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Supporting Information 

Comparison between classical and plasmonic matching 

In classical antenna theory, when a terminating impedance (��) is applied to a receiving antenna 

(e.g. a dipole antenna) the current flowing through the equivalent circuit is1: 

� = �
�� + �� 

(1) 

where � and �� are the voltage and impedance of the equivalent Thévenin generator describing 

the antenna. We can expand the impedances into their real (resistance, R) and imaginary 

(reactance, X) parts as �� = �� + 	
� and �� = �� + 	
�. Here �� accounts from all the power 

losses from the antenna system and can be thus further decomposed into radiation resistance �� 
(related to the reradiated power from the antenna) and loss resistance �� (related to the actual 

dissipation into heat in the antenna). The matching condition refers to the case when the power 

(
�) absorbed by the terminating load (��) is maximized. This power can be written as: 


� = ������� + �� + ���� + �
� + 
��� 
(2) 

and it is maximized (antenna matched) when the resistances are matched, �� = �� + �� and the 

reactances cancel out, 
� = −
�. While the latter condition sets the system antenna/terminating 

impedance in resonance, the former is what constitutes the matching between antenna and 

terminal resistances allowing for the transferring of the maximum possible amount of power 

from the antenna to the load (��). Generally, both 
� and �� belong to a transmission line and 

they can be tuned to reach the matching condition.  



In the case of plasmonic nanoantennas investigated in this work, the idea is to reach the matching 

condition without introducing any external terminating impedance (�� = 0). In particular, by 

exploiting both the fundamental plasmon resonance and the temperature dependence damping 

factor one can reach the temperature-matched condition within the nanoantennas itself. In fact by 

targeting heat maximization within the nanoantenna, one can modify Eq. (2) as:  


� = ���������� + ������� + �
��� 
(3) 

where ����� is the antenna resistance that includes the temperature effect given by Γ������� and 


� represents the reactance of the antenna which is embedded in a background medium (vacuum, 

air etc.). Furthermore, by modelling the nanoantenna as a nanocircuit,2-4 at the plasmonic 

resonance �� = 1 √� ⁄ , the quantity 
� = 1 � ⁄ − �� = 0	which indeed minimizes the total 

reactance. Finally, the second requirement which needs to be fulfilled in order to reach the 

matching condition is all about the resistances. In this work we show that, by modifying the 

temperature, it is possible to achieve �� = ����� thus allowing maximum dissipation into the 

temperature-matched nanoantenna. 

 

Derivative of absorption and scattering efficiencies with respect to absorption damping 

At resonance the derivatives are: 

#$%#Γ% =
1
$& '

()�*�+,� - (Γ���� −)�Γ%�(Γ���� +)�Γ%�. 

#$�#Γ% =
1
$& '

2(�)�*�+,� - Γ�����(Γ���� +)�Γ%�. 

 

(4) 



Electron-phonon scattering term dependence on temperature 

The complete non-linear expression of the electron-phonon scattering term can be derived assuming 

free electrons without Umklapp collisions and a single Debye model phonon spectrum as5-6: 

 
(5) 

Where θD = 170 K is the gold Debye temperature and Γ0 = 0.015 eV, value that well agrees with 

McKay and Rayne7 who estimated a τ0 = 1/ Γ0 of ≈30 fs, corresponding  to Γ0 ≈ 0.02 eV. We can 

explain this modest discrepancy through the use, in our work, of thin gold films8 and to a larger Debye 

temperature (185K) employed by McKay and Rayne in their calculations that partially offsets the 

increase of Γ0. By considering the case where  we obtain , where the first order 

Taylor term centred at zero is adopted. This leads to: 

 
(6) 

This result clearly shows that in high temperature regime . Importantly, this relation is 

coherent with the linear dependence of metals resistivity with temperature9. In physical terms for 

 all phonon modes are occupied and thus a linear model can be derived10-11
: 

 
(7) 

where λ is a metal dependent constant. 
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Absorption and scattering efficiency vs. damping using the complete Au dielectric function 

 

Figure S1. Absorption (red) and scattering (blue) efficiencies from numerical simulations depending on the 

absorption damping coefficient Γa for Au rods (Drude-Lorentz model) in air (n = 1) with height H = 1 µm and radius 

of base R = 10, 15, 20 nm respectively at their resonant wavelength: 4.35 µm, 3.52 µm and 3.17 µm. At Γa = 0, 

absorption is given from the residual effect of interband transitions on the imaginary part of the Au dielectric 

function.  

 

Dependence of absorption density on damping: H-AR and L-AR cases 

 

Figure S2. Absorption density as obtained from numerical simulations depending on the absorption damping 

coefficient Γa for experimental (a) H-AR and (b) L-AR antennas in air using the Drude-Lorentz model for Au 

permittivity. In (a) the shadow area represents the situation where an increase of temperature implies a decrease of 



the absorption density. The dashed line highlights the threshold value Γ%0 for the H-AR antenna as defined in Figure 

3, corresponding to about 150 K. Vice-versa, in( b) the absorption density increases with the temperature for all 

considered range of Γa.  

 

Dependence of field enhancement on temperature: H-AR and L-AR cases 

 

Figure S3. Field enhancement calculated at 1 nm above the edge as function of the temperature for (a) H-AR and (b) 

L-AR antennas. The surrounding medium is air. The temperature dependent Drude-Lorentz model for Au 

permittivity was employed for these calculations. A temperature (T) increase always leads to lower field 

enhancements as long as the imaginary part of the permittivity increases with T. 

 

Dependence of reflectivity on temperature cycling 

 



Figure S4. Example of reflectivity measurements (minimum of reflectivity) obtained by cycling the temperature 

starting from room temperature (~ 25 °C). The black arrows indicates how the temperature was tuned: from room 

temperature down to negative temperature up to 200 °C. Importantly, no evident change in the reflectivity was 

found. In this example a low aspect ratio set of antennas was employed. 
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