Supporting Information

Co₃O₄ nanowires on flexible carbon fabric as a binder free electrode for all solid state symmetric supercapacitor

Promita Howli^{1#}, Swati Das², Samrat Sarkar², Madhupriya Samanta², Karamjyoti Panigrahi²,

Nirmalya Sankar Das^{2\$} and Kalyan Kumar Chattopadhyay^{1,2*}

¹Department of Physics, Jadavpur University, Kolkata-700032, India

²School of Materials Science and Nanotechnology, Jadavpur University, Kolkata-700032,

India

[#]Present Adress - Department of Physics, Prabhu Jagatbandhu College, Jhorhat, Andul, Howrah- 711302

^{\$}Present Adress - Department of Basic Science and Humanities, Techno India - Batanagar,

Kolkata 700141, India.

*email address: kalyan_chattopadhyay@yahoo.com, Tel.: +91 33 2413 8917;

Fax: +91 33 2414 6007

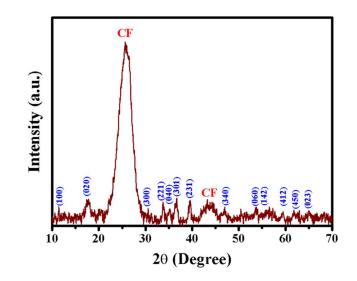


Figure S1: XRD pattern of the Cobalt-hydroxide-carbonate on carbon fabric.

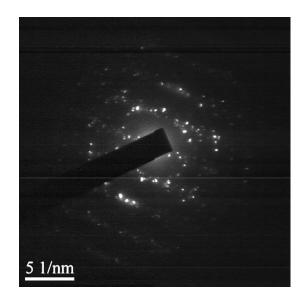


Figure S2: SAED pattern of the Cobalt-hydroxide-carbonate, clearly indicate the polycrystalline nature.

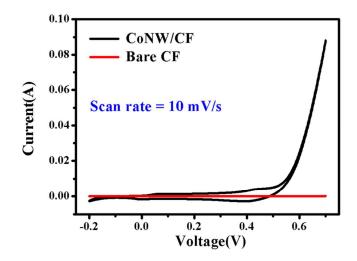


Figure S3: Cyclic Voltammetry curve of CoNW/CF electrode and bare carbon fabric at scan rate 10 mV/sec.

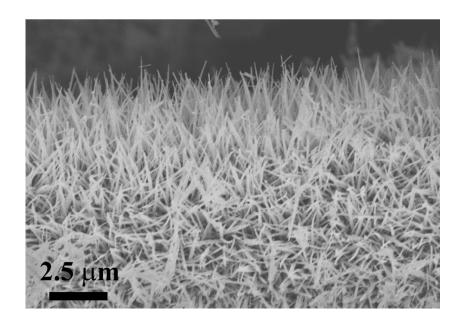


Figure S4: FESEM image of CoNW/CF electrode after 2000 cycles.

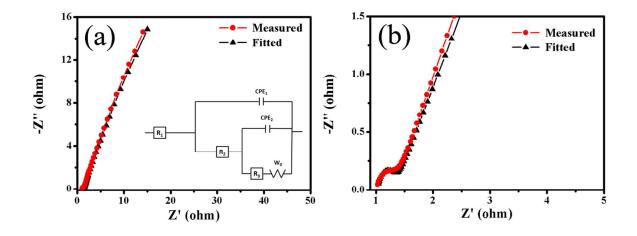


Figure S5: (a) Nyquist plot of CoNW/CF electrode in three electrode system with 3M KOH aqueous electrolyte with fitted curve. Inset is the electrical equivalent circuit used to fit the experimental data of CoNW/CF electrode. (b) Semicircle at the high frequency region.

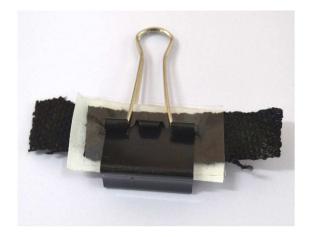


Figure S6: Digital image of the SSC device made of by two CoNW/CF electrodes, separated with PVA/KOH gel electrolyte and filter paper. Photograph courtesy of 'Promita Howli'. Copyright 2017.

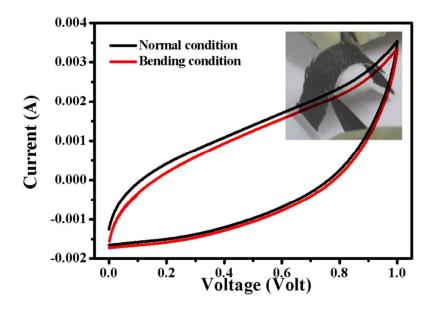


Figure S7: Cyclic voltammetry curve of SSC device at normal condition and bending condition at scan rate 50 mV/s.

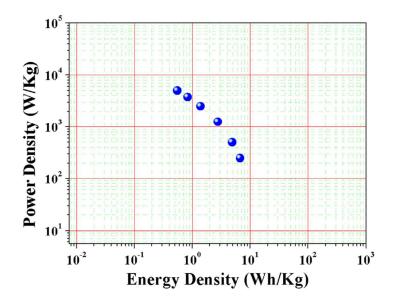


Figure S8: Gravimetric ragone plot of the SSC device.

Formulae and calculations:

Calculation of Volumetric capacitance of SSC device:

 $C_V = (I x \Delta t) / (v x \Delta V)$ (in mF cm⁻³) (when I is in mA)

v (in cm³) is the effective volume of SSC device.

Volumetric (E_V, P_V) energy and power densities of SSC:

$$E_V = C_V x (\Delta V)^2 / 7.2$$
 (in mWh cm⁻³)

 $P_V = E_V x \ 3600 \ / \ \Delta t$ (in mW cm⁻³)

In all the calculations, ΔV and Δt are in volt and second respectively.

Gravimetric (E_s, P_s) energy and power densities of SSC:

$$E_{\rm S} = C_{\rm S} x (\Delta V)^2 / 7.2 \quad (\text{in Wh kg}^{-1})$$

 $P_{\rm S} = E_{\rm S} \, x \, 3600 \, / \, \Delta t \qquad ({\rm in W \ kg^{-1}})$

Where
$$C_S = (I \times \Delta t) / (m \times \Delta V)$$
 (in F g⁻¹) (when I is in mA and m is in mg)

is gravimetric capacitance of SSC device.