solution of CBS catalyst was then added to the solution of (E)-3-methyl-1-phenyl-2-hepten-1-one ($\mathbf{S 5}$) and THF. The resulting mixture was cooled to $-48{ }^{\circ} \mathrm{C} . \mathrm{BH}_{3} \cdot \mathrm{THF}(1.0 \mathrm{M}, 28.5 \mathrm{~mL}, 28.5 \mathrm{mmol}, 3.0$ equiv) was then added dropwise over 20 min using a syringe pump. The mixture was stirred at $-48^{\circ} \mathrm{C}$ for an additional 1.5 h . $\mathrm{MeOH}(25 \mathrm{~mL})$ was then added at $-48^{\circ} \mathrm{C}$, and the mixture was then allowed to warm to room temperature. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and then washed with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(2$ x 75 mL), sat. aq. $\mathrm{NaHCO}_{3}(2 \times 75 \mathrm{~mL})$, and sat. aq. $\mathrm{NaCl}(2 \times 75 \mathrm{~mL})$. The organic layer was then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The resulting residue was purified by silica gel chromatography ($15 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to give compound $\mathbf{6 a a}(1.82 \mathrm{~g}, 94 \%$) as pale yellow oil.

The enantiomeric excess was determined to be 98% by chiral HPLC analysis (CHIRALPAK IB, $1.0 \mathrm{~mL} / \mathrm{min}, 0.8 \% i-\operatorname{PrOH} /$ hexanes, $\lambda=210 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=33.62 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=29.57 \mathrm{~min}$. $[\alpha]_{\mathrm{D}}{ }^{24}=-95.2\left(\mathrm{c} 1.01, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{dd}, J=8.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45-5.39(\mathrm{~m}, 1 \mathrm{H}), 2.07$ $-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.23(\mathrm{~m}, 2 \mathrm{H})$, $0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.5,139.5,128.6,127.4,127.3,126.0$, 70.9, 39.5, 30.0, 22.6, 16.9, 14.2; FTIR (NaCl/thin film) 3325, 2956, 2858, 1451, 1004, $698 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (ESI+) $[\mathrm{M}-\mathrm{OH}]^{+}$calculated for: $\mathrm{C}_{14} \mathrm{H}_{19}: 187.1481$, found: 187.1479.

($\boldsymbol{R}, \boldsymbol{E}$)-3-Methyl-1-(o-tolyl)-2-hepten-1-ol (6bb). Prepared according to General Procedure C on a 3.84 mmol scale to give $\mathbf{6 b b}(602 \mathrm{mg}, 72 \%$) as a pale yellow oil. The enantiomeric excess was determined to be 94% by chiral HPLC analysis (CHIRALPAK IB, 1.0 $\mathrm{mL} / \mathrm{min}, 0.8 \%$ isopropanol/hexane, $\lambda=210 \mathrm{~nm}) ; t_{\mathrm{R}}($ major $)=26.13 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=19.54 \mathrm{~min}$. $[\alpha]_{\mathrm{D}}{ }^{24}=-79.9\left(\mathrm{c} 1.10, \mathrm{CHCl}_{3}\right){ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.07(\mathrm{~m}, 2 \mathrm{H}), 5.61(\mathrm{dd}, J=8.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=8.9,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.29(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-1.33(\mathrm{~m}, 2 \mathrm{H})$, $1.33-1.22(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.5,136.4$, 135.7, 130.4, 127.4, 126.2, 125.8, 125.0, 73.7, 42.9, 28.6, 26.5, 23.3, 20.1, 14.3; FTIR (NaCl/thin film) $3319,2929,2858,1461,1002,752 \mathrm{~cm}^{-1}$; HRMS (EI+) $[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}$: 218.1671, found: 218.1669.

($\boldsymbol{R}, \boldsymbol{E}$)-1-(\boldsymbol{m}-Dimethyl, t-butyl-silyl phenol)-3-methyl-2-hepten-1-ol
(6cc). Prepared according to General Procedure C on a 1.59 mmol scale to give $\mathbf{6 c c}(270 \mathrm{mg}$, 51%) as a clear oil. The enantiomeric excess was determined to be 96% by chial HPLC analysis (CHIRALPAK IB, $1.0 \mathrm{~mL} / \mathrm{min}, ~ 0.5 \%$ isopropanol/hexane, $\lambda=210 \mathrm{~nm}$); t_{R} (major) $=20.34 \mathrm{~min}$, t_{R} (minor) $=16.12 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=-79.8\left(\mathrm{c} 1.25, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dd}, J=8.7,3.4$
$\mathrm{Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.45-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~h}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.19(\mathrm{~s}$, $6 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.0,146.1,139.4,129.6,127.3,119.0,118.9,117.8,70.7$, 39.5, 30.1, 25.9, 22.6, 18.4, 16.9, 14.2, -4.2 ; ${ }^{29} \mathrm{Si} \mathrm{NMR}\left(119 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.6$; FTIR ($\mathrm{NaCl} /$ thin film) 2930, 2860, 1602, 1482, 1274, $957,839 \mathrm{~cm}^{-1}$; HRMS (EI+) [M] calculated for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}: 318.2379$, found: 318.2369 .

\boldsymbol{p}-[(E)-1-hydroxy-3-methyl-2-heptenyl]benzonitrile (6dd). The following procedure was adapted from a literature report. ${ }^{7} p$-(Cyano)phenyl $\operatorname{MgBr}(1.4 \mathrm{M}, 8.0$ $\mathrm{mL}, 11.2 \mathrm{mmol}, 1.0$ equiv) was prepared as described by Knochel. With the solution of Grignard reagent at $0{ }^{\circ} \mathrm{C},(E)$-3-methylhept-2-enal $(1.41 \mathrm{~g}, 11.2 \mathrm{mmol}, 1.0$ equiv) was added via syringe. The mixture was allowed to warm to room temperature, and stirred for an additional 3 h . The reaction was then quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} x 3)$. The combined organic fractions were washed with sat. aq. $\mathrm{NaCl}(30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The resulting residue was purified by silica gel chromatography $\left(10 \% \quad \mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $) \quad$ to afford $p-[(E)$-1-hydroxy-3-methyl-2heptenyl]benzonitrile (\pm)-6dd ($730 \mathrm{mg}, \mathbf{2 8 \%}$) as a yellow oil. The enantiomers of ($\mathbf{\pm}$)-6dd were then separated using preparatory SFC with a chiral stationary phase to give 6dd in $>99 \%$ ee. The enantiomeric excess was determined to be $>99 \%$ by chiral SFC analysis (CHIRALPAK IF, 2.5 $\mathrm{mL} / \mathrm{min}, 5 \% \mathrm{MeOH}$ in $\left.\mathrm{CO}_{2}, \lambda=210 \mathrm{~nm}\right) ; \mathrm{t}_{\mathrm{R}}$ (major) $=1.97 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=2.47 \mathrm{~min}$. The absolute configuration of $\mathbf{6 d d}$ was not determined. $[\alpha]_{\mathrm{D}}{ }^{24}=-150.2$ (c 1.29, CHCl_{3}): ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.53(\mathrm{dd}, J=8.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-$ $5.25(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.45-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.22(\mathrm{~m}$, $2 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.4,141.0,132.3,126.5,126.2$, $119.0,110.8,70.0,39.3,29.8,22.4,16.8,14.0$; FTIR (NaCl/thin film) 3428, 2929, 2228, 1607, 013, 820, $566 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}: 230.1539$, found: 230.1535.

(R, E)-3-Methyl-1-[\boldsymbol{p}-(trifluoromethyl)phenyl]-2-hepten-1-ol (6ee).
Prepared according to General Procedure C on a 4.76 mmol scale to give $\mathbf{6 e e}(800 \mathrm{mg}, 62 \%)$ as a clear oil. The enantiomeric excess was determined to be 96% by chiral HPLC analysis (CHIRALPAK 1C, $1.0 \mathrm{~mL} / \mathrm{min}$, 1% isopropanol/hexane, $\lambda=210 \mathrm{~nm}$); $t_{\mathrm{R}}($ major $)=9.92 \mathrm{~min}$, t_{R} (minor) $=12.86 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{24}=-79.8\left(\mathrm{c} 1.28, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.49 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 5.54 (dd, $J=8.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=8.8,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.08-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.79(\mathrm{dd}, J=3.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-1.36(\mathrm{~m}$, $2 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 148.3,140.5$, $129.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=32.4 \mathrm{~Hz}\right), 126.5,126.1,125.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 124.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=272.8 \mathrm{~Hz}\right), 70.2$, 39.4, 30.0, 22.5, 16.9, 14.1; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.4$; FTIR ($\mathrm{NaCl} /$ thin film) 3314, 2932, 2861, 1619, 1326, 1127, 1068, 824, $605 \mathrm{~cm}^{-1}$; HRMS (ESI+) $[\mathrm{M}-\mathrm{OH}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~F}_{3}: 255.1355$, found: 255.1350 .

($\boldsymbol{R}, \boldsymbol{E}$)-3-Methyl-1-(3-pyridyl)-2-hepten-1-ol ($\mathbf{6 f f}$). The following procedure was adapted from a literature report. ${ }^{7}$ 3-Pyridyl $\mathrm{MgBr}(1.5 \mathrm{M}, 9.0 \mathrm{~mL}, 14.0 \mathrm{mmol}, 1.5$ equiv) was prepared as described by Knochel. With the solution of Grignard reagent at $0{ }^{\circ} \mathrm{C},(E)-3-$ methylhept-2-enal ($1.18 \mathrm{~g}, 9.35 \mathrm{mmol}, 1.0$ equiv) was added via syringe. The mixture was allowed to warm to room temperature, and stirred for an additional 3 h . The reaction was then quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \mathrm{x}$ 3). The combined organic fractions were washed with sat. aq. $\mathrm{NaCl}(30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The resulting residue was purified by silica gel chromatography (50\% $\mathrm{Et}_{2} \mathrm{O} /$ hexanes $)$ to afford (E)-3-methyl-1-(3-pyridyl)-2-hepten-1-ol (\pm)- $\mathbf{6 f f}(917 \mathrm{mg}, 51 \%)$ as a yellow oil. The enantiomers of (\pm) - $\mathbf{6 f f}$ were then separated using preparatory SFC with a chiral stationary phase to give 6ff. The absolute configuration of $\mathbf{6 f f}$ was not determined. The enantiomeric excess was determined to be 97% by chiral HPLC analysis using a chiral stationary phase (CHIRALPAK 1B, $0.8 \mathrm{~mL} / \mathrm{min}, 3 \%$ isopropanol/hexane, $\lambda=254 \mathrm{~nm}$); t_{R} (major)=51.38 $\min , t_{\mathrm{R}}($ minor $)=59.71 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{24}=82.2\left(\mathrm{c} 2.11, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.63-$
$8.55(\mathrm{~m}, 1 \mathrm{H}), 8.50(\mathrm{dd}, J=4.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 1 \mathrm{H}), 5.53$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=8.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H})$, $1.46-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.20(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.3,147.8,140.1,140.0,133.9,126.7,123.6,68.5,39.4,29.9,22.5,16.9,14.1 ;$ FTIR ($\mathrm{NaCl} /$ thin film) 3211, 2928, 1423, 1018, $713 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}: 206.1539$, found: 206.1537.

($\boldsymbol{R}, \boldsymbol{E}$)-1-(1-Benzofuran-5-yl)-3-methyl-2-hepten-1-ol (6gg). Prepared according to General Procedure C on a 6.76 mmol scale to give $\mathbf{6 g g}(1.27 \mathrm{~g}, 77 \%)$ as a pale yellow oil. The enantiomeric excess was determined to be 99% by chiral HPLC analysis (CHIRALPACK IC, $1.0 \mathrm{~mL} / \mathrm{min}$, 1% isopropanol/hexane, $\lambda=210 \mathrm{~nm}$); t_{R} (major)=52.02 min $t_{\mathrm{R}}($ minor $)=48.44 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{24}=-109.2\left(\mathrm{c} 2.55, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{dd}, J$ $=4.8,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.58(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dd}, 1 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.80(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.46-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 154.4,145.5,139.2,139.1,127.64,127.62,122.7,118.5,111.5$, $106.9,71.0,39.5,30.0,22.6,16.8,14.2$; FTIR (NaCl/thin film) 3325, 2928, 2858, 1467, 1262, 1032, $735 \mathrm{~cm}^{-1}$; HRMS (ESI +) $[\mathrm{M}-\mathrm{OH}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}: 227.1430$, found: 227.1427.

($\boldsymbol{R}, \boldsymbol{E}$)-3-Ethyl-1-phenyl-2-hepten-1-ol ($\mathbf{6 h h}$). Prepared according to General Procedure C on a 2.13 mmol scale to give $\mathbf{6 h h}(398 \mathrm{mg}, 86 \%)$ as a pale yellow oil. The enantiomeric excess was determined to be 98% by chiral HPLC analysis (CHIRALPAK IB, 1.0 $\mathrm{mL} / \mathrm{min}, 0.8 \%$ isopropanol/hexane, $\lambda=210 \mathrm{~nm}$); $t_{\mathrm{R}}($ major $)=19.10 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=16.86 \mathrm{~min}$; $[\alpha]_{\mathrm{D}}{ }^{24}=-76.1\left(\mathrm{c} 1.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{dd}, J=8.3,1.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.35 (dd, $J=8.5,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=9.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.45 \mathrm{z}-1.35(\mathrm{~m}$, $2 \mathrm{H}), 1.35-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 145.3,144.5,128.6,127.4,126.6,126.1,70.4,36.2,30.3,23.9,22.7,14.2,13.8 ;$ FTIR $\left(\mathrm{NaCl} /\right.$ thin film) $3330,2961,2872,1432,1006,689 \mathrm{~cm}^{-1} ;$ HRMS (EI +) $[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}: 218.1671$, found: 218.1678.

(R,E)-1-(m-Methoxyphenyl)-3-methyl-2-penten-1-ol (6ii). Prepared according to General Procedure C on a 2.3 mmol scale to give $\mathbf{6 i i}(437.1 \mathrm{mg}, 92 \%)$ as a pale yellow oil. The enantiomeric excess was determined to be 97% by chiral HPLC analysis (CHIRALPAK IB, $1.0 \mathrm{~mL} / \mathrm{min}, 1 \%$ isopropanol/hexane, $\lambda=210 \mathrm{~nm}$); t_{R} (major) $=46.15 \mathrm{~min}$, $t_{\mathrm{R}}($ minor $)=32.69 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{24}=-76.1\left(\mathrm{c} 1.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.22$ $(\mathrm{m}, 1 \mathrm{H}), 6.99-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.77(\mathrm{~m}, 1 \mathrm{H}), 5.47(\mathrm{dd}, J=8.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dq}, J=$ $8.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{q}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.76(\mathrm{~d}, J=3.5$ $\mathrm{Hz}, 1 \mathrm{H}$), $1.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.0,146.2,141.0,129.7$, 126.1, 118.4, 112.9, 111.6, 70.8, 55.4, 32.4, 16.9, 12.5; FTIR (NaCl/thin film) 3330, 2961, 2872, 1432, 1006, $689 \mathrm{~cm}^{-1}$; HRMS (EI+) [M] calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}: 206.1307$, found: 206.1305.

($\boldsymbol{R}, \boldsymbol{E}$)-3,5-Dimethyl-1-phenyl-2-hexen-1-ol (6jj). Prepared via General Procedure C on a 8.43 mmol scale to give $\mathbf{6 j j}(1.54 \mathrm{~g}, 91 \%)$ as a clear oil. The enantiomeric excess was determined to be 98% by chiral HPLC analysis (CHIRALPAK IB $1 \mathrm{~mL} / \mathrm{min}, 0.8 \%$ isopropanol/hexane, $\lambda=210 \mathrm{~nm}) ; t_{\mathrm{R}}($ major $)=22.74 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=19.41 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{24}=-97.1(\mathrm{c}$ $\left.1.67, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{dd}$, $J=8.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.44-5.38(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.72(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{~d}, J=$ 6.5 Hz, 3H), $0.82(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.4,138.3,128.8,128.6$, $127.4,126.0,70.8,49.5,26.2,22.8,22.5,16.8$; FTIR (NaCl/thin film) 3320, 2953, 1451, 1006, $698 \mathrm{~cm}^{-1} ;$ HRMS (EI+) [M] calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}: 204.1514$, found: 204.1504.

($\boldsymbol{R}, 2 E$)-3,7-Dimethyl-1-phenyl-2,6-octadien-1-ol (\boldsymbol{E})-6mm). Prepared according to General Procedure C on a 4.1 mmol scale to give (E)-6mm ($923 \mathrm{mg}, 98 \%$) as a clear oil. The enantiomeric excess was determined to be 98% by chiral HPLC analysis (CHIRALPAK IB, $1.0 \mathrm{~mL} / \mathrm{min}, 0.8 \%$ isopropanol $/$ hexane, $\lambda=210 \mathrm{~nm}$); t_{R} (major) $=24.83 \mathrm{~min}$, $t_{\mathrm{R}}($ minor $)=23.84 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{24}=-89.4$ (c 2.23, CHCl_{3}); The spectral data for this compound matches that previously reported in the literature. ${ }^{8}$

($R, 2 Z$)-3,7-Dimethyl-1-phenyl-2,6-octadien-1-ol ((Z) - $\mathbf{6 m m}$). Prepared according to General Procedure C on a 4.4 mmol scale to give $(Z)-6 \mathrm{~mm}(780 \mathrm{mg}, 78 \%)$ as a clear oil. The enantiomeric excess was determined to be 97% by chiral HPLC analysis (CHIRALPAK IA, $1.0 \mathrm{~mL} / \mathrm{min}, 0.8 \%$ isopropanol/hexane, $\lambda=230 \mathrm{~nm}$); t_{R} (major) $=27.87 \mathrm{~min}$, t_{R} (minor) $=29.326 \mathrm{~min}$. The spectral data for this compound matches that previously reported in the literature. ${ }^{8}$

Preparation of Enone Precursors

The synthesis of enone precursors generally was through the following 3-step synthesis.

The cuprate addition to form $\mathbf{S 7}$ was performed according to literature procedure. ${ }^{9}$
The formation of Weinreb amide $\mathbf{S 8}$ was performed according to literature procedure. ${ }^{10}$
(E)-1-(N-Methylmethoxyamino)-3-methyl-2-hepten-1-one $\mathbf{S 8}$ was added to an oven-dried round-bottomed flask, and dissolved in anhydrous THF (0.5 M). The reaction was then cooled to $0^{\circ} \mathrm{C}$, and PhMgBr (1.5 equiv) was added dropwise to the solution. The mixture was allowed to warm to room temperature, and stirred for an additional 3 h . The reaction was then quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the aqueous layer was extracted with EtOAc. The combined organic fractions were washed with sat. aq. NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The resulting residue was purified via column chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to afford (E)-3-methyl-1-phenyl-2-hepten-1-one (S5). The spectral data for this compound matched that reported in the literature.

References

1. Morrill, C.; Beutner, G. L.; Grubbs, R. H. J. Org. Chem. 2006, 71, 7813.
2. Shrestha, S.; Bhattarai, B. R.; Lee, K.-H.; Cho, H. Bioorg. Med. Chem. 2007, 15, 6535.
3. Potter, B.; Edelstein, E. K.; Morken, J. P. Organic Letters 2016, 18, 3286.
4. García Ruano, J. L.; Martín-Castro, A. M.; Tato, F.; Torrente, E.; Poveda, A. M. Chem. Eur. J. 2010, 16, 6317.
5. Ogura, K.; Fujita, M.; Inaba, T.; Takahashi, K.; Iida, H. Tetrahedron Lett. 1983, 24, 503.
6. Guzman-Martinez, A.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10634.
7. Krasovskiy, A.; Knochel, P. Angew. Chem., Int. Ed. 2004, 43, 3333.
8. Okamoto, K.; Hayashi, T. Organic Letters 2007, 9, 5067.
9. Anderson, R. J.; Corbin, V. L.; Cotterrell, G.; Cox, G. R.; Henrick, C. A.; Schaub, F.; Siddall, J. B. J. Am. Chem. Soc. 1975, 97, 1197.
10. Shang, J.; Han, Z.; Li, Y.; Wang, Z.; Ding, K. Chem. Commun. 2012, 48, 5172.

Tहッt—
$\begin{aligned} & 89 \% 2= \\ & 68.52= \\ & 6022\end{aligned}$
$6012=$
$\begin{aligned} & 060 \mathrm{r} \\ & 9 S^{2} \mathrm{H} \\ & 12 \mathrm{E}+ \\ & \end{aligned}$

$$
\begin{aligned}
& \text { a+- }
\end{aligned}
$$

$\stackrel{E 6.5}{66^{\circ}>}$

 CDCl_{3}
\searrow

> 2い一
> $\begin{aligned} & 85 \mathrm{ER}= \\ & 26^{2} 52= \\ & 65^{2} 92=\end{aligned}$
> $\begin{aligned} & \text { PS'Tr- } \\ & 2 S W-\end{aligned}$
> $02 \mathrm{ZS}-$

> 29'est-
> เร' 29 T -


```
0\varepsilon%<
89%2-
28.22=
88't
* %
E6.905-
960015
ST'6TT=
OS.ESt-
```


$$
\begin{aligned}
& \text { 品品 } \\
& \text { " }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 66'67t- } \\
& \text { st } 65 \mathrm{t} \text { - }
\end{aligned}
$$

2云

18' ε
${ }^{\prime} 9=$

c8'8-

[^0]

cers-
ตมี
8M心


```
    l
        69't%-
    58.55-
```


$\varepsilon 6 \cdot \varepsilon \tau$
$08^{\circ} 9 \mathrm{I}$
6 「ことー
St＇LZ－
1く 62 —
$\begin{aligned} & 28.8 \varepsilon \\ & 02.6 \varepsilon\end{aligned}=$

It $て ゙ Z-$

$\stackrel{\circ}{\circ} 0 \downarrow \mathrm{I}>$

SSCLI

$\begin{aligned} & 92^{\circ} \mathrm{S}= \\ & 82^{\circ} \mathrm{S}\end{aligned}=$

$\stackrel{6 \mathrm{bb}}{600 \mathrm{MHz}, \mathrm{CDCl}_{3}}$
$\xrightarrow[\varepsilon \nabla^{\circ} 9]{L \nabla^{\circ}}=$
$6 \tau^{\circ} \angle=$
$\angle Z^{\circ} \angle=$

$\underset{\varepsilon \forall 6 \varepsilon}{\tau 0.6 \varepsilon}>$
$0 \varepsilon^{\circ} 0<-$

λ
 CDCl_{3}

(
$\varepsilon と^{2} \neq-$
$2 I \cdot \hbar T$
86.9 L
I + 8 8 I
$8 \varepsilon \cdot 2 Z=$
$88^{\circ} \mathrm{SZ}$
$7 \varepsilon \cdot \angle Z=$
$\varepsilon 6 \cdot 62$
$\begin{aligned} & 00.6 \varepsilon \\ & 8 \varepsilon .6 \varepsilon\end{aligned}=$
てと＇てく
50.8 LI
$\mathrm{L} \mathrm{\varepsilon} .6 \mathrm{IT}$
Lع． 6 IT
عと，
しがとてI
LS．6ZI

88．SSI
$\angle 9^{\circ} \angle \angle I-$

6e
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$
べべさ $85^{\circ} \mathrm{C}=$

(10)

0					
＋					
T 1	1	T	T	1	1
－10	－20	－30	－40	－50	－60

$$
\begin{aligned}
& { }^{19} \mathrm{~F} \mathrm{NMR} \\
& 376 \mathrm{MHz}, \mathrm{CDCl}_{3} \\
& \text { OPiv }
\end{aligned}
$$

it＇bi－
so 2 L —
9とてz—
くでくて—
と8＊6て—
$\begin{aligned} & 20.6 \varepsilon \\ & 5 \varepsilon .6 \varepsilon\end{aligned}=$

$6 \varepsilon^{\circ} \mathrm{S}-\mathrm{S}$
で・く
カ・ร

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

でTー
$28^{\circ} \mathrm{I}$
$28^{\circ} \mathrm{I}$
$20^{\circ} 2$
$70^{\circ} 2$
$50^{\circ} 2-$
$90^{\circ} 2$

$\underset{400 \mathrm{MHz}, \mathrm{CDCl}_{3}}{6 \mathrm{~m}}$

 さを゚くて

20＇6\＆－
$8+6 t-$
$6 \sigma^{\prime}$ ZL—
$58 . \hbar 2 \mathrm{I}$ 乙
28．92I —

8

$\varepsilon 0 \circ \angle I$
$1 I^{\circ} \angle I$
88．81
26．81

$\varepsilon て ゙ \angle z-ノ$
てど $\angle z$
$6 \varepsilon \cdot 9 \varepsilon-$
006ε－

$\begin{aligned} & 09.8 \mathrm{~s} \\ & 59.8 \mathrm{~s}\end{aligned}>$
 ع6．६9＞
 80 เ๐
 $5 S^{\circ} 2 L$ $8 S^{\circ} 2 L$

S4
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

工 $86^{\circ} 0$
$\stackrel{n}{6}$

6s.0\&——
$80^{\circ} 9 \varepsilon$ -

$20 \circ$
$\angle 8 . \angle I$
$\angle 8.5 Z$
$08.92 \sim$
てど \llcorner ス
$66.8 \varepsilon 工$
$99.6 \varepsilon \sim$
$\rightarrow s \cdot z L-$

$$
\begin{aligned}
& \begin{array}{l}
18 \mathrm{EE} \\
0 Z^{2}+1
\end{array}> \\
& \begin{array}{l}
962 z= \\
68.62= \\
9201- \\
1298-
\end{array} \\
& \text { +106- }
\end{aligned}
$$

8'

$98 \% \mathrm{zt}$
B89I-
く.2\&
cose-
isss-
A....
$65 \cdot 1 \mathrm{tt}=$
58916?
$60: 12:-$
1962t-

$400 \mathrm{MHz}_{1} \mathrm{CDCl}_{3}$
Fโt'L
F $66 \cdot \varepsilon$

Compound 8, racemic

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	21.076	4819547	114091	50.036	57.126
2	24.984	4812611	85626	49.964	42.874
Total		9632158	199717	100.000	100.000

Compound 8, 94\% ee

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	20.119	448026	12139	3.043	4.229
2	23.113	14275387	274912	96.957	95.771
Total		14723413	287051	100.000	100.000

Compound 9, racemic

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	38.452	10827966	80146	50.276	56.763
2	45.486	10708951	61050	49.724	43.237
Total		21536917	141196	100.000	100.000

Compound 9, 90\% ee
mAU

Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	39.093	1294517	11782	5.156	8.625
2	43.774	23813212	124819	94.844	91.375
Total		25107729	136601	100.000	100.000

Compound 10, racemic

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	21.035	13304169	487298	49.915	52.348
2	23.701	13349360	443582	50.085	47.652
Total		26653529	930881	100.000	100.000

Compound 10, 94% ee

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	21.480	1076266	42140	3.038	3.824
2	24.027	34355565	1059798	96.962	96.176
Total		35431830	1101939	100.000	100.000

Compound 11, racemic

Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	25.885	2547603	39950	50.655	54.898
2	29.856	2481675	32821	49.345	45.102
Total		5029278	72771	100.000	100.000

Compound 11, 93\% ee

Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	25.785	746634	14550	3.248	5.208
2	28.554	22242277	264852	96.752	94.792
Total		22988911	279402	100.000	100.000

Compound 12, racemic

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	18.999		0.3994	124.04628	5.17638	50.5931
2	220.174		0.4141	121.13783	4.87557	49.4069
Tota				245.18410	10.05195	

Compound 12, 94% ee

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	19.114	MM	0.3064	373.69662	20.32554	2.7947
2	20.216	MM	0.4179	1.29978 e 4	518.40771	97.2053

Compound 13, racemic

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	11.991	MM	0.1791	1.13556 e 4	1056.96252	49.6468
2	12.966	MM	0.1928	1.15172 e 4	995.67889	50.3532
Total	s :			2.28729 e 4	2052.64142	

Compound 13, 88\% ee

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	12.059	MM	0.1775	1322.05725	124.10520	5.4894
2	13.009	MM	0.2154	2.27616e4	1761.35901	94.5106

Compound 14, racemic

Signal 3: DAD1 E, Sig=280,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	15.645		0.2342	235.20174	16.73850	48.9418
2	17.726	MM	0.2636	245.37256	15.51406	51.0582
Totals :				480.57430	32.25256	

Compound 14, 81% ee

Signal 3: DAD1 E, Sig=280, 4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	Area $\%$
1	15.714	MM	0.3276	1.25690 e 4	639.48132	90.7519
2	18.059	MM	0.3457	1280.85156	61.75790	9.2481

Compound 15, racemic

Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	11.122	299350	14583	49.727	53.032
2	12.791	302638	12916	50.273	46.968
Total		601988	27499	100.000	100.000

Compound 15, 92% ee

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	10.623	494765	29019	4.245	5.675
2	12.040	11159283	482281	95.755	94.325
Total		11654048	511299	100.000	100.000

Compound 16, racemic

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	8.669	1179231	94071	50.182	52.444
2	9.837	1170671	85304	49.818	47.556
Total		2349903	179375	100.000	100.000

Compound 16, 91% ee

Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	8.669	674026	55319	4.357	5.050
2	9.767	14797410	1040042	95.643	94.950
Total		15471436	1095361	100.000	100.000

Compound 17, racemic

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	42.910	4486510	69917	49.505	51.658
2	46.447	4576267	65429	50.495	48.342
Total		9062777	135346	100.000	100.000

Compound 17, 88\% ee

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	40.849	26586715	360699	94.130	93.030
2	45.271	1658039	27024	5.870	6.970
Total		28244754	387724	100.000	100.000

Compound 18, racemic

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	22.952	2079164	20953	49.931	66.691
2	38.406	2084897	10465	50.069	33.309
Total		4164061	31418	100.000	100.000

Compound 18, 88\% ee

Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	22.558	809116	9988	6.153	14.383
2	33.199	12341591	59457	93.847	85.617
Total		13150707	69445	100.000	100.000

Compound 19, racemic

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	25.547	4895877	59690	49.982	52.776
2	29.011	4899446	53411	50.018	47.224
Total		9795323	113101	100.000	100.000

Compound 19, 89\% ee

Detector A Ch2 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	25.166	2094816	40632	5.535	6.301
2	28.118	35754422	604196	94.465	93.699
Total		37849238	644828	100.000	100.000

Compound 20, racemic

Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	19.632	49359832	1924806	49.693	52.126
2	21.158	49970465	1767807	50.307	47.874
Total		99330297	3692613	100.000	100.000

Compound 20, 86\% ee

rumauvil
Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	20.608	2633810	113975	7.253	8.838
2	22.224	33679787	1175606	92.747	91.162
Total		36313597	1289581	100.000	100.000

Compound 21, racemic

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	36.194	854860	12706	50.869	54.331
2	39.724	825650	10680	49.131	45.669
Total		1680510	23386	100.000	100.000

Compound 21, 82% ee

Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	35.598	2481988	43774	8.802	12.360
2	38.043	25716832	310393	91.198	87.640
Total		28198820	354167	100.000	100.000

Compound 22, racemic

Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	11.747	3371342	212472	97.531	97.910
2	15.313	85339	4536	2.469	2.090
Total		3456681	217008	100.000	100.000

Compound 22, 95% ee

Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	11.747	3371342	212472	97.531	97.910
2	15.313	85339	4536	2.469	2.090
Total		3456681	217008	100.000	100.000

Compound 23, racemic

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	34.076	44757399	669031	49.909	55.164
2	37.265	44920381	543783	50.091	44.836
Total		89677780	1212814	100.000	100.000

Compound 23, 93\% ee

Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	34.075	1228232	21966	3.288	4.591
2	36.594	36124070	456463	96.712	95.409
Total		37352302	478429	100.000	100.000

Compound 24, racemic

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	22.780	8997207	198863	49.799	56.034
2	32.820	9069729	156033	50.201	43.966
Total		18066936	354896	100.000	100.000

Compound 24, 93\% ee mAU

Detector A Ch1 220nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	23.163	381764	7705	3.753	4.316
2	32.692	9789515	170823	96.247	95.684
Total		10171279	178528	100.000	100.000

Compound 25, racemic

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	7.165	2737041	219557	50.187	54.963
2	8.295	2716668	179908	49.813	45.037
Total		5453709	399465	100.000	100.000

Compound 25, 93% ee

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	6.904	334768	30827	3.640	4.573
2	7.864	8861804	643275	96.360	95.427
Total		9196573	674102	100.000	100.000

Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	55.151	1984057	23289	51.489	57.701
2	58.915	1869299	17072	48.511	42.299
Total		3853356	40362	100.000	100.000

Compound 26, 68\% ee

Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	55.130	5586461	68871	17.876	23.403
2	58.442	25665149	225405	82.124	76.597
Total		31251610	294276	100.000	100.000

Compound 27, racemic
mAU

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	22.272	3914722	71720	50.896	63.679
2	26.020	3776910	40907	49.104	36.321
Total		7691632	112627	100.000	100.000

Compound 27, 89\% ee

Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	22.566	854102	15960	5.711	10.027
2	26.114	14100842	143218	94.289	89.973
Total		14954944	159179	100.000	100.000

Compound 28, racemic

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	24.238	12493360	238716	50.011	58.363
2	28.959	12487747	170307	49.989	41.637
Total		24981107	409023	100.000	100.000

Compound 28, 91% ee

Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	19.989	1024179	30881	4.480	7.298
2	23.376	21834510	392246	95.520	92.702
Total		22858689	423127	100.000	100.000

Compound 28, co-injection of racemic and enantioenriched material

Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	20.863	8605032	203562	32.422	41.591
2	24.872	17935748	285870	67.578	58.409
Total		26540780	489431	100.000	100.000

Compound 29, racemic
mAU

Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	10.985	4036278	250999	24.036	28.679
2	12.462	4369575	245807	26.021	28.086
3	15.590	4346749	208055	25.885	23.772
4	17.687	4040175	170338	24.059	19.463
Total		16792778	875200	100.000	100.000

Compound 29, 81\% ee

Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	11.432	427501	26041	4.209	5.319
2	12.961	4491964	242351	44.225	49.498
3	16.347	421556	21115	4.150	4.312
4	18.458	4816061	200108	47.416	40.871
Total		10157082	489614	100.000	100.000

Compound 30, racemic

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	42.852	1890935	20471	50.054	53.872
2	47.008	1886834	17528	49.946	46.128
Total		3777769	37999	100.000	100.000

Compound 30, 89% ee

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	43.277	1878169	23616	5.540	8.548
2	46.402	32025864	252676	94.460	91.452
Total		33904033	276292	100.000	100.000

Compund 31, racemic

Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	21.986	1152996	23791	49.956	55.674
2	25.263	1155025	18942	50.044	44.326
Total		2308021	42733	100.000	100.000

Compound (S)-31, 93\% ee

Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	23.157	731843	16501	3.689	5.915
2	26.312	19105750	262455	96.311	94.085
Total		19837593	278956	100.000	100.000

Compund 31, racemic

Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	21.986	1152996	23791	49.956	55.674
2	25.263	1155025	18942	50.044	44.326
Total		2308021	42733	100.000	100.000

Compund (R)-31, 84% ee

Compound 6d, racemic
mAU
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	4.393	105147	15528	49.078	51.156
2	5.028	109096	14827	50.922	48.844
Total		214243	30355	100.000	100.000

Compound 6d, 98\% ee

Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	4.378	937441	142512	98.946	99.069
2	5.283	9989	1340	1.054	0.931
Total		947430	143852	100.000	100.000

Compound 6 e , racemic

Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	15.034	1143200	43216	50.678	54.626
2	17.038	1112611	35897	49.322	45.374
Total		2255811	79112	100.000	100.000

Compound 6e, 97% ee

Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	14.469	8246809	311990	98.462	98.479
2	16.639	128838	4819	1.538	1.521
Total		8375647	316809	100.000	100.000

Compound 6f, racemic

Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	7.717	2393776	207135	50.452	57.192
2	10.729	2350902	155037	49.548	42.808
Total		4744678	362173	100.000	100.000

Compound 6f, 96% ee

Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	7.819	132363	12136	1.878	2.672
2	10.903	6914746	442105	98.122	97.328
Total		7047109	454242	100.000	100.000

Compound 6 g , racemic

Detector A Ch2 220nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	11.537	21254878	1133589	55.370	52.593
2	13.063	17132145	1021809	44.630	47.407
Total		38387023	2155398	100.000	100.000

Compound 6g, 98\% ee

Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	11.470	47294336	2372929	99.190	98.792
2	12.988	386123	29005	0.810	1.208
Total		47680459	2401934	100.000	100.000

Compound 6aa, racemic

Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	29.525	16089450	463563	49.894	53.726
2	34.059	16158044	399258	50.106	46.274
Total		32247494	862821	100.000	100.000

Compound 6aa, 98% ee

Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	29.567	199914	7224	0.537	0.804
2	33.624	37056909	891302	99.463	99.196
Total		37256823	898525	100.000	100.000

Compound 6bb, racemic
mAU

Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	20.020	1840078	79830	51.055	57.615
2	26.962	1764052	58727	48.945	42.385
Total		3604130	138556	100.000	100.000

Compound 6bb, 94\% ee
mAU

Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	19.538	394913	20531	2.935	4.436
2	26.125	13060249	442299	97.065	95.564
Total		13455162	462830	100.000	100.000

Compound 6cc, racemic

Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	16.068	872208	36832	49.089	51.493
2	21.479	904570	34696	50.911	48.507
Total		1776778	71528	100.000	100.000

Compound 6cc, 98\% ee

Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	16.123	64591	3650	0.831	1.240
2	20.342	7705108	290709	99.169	98.760
Total		7769699	294359	100.000	100.000

Compound 6dd, racemic

Compound 6dd, >99\% ee

Compound 6ee, racemic

Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	10.362	938626	69546	50.404	56.893
2	13.609	923586	52693	49.596	43.107
Total		1862212	122239	100.000	100.000

Compound 6ee, 96% ee

Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	9.918	2479272	195920	98.133	98.519
2	12.858	47159	2945	1.867	1.481
Total		2526432	198865	100.000	100.000

Compound 6ff, racemic

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	51.298	520059	4672	49.302	49.672
2	58.092	534794	4734	50.698	50.328
Total		1054853	9406	100.000	100.000

Compound 6ff, 97\% ee
mV

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	51.382	865648	7381	98.645	98.613
2	59.707	11891	104	1.355	1.387
Total		877540	7485	100.000	100.000

Compound 6gg, racemic
mAU

Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	47.761	2160552	37222	50.410	52.835
2	51.522	2125394	33227	49.590	47.165
Total		4285946	70449	100.000	100.000

Compound 6gg, 99\% ee

Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	48.439	20571	414	0.163	0.206
2	52.021	12622370	200325	99.837	99.794
Total		12642941	200738	100.000	100.000

Compound 6hh, racemic

Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	17.870	2158660	112969	49.053	52.602
2	20.371	2241986	101793	50.947	47.398
Total		4400647	214762	100.000	100.000

Compound 6hh, 98% ee

Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	16.854	38294	2073	0.819	0.931
2	19.099	4639023	220595	99.181	99.069
Total		4677317	222667	100.000	100.000

Compound 6ii, racemic

Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	33.174	5158905	133379	50.198	58.649
2	47.008	5118196	94041	49.802	41.351
Total		10277101	227420	100.000	100.000

Compound 6ii, 97\% ee

Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	32.689	225704	5805	1.545	2.186
2	46.147	14384665	259750	98.455	97.814
Total		14610369	265555	100.000	100.000

Compound 6jj, racemic
mAU

Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	18.523	2519318	129696	50.030	53.995
2	21.601	2516337	110503	49.970	46.005
Total		5035655	240199	100.000	100.000

Compound 6jj, 98\% ee

Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	19.407	51562	2794	0.706	0.935
2	22.748	7252745	296151	99.294	99.065
Total		7304307	298945	100.000	100.000

Compound (E)-6mm, racemic

Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	23.116	2360439	91725	50.551	51.151
2	24.394	2308992	87597	49.449	48.849
Total		4669430	179322	100.000	100.000

Compound (E)-6mm, 98\% ee
mAU

Detector A Ch2 210nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	23.840	149095	7218	0.623	0.805
2	24.826	23775412	889683	99.377	99.195
Total		23924507	896900	100.000	100.000

Compound (Z)-6mm, racemic

Detector A Ch2 230nm

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	27.069	746733	20459	49.506	50.884
2	28.441	761639	19748	50.494	49.116
Total		1508373	40208	100.000	100.000

Compound (Z)-6mm, 97% ee
mAU

Detector A Ch2 230nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	27.871	1821813	46039	98.403	98.313
2	29.326	29568	790	1.597	1.687
Total		1851381	46829	100.000	100.000

[^0]:

