Supporting information

Multicolor tunable luminescence based on Tb³⁺/Eu³⁺ doping through a facile hydrothermal route

Chao Wang,^{*,†,#} Ting Zhou,^{†,#} Jing Jiang,[†] Huiyuan Geng,[†] Zhanglei Ning,[‡] Xin Lai,[‡] Jian Bi,[‡] and Daojiang Gao[‡]

[†] Clean Energy Materials and Engineering Center, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Microelectronics and Solid-state Electronics, University of Electronic Science and Technology of China, Chengdu 611731, China

[‡] College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China

* cwang@uestc.edu.cn

Figure S1. PL excitation (left) and emission (right) spectra of β -NaGdF₄: 5 mol% Eu³⁺ (A) and β -NaGdF₄: 5 mol% Tb³⁺ (B) samples. The excitation spectra (Figure S1, left) are obtained by monitoring the emissions at 614 nm (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition of Eu³⁺) and 545 nm (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ transition

of Tb³⁺). Hereinto, the broad bands at 200–230 nm (centered at ~215 nm) are ascribed to the overlapping of low-spin (LS) inter-configurational $4f^8 \rightarrow 4f^75d^1$ transitions of Eu³⁺, Tb³⁺ and ${}^8S_{7/2} \rightarrow {}^6G_J$ of Gd³⁺ ions. The weak peaks in the range of 240–260 nm are due to ${}^8S_{7/2} \rightarrow {}^6D_J$ transitions of Gd³⁺ ions, whereas the sharp excitation peaks with a maxima at 271 nm is attributed to the typical ${}^8S_{7/2} \rightarrow {}^6I_J$ transition of Gd³⁺ ions. The emission spectra show the typical emissions of Eu³⁺ ions at 614 nm and 590 nm (Figure S1 (A), right) and characteristic emissions of Tb³⁺ ions at 488 nm, 545 nm, 585 nm and 620 nm (Figure S1 (B), right).

Figure S2. PL emission spectra of β -NaGdF₄: *x* mol% Eu³⁺ (*x*=2, 5, 10 and 15) samples. With increasing dopant concentration of Eu³⁺ from 2 mol% to 5 mol%, enhanced red emission is obtained. While further increase the Eu³⁺ doping concentration from 5 mol% to 15 mol%, the red emission nearly stay the same.

Figure S3. PL emission spectra of β -NaGdF₄: *y* mol% Tb³⁺ (*y*=2, 5, 10 and 15) samples. With increasing dopant concentration of Tb³⁺ from 2 mol% to 15 mol%, enhanced green and blue emissions are obtained.