Improved design and optimization for separating azeotropes with heavy component as distillate through energy-saving extractive distillation by varying pressure

Xinqiang YOU^a, Jinglian GU^b, Changjun PENG^a, Weifeng Shen^{b*}, Honglai LIU^{a*}

^a State Key laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China

^b School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China

^{*} E-mail addresses: <u>shenweifeng@cqu.edu.cn</u>(W.F. Shen), <u>hlliu@ecust.edu.cn</u>(H.L. Liu)

1 **Process utility**

Name	Pressure /MPa	Temperature /K	Price / \$/GJ
LP steam	0.5	433	7.72
MP steam	1.0	457	8.22
HP steam	1.5	527	9.88
Cooling water	0.1	298	0.278

Table S1. Process utility

Pressure / psi	Up to 50	100	200	300
Pressure / atm	Up to 3.45	6.9	13.8	20.7
F _p	1.00	1.05	1.15	1.20

* Douglas, J. M. Conceptual Design of Chemical Processes; McGraw-Hill: New York, 1988.

Table S3. Recovery,	entrainer makeu	p and OF for	design 1, desi	gn 16, and design A.

	-		1		-
	Mole f	raction		makeup	OF
	D1 stream	D2 stream	Recovery	entrainer kmol/h	kJ/kmol
	Design 1 with D1=271.2 and D2=271.2 kmol/h				
Acetone	0.0010	0.9950	0.9994		
Methanol	0.9950	0.0002	0.9994	2.4	50165.9
water	0.0040	0.0048			
	Design 16 with D1=271 and D2=270.8 kmol/h				
Acetone	0.001306	0.995739	0.9987		
Methanol	0.995001	0.001310	0.9987	1.8	33165.3
water	0.003694	0.002951			
	Design A with D1=271 and D2=270.8 kmol/h				
Acetone	0.000415	0.996449	0.9994		
Methanol	0.995718	0.000593	0.9994	1.8	36093.2
water	0.003867	0.002958			

2 Capital cost formulas

The diameter of a distillation column is calculated using the tray sizing tool in Aspen Plus.

The height of a distillation column is calculated from the equation:

$$H = \frac{N}{e_{\rm T}} \times 0.6096 \qquad N \text{ tray stage except condenser and reboiler, } e_{\rm T} \text{ tray efficiency is taken as 85\%}$$

for calculating TAC.

The heat transfer areas of the condenser and reboiler are calculated using following equations:

$$A = \frac{Q}{u \times \Delta T}$$
 u: overall heat transfer coefficient(kW·K⁻¹·m⁻²), u=0.852 for condenser, 0.568

for reboiler.

The capital costs of a distillation column are estimated by the following equations:

Shell
$$\cos t = \left(\frac{CEPCI}{100}\right) \times 902.8 \times D^{1.066} H^{0.802} \times (2.18 + F_C) = 226886D^{1.066} H^{0.802}$$
 Unit of D and H: m
 $Tray \cos t = \left(\frac{CEPCI}{100}\right) \times 93.1 \times D^{1.55} HF_C = 1426.0D^{1.55} H$ Unit of D and H: m
 $HeatExchanger \cos t = \left(\frac{CEPCI}{100}\right) \times 457.4 \times A^{0.65} \times (2.29 + F_C) = 9367.8A^{0.65}$ Unit of A: m²

3 Binary parameter of uniquac model

Component i	Acetone	Acetone	Methanol
Component j	methanol	chlorobenzene	chlorobenzene
Aij	0	-3.2083	-0.2317
Aji	0	3.9310	1.7617
Bij	-225.1533	1102.0709	149.5426
Bji	52.7705	-1388.0554	-1255.4807

Table S2. Binary parameters of unquac model for acetone-methanol with chlorobenzene system