
Supporting information for:

Remote Single-Molecule Switching:

Identification and Nanoengineering of Hot

Electron-Induced Tautomerization

Jens Kügel,∗,† Markus Leisegang,† Markus Böhme,† Andreas Krönlein,† Aimee

Sixta,†,‡ and Matthias Bode†

Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland,

97074 Würzburg, Germany, University of Texas at Austin, Austin, Texas 78712, United

States, and Wilhelm Conrad Röntgen-Center for Complex Material Systems (RCCM),

Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

E-mail: jens.kuegel@physik.uni-wuerzburg.de;

Analysis of tautomerization switching events

For the analysis of the switching events, we distinguished between six different molecular

states which are shown in Fig. S1(a): Two stable states (1 and 2), two metastable states

(3 and 4) with a lifetime of about three seconds, and two cases where the metastable state
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Figure S1: (a) Topographic images of the six different states, which were distinguished in
the experiment for the analysis of the switching events: Two stable states (1 and 2), two
metastable states (3 and 4) with a lifetime of about three seconds, and two cases, where
the metastable states switch back to the stable state (5 and 6) while scanning the molecule
(indicated by dashed white lines). (b) Successive scans (N → N + 1) are evaluated on the
basis of this matrix. The detection of a switching event can safely be concluded only where
the entry is 1. Any 0 element indicates that the molecule remained unchanged or that the
switching could not safely be assigned to an STM-induced process.

switches back to a stable state (5 and 6) while scanning the molecule. Without excitation,

the two stable states do not switch, whereas the metastable states switch to one of the two

stable states. Based on these properties, we designed a matrix [cf. S1(b)], which is used

to evaluate every two successive measurement states (N → N + 1). The matrix entries

represent whether (1) a switching event can safely be concluded or (0) when the molecule

remained unchanged or switching could not safely be assigned to an STM-induced process.

The entries are derived based on the following reasoning:

• 1 → 1; 2 → 2: These observations for N → N + 1 are not counted as switching events

since the molecule stays in the same stable state even though the occurrence of an even

number of multiple switches cannot be excluded. We would like to emphasize, however,

that these corrections, which scale with the square of the switching probability, will not

affect the general results and conclusions for Figs. 2, 3, and 4 presented in our paper.

• 1 → 2; 2 → 1: This transition between the two stable state (1 or 2) is counted as a

switching event, as this process must be induced by hot electrons and does not happen

spontaneously.
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• 1 → 3,4,5,6; 2 → 3,4,5,6: This transition from a stable (1 or 2) to a metastable state

(3,4,5 or 6) is counted as a switching event, as this process must be induced by hot

electrons and does not happen spontaneously.

• 3,4,5,6→ 1; 3,4,5,6→ 2: It does not count as a switching event if the metastable state

changes to a stable state, as it is not possible to decide whether it was induced by hot

electrons or occurred spontaneously due to the limited lifetime of the metastable state.

• 3 → 3; 4 → 4: It is not regarded as a switching event if the molecule is observed in

the same metastable state (3 or 4) for two successive scans since we cannot exclude its

survival. We would like to emphasize that these events are extremely rare and that

even the complete omission of these data would not affect any of the conclusions made

in our paper.

• 3→ 5; 4→ 6: Since state 5 (6) is the transition state which can not only result from a

hot electron-induced process but also indicate the spontaneous decay of the metastable

state 3 (4) to a stable state both observations are not counted as switching events.

• 5 → 3; 6 → 4: This observation is counted as a switching event, as the molecule is

already in the stable state at the end of the measurement N (5 or 6) and has to be

excited to the metastable state again for N + 1

• 3,5 → 4,6; 4,6 → 3,5: If a hydrogen is positioned on one of the metastable arms and

switches to the other metastable arm, it is counted as a switching event, as there must

have been an excitation process to switch the proton to the other metastable arm.

Without excitation the metastable state switches only to stable states.

• 5 → 5; 6 → 6: These two observations are counted as switching events as the decay

of a metastable state has been imaged (N). The detection of the same state in the

subsequent scan (N + 1) implies that there occurred a hot electron-induced excitation

process in the time between the two scans.
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Figure S2: (a) Topographic image of the silver atom production showing lines of single silver
atoms, dimers, trimers and bigger clusters, which were produced by an automatized dipping
procedure. (b) Silver atom storage built by moving single silver atoms to a clean surface
location.

Production of silver adatoms

To produce single silver atoms we used an automatized procedure similar to the one proposed 

by Limot and co-workers,1 based on the following steps:

1. Positioned the STM tip over a clean area on the surface at the stabilization parameters

U = 1.0V and I = 0.5 nA.

2. Save the actual z-position (zi) of the tip.

3. Approach the STM tip by zstep = 550pm towards the Ag(111) surface after deactivation

the feedback loop. Stay here for 500ms.

4. Turn on the feedback loop and measure the new z-position at the same stabilization

parameters mentioned above.
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(a) If the new z-position (zi+1) as compared to the previous value zi fulfills the re-

quirement |zi+1 − zi| < 20 pm the penetration depth is increased by 5 pm, i.e.,

zstep,new = zstep,old + 5 pm), and the iteration starts again at point 3.

(b) If |zi+1 − zi| ≥ 20 pm: The tip has dropped at least one single atom.

To produce more than one single atom, the tip is laterally moved 2 nm away and the atom

production procedure described above is repeated, resulting in a line of single atoms and

some silver clusters as can be seen in Fig. S2(a) (marked by green arrow). Afterwards, the

single atoms were moved with the STM tip to a new place on the surface to form a silver

atom storage [cf. Fig. S2(b)]. For moving the atoms we used a bias voltage U = 20mV and

a tunneling current I ≈ 1.3µA.

dI /dU analysis of the double slit

In order to analyze if the standing wave pattern formed by the surface electrons might 

be responsible for the experimentally observed trend in the switching probability [cf. Fig. 

4(e)], we measured a topographic STM image [Fig. S3(b)] and the corresponding dI /dU map 

[Fig. S3(a)] around a double slit. A molecule was positioned on the right side of the double 

slit, which scatters electronic states and leads to a circular interference pattern, thereby 

emulating the effect of hot electrons injected by an STM tip. A line profile o f t he dI /dU 

signal (green line) was extracted from the area on the left side of the double slit, i.e., far away 

from the wall and the molecule. In Fig. S3(c) this dI /dU signal (green data points) is 

compared with the switching probability already presented in Fig. 4(e) of the main text. 

Obviously, the dI /dU signal cannot account for the features observed in the experiment. 

The switching probability shows a minimum at a distance of s ≈ 2 nm and a maximum 

at s ≈ 4 nm, whereas the dI /dU signal has its minimum at a distance of s ≈ 3 nm and 

a maximum at s ≈ 6 nm. Therefore we conclude that the local density of states behind 

the double slit is not responsible for the main trends observed for the switching probability.

S5



5 nm

(a) (b)

Lateral shift from center s (nm)

S
w

it
c
h

in
g

 p
ro

b
. 
n

 (
%

) d
I/d

U
-s

ig
n

a
l (a

.u
.)

(c)

0 1 2 3 4 5 6 7 8
4

6

8

10

12
data
dI/dU 

3.35

3.40

3.45

3.50
A

A

B

B

B

A

Figure S3: (a) Topographic image of the double slit and (b) dI /dU -map taken at the same
location as (a) (scan parameters: U = 0.5V, Umod,rms = 20mV, I = 0.5 nA). (c) A line profile
of the dI /dU -signal [green line in (a),(b)] is compared with the switching obtained for the
molecule sitting at different positions behind the double slit.

Nevertheless, a certain influence of the dI /dU signal on the switching probability cannot

strictly be excluded.

Adsorption site of the dehydrogenated H2Pc molecule

We analyzed the adsorption site of the dehydrogenated H2Pc molecule by utilizing an ellip-

tical quantum corral (cf. Fig. S4), where we adjusted an atom lattice over the complete

image so that all the adsorbed silver atoms are lying on fcc or hcp sites. The lateral spacing

of this lattice was furthermore checked by atomic resolution images (not shown). By this

method, we could show that the dehydrogenated H2Pc molecule sits on bridge site, with the

arms pointing into the [01̄1] and [21̄1̄] direction.
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Figure S4: Elliptical nanostructure build from single Ag Atoms overlaid with the lattice,
showing surface silver atoms (gray rings) and the different adatom sites (red & yellow rings).
Note that hcp and fcc sites cannot be definitely identified in our experiments. A magnification
of the area around the molecule (green rectangle) reveals that the molecule sits on bridge
site, with the arms pointing into the [01̄1] and [21̄1̄] direction.
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