Supporting Information

Rh-MnO Interface Sites Formed by Atomic Layer Deposition Promote Syngas Conversion

to Higher Oxygenates

Nuoya Yang^a, Jong Suk Yoo^b, Julia Schumann^{b,c}, Pallavi Bothra^{b,c}, Joseph A. Singh^d, Eduardo Valle^b, Frank Abild-Pedersen^{b,c}, Jens K. Nørskov^{b,c}, Stacey F. Bent^{b*}

^aDepartment of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California, 94305, United States

^bDepartment of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California, 94305, United States

^cSLAC National Accelerator Laboratory, SUNCAT Center for Interface Science and Catalysis, 2575 Sand Hill Road, Menlo Park, California, 94025, United States

^dDepartment of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305, United States

* Corresponding Author: sbent@stanford.edu

1. Syngas conversion activity and selectivity of Rh/MnO/SiO₂ catalysts with different Rh loading.

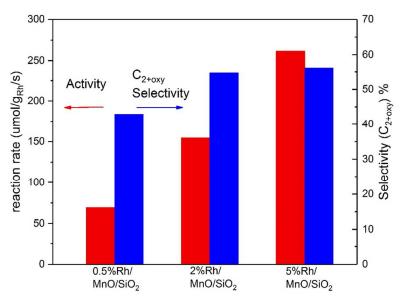


Figure S1. Activity (red) and C₂₊oxy selectivity (blue) of 0.5wt%Rh/MnO/SiO₂, 2wt%Rh/MnO/SiO₂, and 5wt%Rh/MnO/SiO₂.

Table S1. CO chemisorption a	ble S1. CO chemisorption and dispersion of Rh/SiO ₂ with 1% and 5% Rh loading				
Sample	CO chemisorption	Dispersion (%)			
	(µmol/g _{cat})				
1%Rh/SiO ₂	44.3	45.6			
5%Rh/SiO ₂	178.6	36.8			

The dispersion of 1%Rh/SiO₂ is higher than that of 5%Rh/SiO₂, as expected, indicating smaller Rh nanoparticle size on 1%Rh/SiO₂. However, the total amount of Rh surface atoms on 1%Rh/SiO₂ is only 25% of that on 5%Rh/SiO₂, based on the CO chemisorption values. Therefore, even with the lower dispersion, 5%Rh/SiO₂ still has a larger total Rh surface area, suggesting a higher contact area with the support. Since the size distribution of Rh nanoparticles remains similar on both the SiO₂ or MnO/SiO₂ supports, we conclude that the contact area between Rh and the MnO/SiO₂ support increases with higher Rh loading.

- 2. Additional data from DFT calculation
- 2.1 Structural illustration of MnO promoted Rh surface models used in DFT calculation

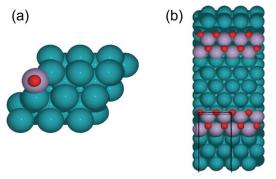


Figure S2. Surface model of MnO promoted Rh (111) (Rh: green, Mn: purple, O: red) (a) Rh/MnO (monomer) ; (b) Rh/MnO (stripe)

2.2 Free energy diagram of syngas conversion towards methane, acetaldehyde and ethanol on unpromoted and MnO promoted Rh (111) surface

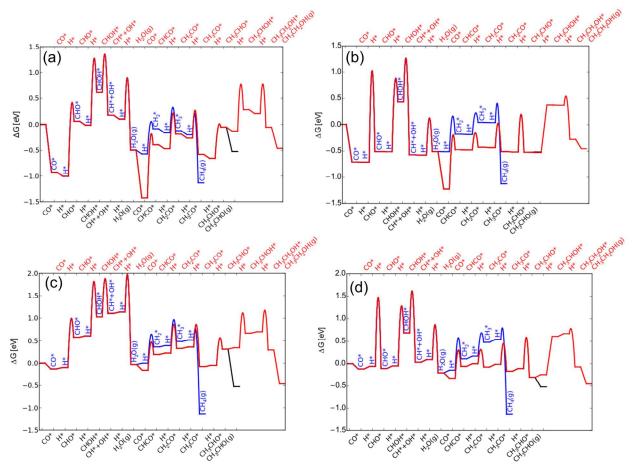


Figure S3. Free energy diagrams at 525 K on (a) Rh (111) and (b) Rh/MnO (monomer) without lateral adsorbate interaction and (c) Rh (111) and (d) Rh/MnO (monomer) with lateral adsorbate

interactions at steady state coverage. Red, blue and black color designate ethanol, methane and acetaldehyde formation pathways respectively. Reaction conditions are: P_{H2} = 13.33, P_{CO} = 6.66. All other free energies are calculated at standard states (1 bar pressure). (a) and (c) are adapted with permission from Yang, N.; Medford, A. J.; Liu, X.; Studt, F.; Bligaard, T.; Bent, S. F.; Nørskov, J. K. J. Am. Chem. Soc. 2016, 138 (11), 3705–3714. Copyright (2016) American Chemical Society.

3. Comparison between ALD and incipient wetness impregnation deposited MnO/Rh/SiO₂

Besides using ALD to deposit MnO film, we also synthesized $MnO_2/Rh/SiO_2$ by depositing MnO_2 on calcined Rh/SiO_2 using incipient wetness impregnation followed by calcination in air. This catalyst is designated as IMP-MnO₂/Rh/SiO₂. (MnO₂ should be reduced to MnO during the reduction step prior to syngas conversion.) The MnO_2 deposited by this impregnation method most likely exists as particles. The table below compares $MnO/Rh/SiO_2$ (i.e. Rh particles with MnO film) and IMP-MnO₂/Rh/SiO₂ (i.e. Rh particles with MnO particle). These two samples show similar activity, but ALD-MnO/ Rh/SiO₂ is more selective to $C_{2+}oxy$. It is difficult to quantify how much Mn is interacting with Rh in either case, but higher $C_{2+}oxy$ selectivity from the sample could suggest that a more evenly distributed MnO film leads to better contact with Rh and therefore improves selectivity more than MnO particles.

	CO conversion rate (µmol/gcat/s)	S(CH ₄) %	S(C ₂₊ HC) %	S(AcH)%	S(EtOH)%	S(total C ₂₊ oxy) %
MnO/Rh/SiO ₂	9.1	30	28.7	35	4.2	40.5
IMP- MnO ₂ /Rh/SiO ₂ *	7.9	41	33	17.8	6.2	24

Table S2. Syngas conversion activity and selectivity of ALD deposited $MnO/Rh/SiO_2$ and $MnO_2/Rh/SiO_2$ prepared by incipient wetness impregnation.

*Mn/Rh atomic ratio = 1:5 in the impregnation sample.