Supporting Information

Tracking reactive water and hydrogen-bonding networks in photosynthetic oxygen evolution

*Bridgette A. Barry, Udita Brahmachari, and Zhanjun Guo

Author affiliations: School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Biosciences,

Georgia Institute of Technology, Atlanta, GA 30332

*Corresponding author: Bridgette A. Barry, Department of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332-0400, bridgette.barry@chemistry.gatech.edu

Table S1: Summary of assignments in the 3200-2000 cm⁻¹ region of the S₂-minus-S₁ RIFT-IR spectrum

Reference	PSII preparation*	Temperature, pH	Position	¹⁸ O- shift	Assignment
Noguchi ¹ , 2002	Synechococcus elongatus	283 K, pH 6.0	3000 cm ⁻¹	N.D. ^a	Proton polarizability band, S ₂ State
Barry ² , 2013	Spinach	263 and 283 K, pH 7.5	2880 cm ⁻¹	N.D.	Protonated water cluster, S ₂ state
Barry ³ , 2013	Spinach	263 K, pH 7.5	2880 cm ⁻¹	N.D.	Protonated water cluster, S ₂ state
Noguchi ⁴ , 2014	T. elongatus, Triswashed (inactive in oxygen evolution)	250 K, pH 6.5	"Broad positive feature around 2800 cm ⁻¹ "	N.D.	Protonated histidine in a putative Y_Z -minus- Y_Z spectrum, but see ref; ⁷ proton polarizability band
	T. elongatus	N.S. ^b	"Around 3000 cm ⁻¹ "	No	S ₂ state
	Spinach	N.S.	"Around 3000 cm ⁻¹ "	N.D.	S ₂ state
Debus ⁵ , 2014	Synechocystis sp. PCC 6803	273 K, pH 6.0	"Centered at 3000 cm ⁻¹ "	No	Proton polarizability band, S ₂ state
Noguchi ⁶ , 2016	Spinach	283 K, pH 6.0	"Broad positive feature at 3200– 2500 cm ⁻¹ "	N.D.	OH bond of hydrogen bonded water, S2 state
Barry ⁷ , 2016a	Spinach	190 K, pH 6.0 and 7.5	2900/2740 cm ⁻¹ , NaCl sensitive	Yes	Protonated water cluster, S ₂ state
Barry ⁸ , 2016b	Spinach	263 and 283 K, pH 7.5	2830 cm ⁻¹ (at both temperatures)	Yes	Protonated water cluster, S ₂ state
Noguchi ⁹ , 2017	Spinach	283 K, pH 6.0	Around 2900 cm ⁻¹ (positive) and 2700 cm ⁻¹ (negative)	N.D.	Protonated histidine, S ₂ state

^{*}Preparation used as isolated, unless noted ^a Not determined; ^bNot specified

References

- 1. Noguchi, T.; Sugiura M. FTIR Detection of Water Reactions during the Flash-induced S-state Cycle of the Photosynthetic Water-oxidizing Complex. *Biochemistry* **2002**; *41*, 15706-15712.
- 2. Polander, B. C.; Barry, B. A. Detection of an Intermediary, Protonated Water Cluster in Photosynthetic Oxygen Evolution. *Proc. Natl. Acad. Sci. USA* **2013**, *110*, 10634-10639.
- 3. Polander, B. C.; Barry, B. A. Calcium, Strontium, and Protein Dynamics During the S₂ to S₃ Transition in the Photosynthetic Oxygen-Evolving Cycle. *J. Phys. Chem. Lett.* **2013**, *4*, 3356-3362.
- 4. Nakamura, S.; Nagao, R.; Takahashi, R.; Noguchi, T. Fourier Transform Infrared Detection of a Polarizable Proton Trapped between Photooxidized Tyrosine Yz and a Coupled Histidine in Photosystem II: Relevance to the Proton Transfer Mechanism of Water Oxidation. *Biochemistry* **2014**, *53*, 3131-3144.
- 5. Debus, R. J. Evidence from FTIR Difference Spectroscopy That D1-Asp61 Influences the Water Reactions of the Oxygen-Evolving Mn4cao5 Cluster of Photosystem II. *Biochemistry* **2014**, *53*, 2941-2955.
- 6. Nakamura, S.; Ota, K.; Shibuya, Y.; Noguchi, T. Role of a Water Network around the Mn₄CaO₅ Cluster in Photosynthetic Water Oxidation: A Fourier Transform Infrared Spectroscopy and Quantum Mechanics/Molecular Mechanics Calculation Study. *Biochemistry* **2016**, *55*, 597-607.
- 7. Guo, Z.; Barry, B. A. Cryogenic Trapping and Isotope Editing Identify a Protonated Water Cluster as an Intermediate in the Photosynthetic Oxygen-Evolving Reaction. *J. Phys. Chem. B* **2016**, *120*, 8794-8808.
- 8. Brahmachari U.; Barry, B. A. Dynamics of Proton Transfer to Internal Water during the Photosynthetic Oxygen-evolving Cycle. *J. Phys. Chem. B* **2016**, 120: 11464-11473.
- 9. Nakamura, S.; Noguchi, T. Infrared Determination of the Protonation State of a Key Histidine Residue in the Photosynthetic Water Oxidizing Center. *J. Am. Chem. Soc.* **2017**, DOI: 10.1021/jacs.7b04924.