Supporting information for

Contact effect of ReS₂/metal interface

Jae Young Park^{1,‡}, Hang-Eun Joe^{1,‡}, Hyong Seo Yoon^{1,‡}, SangHyuk Yoo¹, Taekyeong Kim²,

Keonwook Kang¹, Byung-Kwon Min¹, and Seong Chan Jun^{1,*}

¹Department of Mechanical Engineering, Yonsei University, Seoul 120-749, Republic of

Korea

²Department of Physics, Hankuk University of Foreign Studies, Yongin 449-791, Republic of

Korea

E-mail: scj@yonsei.ac.kr

*Correspondence and requests for materials should be addressed to S.C.J. (email: scj@yonsei.ac.kr) [‡]These authors contributed equally to this article.

S-1. Fabrication method

FET devices with ReS_2 channels and several different metal contacts were prepared to estimate the current rectifying performance. First, the ReS_2 flakes were exfoliated and transferred to a SiO₂/Si substrate. The SiO₂/Si substrate consists of a p-type Si wafer with thermally-grown SiO₂ surfaces. The thickness of ReS_2 was estimated via AFM profile and the optical color in the optical microscope image. Patterned Al and Pt electrodes with a thickness of 50 nm were fabricated by electron beam lithography (EBL), electron-beam evaporation, and the lift-off process. The transfer method was used to attach graphene to ReS_2 with a PDMS stamp. The device performance was measured by modulating the source/drain and source/gate voltage at room temperature using a Keithley 2400 source meter.

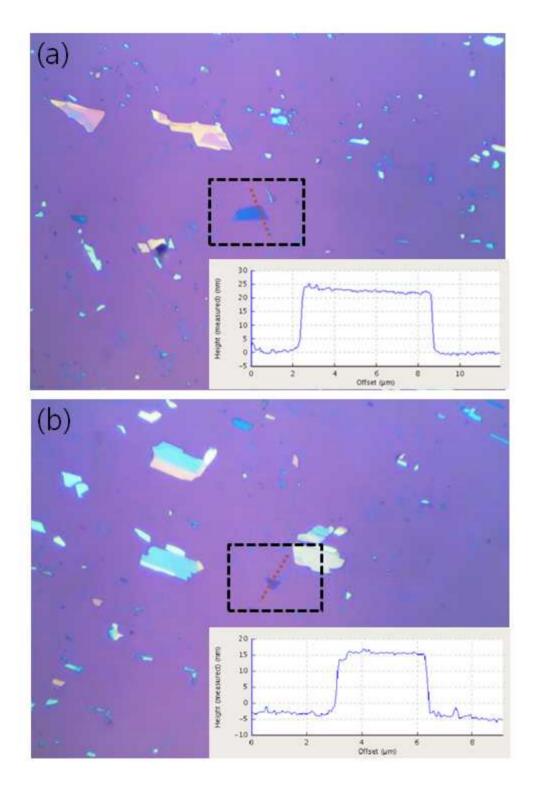


Figure. S1 Thickness of two ReS_2 flakes measured from AFM. (a) 20~25nm thickness (b) 15nm thickness.

S-2. DFT calculation

Methods

Ab initio calculations of electron affinity χ in ReS₂ are conducted using VASP (*Vienna ab initio simulation package*) ¹⁻⁴. Structural and electronic properties are calculated using GGA-PBE (Perdew-Burke-Ernzerhof) functional with PAW (Projector Augmented-Wave) potentials ⁵⁻⁸. A cutoff energy for the basis set is extend to 500 eV for throughout all calculations, and convergence criteria of 10^{-5} eV is used for self-consistency. The atomic force criteria of 0.01 eV/Å is used during geometry optimizations by the conjugate gradient method. A 2×2 supercell of monolayer ReS₂ (1L) is constructed with 4 rhenium (Re) atoms and 8 sulfur (S) atoms. K-points for the Brillouin-zone sampling is 8×8×1 with Gamma (Γ) point centered. In Figure S, two-layer (2L) and three-layer (3L) structures are ordered in rhombohedral (ABC) staking ⁹. A vacuum spacing of 16 Å perpendicular to the layer is fixed irrespective of the number of layers.

Results

Direct bandgap E_{gap} and electron affinity χ of 1L is obtained as 1.42 eV and 4.32 eV, respectively. Similar value of bandgap was reported in other papers ¹⁰⁻¹² and experiment value is 1.55 eV from absorption spectroscopy ¹⁰. In Table S1, as the number of layers increases, the bandgap E_{gap} is monotonically decreased, while electron affinity χ is nearly constant.

	1L	2L	3L	
$E_{\rm gap}~({\rm eV})$	1.42	1.31	1.26	
χ (eV)	4.32	4.30	4.32	

Table S1. Electronic properties of ReS₂: Bandgap E_{gap} and Electron affinity χ

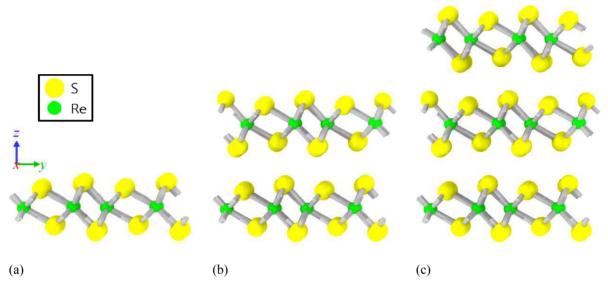


Figure S2. ReS₂ stacked structures: (a) 1L, (b) 2L, (c) 3L

S-3. Surface potential

The specimen composed of ReS_2 flakes on a gold substrate was prepared to evaluate the surface potential difference between gold and ReS_2 . A 200 nm thick gold coating was deposited on a Si/SiO₂ wafer by using an evaporator, and the ReS₂ flakes were then transferred onto the gold-coated wafer by using a PDMS stamp. The ReS₂ flakes were purchased from 2D-Semiconductors. Kelvin probe force microscopy (XE-7, Park Systems Corp.) was used to measure the surface potential with applied 1V, 17kHz of AC bias voltage and frequency in ambient condition. The work function of Au/Cr tip was calibrated from the work function of HOPG (4.6 eV) which is electrically stable materials.

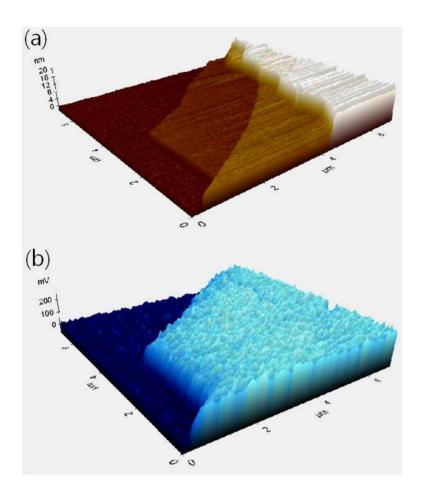


Figure S3. (a) 3D mapping image of AFM (b) 3D mapping image of KPFM

Reference

- Kresse, G.; Hafner, J., Ab Initio Molecular Dynamics For Liquid Metals. *Phys. Rev. B* 1993, 47 (1), 558-561.
- 2. Kresse, G.; Hafner, J., Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. *Phys. Rev. B* **1994,** *49* (20), 14251-14269.
- 3. Kresse, G.; Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Comput. Mater. Sci.* **1996,** *6* (1), 15-50.
- Kresse, G.; Furthmüller, J., Efficient Iterative Schemes for Ab Initio Total-Energy Calculations using a Plane-Wave Basis Set. *Physical Review B* 1996, *54* (16), 11169-11186.
- 5. Blöchl, P. E., Projector Augmented-Wave Method. *Phys. Rev. B* 1994, *50* (24), 17953-17979.
- Kresse, G.; Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. *Phys. Rev. B* 1999, *59* (3), 1758-1775.
- Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* 1996, 77 (18), 3865-3868.
- Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. *Phys. Rev. Lett.* 1997, 78 (7), 1396-1396.
- Murray, H. H.; Kelty, S. P.; Chianelli, R. R.; Day, C. S., Structure of Rhenium Disulfide. *Inorg. Chem.* 1994, 33 (19), 4418-4420.
- Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y.-S.; Ho,
 C.-H.; Yan, J.; Ogletree, D. F.; Aloni, S.; Ji, J.; Li, S.; Li, J.; Peeters, F. M.; Wu, J.,

Monolayer Behaviour in Bulk ReS_2 due to Electronic and Vibrational Decoupling. Nat. Commun. **2014**, *5*, 3252.

- Yu, Z. G.; Cai, Y.; Zhang, Y.-W., Robust Direct Bandgap Characteristics of One- and Two-Dimensional ReS₂. Sci. Rep 2015, *5*, 13783.
- Liu, H.; Xu, B.; Liu, J. M.; Yin, J.; Miao, F.; Duan, C.-G.; Wan, X. G., Highly efficient and ultrastable visible-light photocatalytic water splitting over ReS2. *Phys. Chem. Chem. Phys.* 2016, *18* (21), 14222-14227.