Supporting Information

to

Sulfurization of Dissolved Organic Matter Increases Hg-S-DOM Bioavailability to a Hg-Methylating Bacterium

Andrew M. Graham^{a*}, Keaton Cameron-Burr^a, Hayley A. Hajic^a, Connie PS Lee^a, Deborah Msekela^a, and Cynthia C. Gilmour^b

^aGrinnell College Department of Chemistry, 1116 8th Ave, Grinnell, IA USA 50112 ^bSmithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD USA 21037

^{*}Corresponding author, phone: 641-269-9813, email: <u>grahaman@grinnell.edu</u>

Contents:

Table SI-1 – DOM Recovery by SPE and slope ratio of recovered DOM	2
Table SI-2 – Quality assurance/control data for Hg/MeHg analyses	3
Text describing approach to equilibrium speciation modeling	4
Table SI-3 – Thermodynamic data for equilibrium speciation modeling	5
Table SI-4 – Summary of experimental variables in Hg methylation assays	6
Table SI-5 – Results of equilibrium speciation modeling	7
Figure SI-1 – Relationship between Hg/DOM thiol ratio and fraction Hg methylated	8
Figure SI-2 – Relationship between neutral Hg species or total dissolved Hg and cell-normalized	ed
MeHg production	9
References for Supporting Information	10

Table SI-1. Recovery and UV-VIS spectral characteristics of sulfurized DOM by solid phase extraction (SPE). Slope ratio (S_R) is the ratio of the slope of the natural log transformed spectra in the wavelength range 275-295 nm divided by the slope in the range 350-400 nm. S_R is strongly correlated with the size and aromaticity of DOM as described in Helms et al. (2008).¹ The reported error on S_R was determined based on the relative standard errors of the linear fits to the natural log transformed spectra in each wavelength range.

Sample	Measured S/C ratio SPE Recovery (%)		S _R (slope ratio)
SRHA (unsulfurized)	3.42	33.3	0.67±0.02
SRHA	4.12	34.6	0.67±0.02
SRHA	4.73	34.8	0.68±0.02
SRHA	6.12	32.8	0.66±0.02
SRHA	5.83	31.6	0.70±0.02
IHSS SRHA (no SPE)	not measured	not applicable	0.65±0.02
SRFA (unsulfurized)	1.88	67.3	0.69±0.02
SRFA	3.80	54.2	0.72±0.02
SRFA	4.22	53.5	0.69±0.02
SRFA	4.08	55.8	0.63±0.02
SRFA	5.69	52.5	0.70±0.02
IHSS SRFA (no SPE)	not measured	not applicable	0.82±0.05
NLFA (unsulfurized)	3.12	46.2	0.78±0.06
NLFA	3.98	46.6	0.76±0.06
NLFA	8.83	29.4	0.74±0.09
NLFA	12.8	44.9	0.84±0.05
IHSS NLFA (no SPE)	not measured	not applicable	0.65±0.04
PLFA (unsulfurized)	11.0	78.6	0.99±0.08
PLFA	10.4	75.6	0.79±0.06
PLFA	14.5	75.0	0.76±0.05
PLFA	12.5	79.9	0.85±0.06
PLFA	12.2	81.3	0.96±0.09
IHSS PLFA (no SPE)	not measured	not applicable	0.91±0.06

Table SI-2. Quality control data for total Hg (THg) and methylmercury (MeHg) analyses. Instrument detection limit determined as three times standard deviation of blank.

Parameter	Result
Me ²⁰¹ Hg instrument detection limit	0.11±0.18 pg (0.02 ng/L for 5 mL sample)
Distillation blanks for Me ²⁰¹ Hg	0.02±0.02 ng/L
Relative percent difference for duplicate	7.4±6.2% (<i>n</i> = 5 pairs)
MeHg analyses	
MeHg recovery for NIST 1566b (oyster	139±8% (n = 6 determinations)
tissue)	
²⁰¹ THg instrument detection limit	0.37±0.38 ng/L
Digestion blanks for ²⁰¹ Hg	0.02±0.04 ng/L
Relative percent difference for duplicate	5.4±2.7% (n = 4 pairs)
THg analyses	
THg recovery for NIST 2709a (San Joaquin	91.6±22.0% (n = 8 determinations)
soil)	

Instrument detection limit calculated as three times the standard deviation of reagent blanks.

Description of Equilibrium Speciation Modeling

Equilibrium speciation modeling was performed in MINEQL+ v. 4.6 (Environmental Research Software). Equilibrium constants were critically selected using the most up to date information on Hg(II)_i complexation in natural waters. The solubility product for metacinnabar (HgS(s)) was recently reevaluated by Drott *et al.*² and reported as log K = 36.8, 1.2 log units lower than that reported in the NIST Critical Database.³ Following Skyllberg,⁴ we have assumed that $Hg(II)_i$ forms linear two-coordinate complexes with DOM thiols with a log K = 42.0. In this approach, we ignore the contribution of weaker O- and N- donor ligands in the DOM pool. This approach is justified for two reasons: 1) DOM/Hg ratios are sufficiently high in these experiments, such that binding will be dominated by stronger S-donor ligands⁵; 2) All solutions contain μM concentrations of sulfide further diminishing the contributions of weak Hg(II)_i-binding ligands. [RSH]_T was estimated based upon [DOC], the measured S/C ratio, and the assumption that strong Hg(II)-binding thiols could be estimated based on the concentration of exocyclic sulfur in each DOM sample. Manceau and Nagy⁶ determined S speciation using X-ray absorption near edge spectroscopy (XANES) for 3 out of the 4 isolates used in this study (and S speciation for the humic acid fraction of the Nordic Lake sample). The percentage of total S as reduced exocyclic S ranged from 23.6 to 46.9% (mean = 32.2±10.5%). We further assume that DOM S speciation is independent of total S content – recent data from Hoffmann *et al.*⁷ and Poulin et al.⁸ suggests, however, that the fraction of total S in reduced forms increases with increasing sulfurization. In that case, our application of a single conversion factor for total S to reduced S may underestimate the true contribution of DOM thiols to Hg(II)_i binding. Other input parameters for modeling can be found in Table SI-3 below; for sulfide concentration, the mean of initial and final (t=3 h) concentrations were input into the speciation model. In modeling Hg-cysteine complexation, some reports suggest the possibility of a tris Hg(cys) complex (likely Hg(Hcys) $_3$. Unfortunately, no thermodynamic data are available for this purported complex. Kõszegi-Szalai and Paál¹⁰ reported equilibrium constants for Hg-penicillamine complexes, including a $Hg(Hpen)_3$ complex with a log K of 75.3 at I = 0 M. Given their similar structures (differing only in the two CH₃—substituents at the 3-position for penicillamine), we can evaluate the potential contributions of a Hg(Hcys)₃⁻ complex to Hg(II)_i speciation using the log K for the Hg(Hgpen)₃⁻ complex. Using this approach, we find that $Hg(Hcys)_3^{-1}$ is not likely to be a significant species under our experimental conditions ($[^{201}THg]$, $[H_2S]_T$, $[cys]_T$, and pH), and we do not include this species in our modeling. A summary of important thermodynamic data for speciation modeling can be found in Table SI-3 below.

Reaction	log K	Reference					
Hg-sulfide Aqueous Speciation							
$Hg^{2+} + 2HS^{-} = Hg(SH)_{2}^{0}$	39.1	Drott <i>et al.</i> ²					
$Hg^{2+} + 2HS^{-} = HgS_{2}H^{-} + H^{+}$	32.5	Drott <i>et al.</i> ²					
$Hg^{2+} + 2HS^{-} = HgS_{2}^{2-} + 2H^{+}$	23.2	Drott <i>et al.</i> ²					
Metacinn	abar Precipitation						
$Hg^{2+} + HS^{-} = HgS(s) + H^{+}$	36.8	Drott <i>et al.</i> ²					
Hg-DO	M Complexation						
$Hg^{2+} + 2RS^{-} = Hg(SR)_{2}$	42.0	Skyllberg ⁴					
$RS^- + H^+ = RSH$	10.0	Skyllberg ⁴					
Hg-CYS Complexation							
$Hg^{2+} + 2H^{+} + 2CYS^{2-} = Hg(HCYS)_{2}^{0}$	64.1	Starý and Kratzer. ¹¹					
$Hg^{2+} + 2CYS^{2-} = Hg(CYS)_2^{2-}$	43.9	Starý and Kratzer. ¹¹					

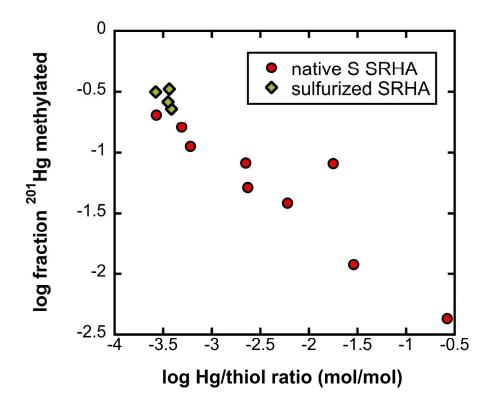

Table SI-3. Thermodynamic data for equilibrium speciation modeling. Equilibrium constants for Hg-Cl and Hg-OH complexes were taken directly from the MINEQL+ database.

Table SI-4. Summary of experimental variables in Hg methylation assays with *Desulfovibrio desulfuricans* ND132 in the presences of sulfurized DOM samples. DOM isolates were sulfurized as described in the main text, resulting in the S/C ratios reported in the table below. Reported values are means and standard deviations (n = 3, excepting NLFA experiments, where n = 2). n.d. = not determined due to lost samples. Cell density is average cell density measured at beginning and end of 3h incubation which typically increased less than 5% over the duration of the experiment.

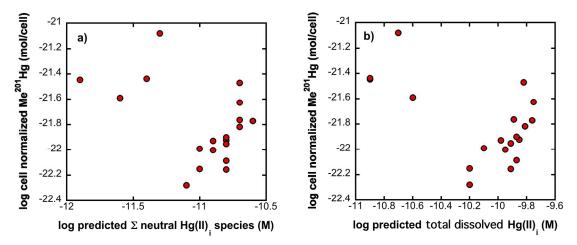

DOM Isolate or Control	[DOC] (mg/L)	Measured S/C ratio (mmol S/mol C)	Cell density (x 10 ⁸ cells/mL)	рН	Initial sulfide (μΜ)	Final sulfide (µM)	Total ²⁰¹ Hg in medium (nM)	Total filterable ²⁰¹ Hg (nM)	Total Me ²⁰¹ Hg in medium (pM)
SRHA	9.19	3.42	5.68±0.21	7.27±0.01	2.25±0.05	3.62±0.12	0.30±0.16	0.21±0.01	39.6±4.9
SRHA	9.52	4.12	5.57±0.22	7.31±0.01	2.67±0.26	3.92±0.02	0.30±0.05	0.29±0.04	66.4±1.3
SRHA	9.58	4.73	5.32±0.31	7.25±0.01	3.36±0.08	4.15±0.11	0.32±0.06	0.26±0.04	80.7±1.5
SRHA	9.59	6.12	5.67±0.19	7.20±0.01	4.18±0.24	4.40±0.06	0.31±0.01	0.23±0.004	95.8±1.2
SRHA	9.24	5.83	5.43±0.09	7.33±0.02	3.72±0.17	4.53±0.10	0.39±0.02	0.24±0.01	128.4±1.9
SRFA	10	1.88	4.55±0.82	7.28±0.04	2.33±0.10	3.01±0.29	0.057±0.003	0.028±0.004	24.0±0.6
SRFA	10	3.80	5.75±1.51	7.28±0.04	2.79±0.29	3.22±0.20	0.070±0.008	0.034±0.007	40.5±1.6
SRFA	10	4.22	5.15±0.38	7.29±0.02	2.88±0.10	3.36±0.06	0.083±0.007	0.054±0.014	52.5±2.9
SRFA	10	4.08	5.03±0.52	7.22±0.02	2.87±0.03	3.44±0.14	0.13±0.01	0.088±0.007	86.6±0.2
SRFA	10	5.69	4.74±0.26	7.26±0.02	3.58±0.25	3.76±0.20	0.26±0.001	0.12±0.02	160±8
NLFA	10	3.12	1.44±0.21	7.52±0.12	0.26±0.18	0.95±0.83	0.15±0.07	0.067±0.006	36.9±11.4
NLFA	10	3.98	1.50 ± 0.15	7.74±0.05	0.10±0.04	0.33±0.06	0.099±0.003	0.086±0.006	53.4±13.6
NLFA	10	8.83	1.36±0.18	7.61±0.10	0.05±0.01	0.42±0.31	0.10±0.01	0.090±0.01	49.5±13.4
NLFA	10	12.8	1.66±0.07	7.66±0.04	0.30±0.06	0.42±0.11	0.15±0.01	0.17±0.01	138±9
PLFA	8.3	11.0	4.79±0.23	7.35±0.02	3.99±0.27	6.44±0.78	0.13±0.004	0.018±0.002	39.2±4.0
PLFA	8.3	10.4	5.11±0.45	7.35±0.05	5.13±0.52	6.87±0.47	0.13±0.003	0.036±0.006	64.2±6.3
PLFA	8.3	14.5	4.76±0.33	7.34±0.05	5.13±0.52	7.02±0.28	0.12±0.01	0.038±0.002	53.0±7.0
PLFA	8.3	12.5	5.28±0.37	7.28±0.06	4.78±0.19	6.72±0.54	0.11±0.01	0.030±0.008	62.1±10.7
PLFA	8.3	12.2	5.80±0.89	7.32±0.02	5.13±0.52	6.56±0.26	0.11±0.01	0.049±0.008	57.8±0.8
500 μM L-cysteine control (SRHA)	N/A	N/A	5.74±0.13	7.28±0.00	5.78±0.11	19.3±0.1	0.46±0.02	0.07±0.01	362±6
500 μ M L-cysteine control (SRFA)	N/A	N/A	4.04±0.67	7.14±0.00	5.55±0.72	31.1±4.9	0.37±0.02	0.28±0.02	308±11
500 μ M L-cysteine control (NLFA)	N/A	N/A	1.43±0.17	7.30±0.06	0.28±0.10	4.08±3.1	0.13±0.02	n.d.	43.4±13.4
500 μM L-cysteine control (PLFA)	N/A	N/A	5.15±0.45	7.23±0.04	5.90±0.88	17.0±0.7	0.31±0.07	0.39±0.01	347±20
No DOM control (SRHA)	N/A	N/A	5.31±0.34	7.40±0.01	3.64±0.13	2.75±0.1	0.28±0.02	0.25±0.01	2.2±0.2
No DOM control (SRFA)	N/A	N/A	3.81±0.10	7.20±0.12	2.74±0.25	3.22±0.53	0.064±0.007	0.007±0.005	6.5±1.2

Table SI-5. Predicted equilibrium speciation of inorganic Hg(II) based on measured total ²⁰¹Hg in medium, pH, sulfide, DOC, and S/C ratio of DOM. Hg(SR)₂ is a two-coordinate complex of Hg(II)_i with organic thiols; Hg(SH)₂ is the equivalent complex with inorganic sulfide.

DOM Isolate or Control	[RSH] _τ (μΜ)	[Meta- cinnabar] (M)	[Hg(SR)₂] (M)	[Hg(SH)₂] (M)	[HgS ₂ H ⁻] + [HgS ₂ ²⁻] (M)	Total dissolved Hg (M)
SRHA	0.62	1.77×10^{-10}	7.28 x 10 ⁻¹⁵	1.65×10^{-11}	1.06×10^{-10}	1.23×10^{-10}
SRHA	0.77	1.60×10^{-10}	1.08×10^{-14}	1.74 x 10 ⁻¹¹	1.23 x 10 ⁻¹⁰	1.40×10^{-10}
SRHA	0.89	1.65×10^{-10}	1.15×10^{-14}	2.18×10^{-11}	1.33 x 10 ⁻¹⁰	1.55 x 10 ⁻¹⁰
SRHA	1.15	1.36 x 10 ⁻¹⁰	1.55 x 10 ⁻¹⁴	2.69 x 10 ⁻¹¹	1.47 x 10 ⁻¹⁰	1.74 x 10 ⁻¹⁰
SRHA	1.06	2.14 x 10 ⁻¹⁰	1.69 x 10 ⁻¹⁴	2.10 x 10 ⁻¹¹	1.55 x 10 ⁻¹⁰	1.76 x 10 ⁻¹⁰
SRFA	0.40	undersaturated	1.70 x 10 ⁻¹⁵	7.50 x 10 ⁻¹²	4.94 x 10 ⁻¹¹	5.69 x 10 ⁻¹¹
SRFA	0.80	undersaturated	6.44 x 10 ⁻¹⁵	9.24 x 10 ⁻¹²	6.09 x 10 ⁻¹¹	7.01 x 10 ⁻¹¹
SRFA	0.88	undersaturated	9.12 x 10 ⁻¹⁵	1.07 x 10 ⁻¹¹	7.18 x 10 ⁻¹¹	8.25 x 10 ⁻¹¹
SRFA	0.85	undersaturated	1.19 x 10 ⁻¹⁴	1.90 x 10 ⁻¹¹	1.09 x 10 ⁻¹⁰	1.28 x 10 ⁻¹⁰
SRFA	1.19	1.02 x 10 ⁻¹⁰	2.13 x 10 ⁻¹⁴	2.10 x 10 ⁻¹¹	1.32 x 10 ⁻¹⁰	1.53 x 10 ⁻¹⁰
NLFA	0.84	1.21 x 10 ⁻¹⁰	1.00 x 10 ⁻¹³	2.18 x 10 ⁻¹²	2.54 x 10 ⁻¹¹	2.77 x 10 ⁻¹¹
NLFA	1.06	8.73 x 10 ⁻¹¹	6.80 x 10 ⁻¹³	5.20 x 10 ⁻¹³	1.03 x 10 ⁻¹¹	1.15 x 10 ⁻¹¹
NLFA	2.36	9.30 x 10 ⁻¹¹	3.00×10^{-12}	5.81 x 10 ⁻¹³	8.42 x 10 ⁻¹²	1.20×10^{-11}
NLFA	3.42	1.32 x 10 ⁻¹⁰	3.77 x 10 ⁻¹²	9.70 x 10 ⁻¹³	1.59 x 10 ⁻¹¹	2.06 x 10 ⁻¹¹
PLFA	3.55	undersaturated	9.18 x 10 ⁻¹⁴	1.53 x 10 ⁻¹¹	1.19 x 10 ⁻¹⁰	1.34 x 10 ⁻¹⁰
PLFA	3.39	undersaturated	6.34 x 10 ⁻¹⁴	1.53 x 10 ⁻¹¹	1.19 x 10 ⁻¹⁰	1.35 x 10 ⁻¹⁰
PLFA	4.70	undersaturated	1.08 x 10 ⁻¹³	1.44 x 10 ⁻¹¹	1.09 x 10 ⁻¹⁰	1.24 x 10 ⁻¹⁰
PLFA	5.75	undersaturated	7.14 x 10 ⁻¹⁴	1.38 x 10 ⁻¹¹	9.11 x 10 ⁻¹¹	1.05 x 10 ⁻¹⁰
PLFA	5.85	undersaturated	7.21 x 10 ⁻¹⁴	1.35 x 10 ⁻¹¹	9.74 x 10 ⁻¹¹	1.11 x 10 ⁻¹⁰
500 μM L-cysteine control (SRHA)	500	undersaturated	4.60 x 10 ⁻¹⁰	2.43 x 10 ⁻¹⁹	1.68 x 10 ⁻¹⁴	4.60 x 10 ⁻¹⁰
500 μM L-cysteine control (SRFA)	500	undersaturated	1.27 x 10 ⁻¹⁰	7.12 x 10 ⁻¹⁷	9.94 x 10 ⁻¹⁵	1.27 x 10 ⁻¹⁰
500 μM L-cysteine control (NLFA)	500	undersaturated	3.09 x 10 ⁻¹⁰	6.09 x 10 ⁻¹⁷	3.56 x 10 ⁻¹⁶	3.09 x 10 ⁻¹⁰
500 μM L-cysteine control (PLFA)	500	undersaturated	3.71 x 10 ⁻¹⁰	2.59 x 10 ⁻¹⁵	1.23 x 10 ⁻¹⁴	3.71 x 10 ⁻¹⁰
No DOM control (SRHA)	0	1.33 x 10 ⁻¹⁰	0	1.44 x 10 ⁻¹¹	1.26 x 10 ⁻¹⁰	1.40 x 10 ⁻¹⁰
No DOM control (SRFA)	0	undersaturated	0	9.91 x 10 ⁻¹²	5.41 x 10 ⁻¹¹	6.40 x 10 ⁻¹¹

Figure SI-1. Relationship between log Hg/thiol ratio and log fraction ²⁰¹Hg methylated in solutions containing Suwannee River humic acid (SRHA), sulfide, and ²⁰¹HgCl₂. Data for native SRHA include data from this study and from Graham et al.¹² Data for sulfurized SRHA from this study only. Thiol concentrations were estimated based on measured S/C ratio for SRHA samples and the assumption that 70% of total DOM S was thiols.

Figure SI-2. Correlations between the sum of neutral Hg(II)_i species (**panel a**) or total dissolved Hg(II)_i (**panel b**) and cell-normalized MeHg production. MeHg production cell-normalized due to significant differences in cell density between experiments. Data log-transformed due to non-normal distributions.

References for Supporting Information

- 1. Helms, J. R. *et al.* Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. *Limnol Oceanogr* **53**, 955–969 (2008).
- 2. Drott, A., Björn, E., Bouchet, S. & Skyllberg, U. Refining thermodynamic constants for mercury(II)-sulfides in equilibrium with metacinnabar at sub-micromolar aqueous sulfide concentrations. *Environ Sci Technol* **47**, 4197–4203 (2013).
- 3. National Institute of Standards and Technology. NIST Critically Selected Stability Constants of Metal Complexes.
- 4. Skyllberg, U. Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: Illumination of controversies and implications for MeHg net production. *J Geophys Res-Biogeo* **113**, G00C03 (2008).
- 5. Haitzer, M., Aiken, G. & Ryan, J. Binding of mercury(II) to dissolved organic matter: The role of the mercury-to-DOM concentration ratio. *Environ Sci Technol* **36**, 3564–3570 (2002).
- 6. Manceau, A. & Nagy, K. L. Quantitative analysis of sulfur functional groups in natural organic matter by XANES spectroscopy. *Geochim Cosmochim Acta* **99**, 206–223 (2012).
- 7. Hoffmann, M., Mikutta, C. & Kretzschmar, R. Bisulfide reaction with natural organic matter enhances arsenite sorption: Insights from X-ray absorption spectroscopy. *Environ Sci Technol* **46**, 11788–11797 (2012).
- 8. Poulin, B. A. *et al.* Spatial dependence of reduced sulfur in Everglades dissolved organic matter controlled by sulfate enrichment. *Environ Sci Technol* **51**, 3630-3639 (2017).
- 9. Schaefer, J. K. & Morel, F. M. M. High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. *Nature Geoscience* **2**, 123–126 (2009).
- 10. Koszegi-Szalai, H. & Paal, T. L. Equilibrium studies of mercury (II) complexes with penicillamine. *Talanta* **48**, 393–402 (1999).
- 11. Stary, J. & Kratzer, K. Radiometric determination of stability-constants of mercury species complexes with L-cysteine. *J Radioan Nucl Ch Le* **126**, 69–75 (1988).
- Graham, A. M., Aiken, G. R. & Gilmour, C. C. Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions. *Environ Sci Technol* 46, 2715–2723 (2012).