SUPPORTING INFORMATION

Conformational Changes of the Methacrylate-Based Monomers at the Air-Liquid Interface Due to Bulky Substituents

Authors:

Uvinduni I. Premadasa, Narendra M. Adhikari, Susil Baral, Ahmed Aboelenen, and Katherine Leslee Asetre Cimatu*

[†]Department of Chemistry and Biochemistry, Ohio University, 100 University Terrace, 136 Clippinger Laboratories, Athens, Ohio 45701-2979, United States

*Corresponding authors e-mail: <u>cimatu@ohio.edu</u>

Authors Affiliation:

[†]Department of Chemistry and Biochemistry, Ohio University, 100 University Terrace, 136 Clippinger Laboratories, Athens, Ohio 45701-2979, United States

MATERIALS AND METHODS

Synthesis of 2-isopropoxyethyl methacrylate (IEMA), and 2-tertbutoxyethyl methacrylate (TEMA)

IEMA. To a solution of 2-isopropoxy ethanol (37.2 g, 0.36 mol) in pyridine (102 mL) and dichloromethane (68 mL), methacryloyl chloride (41.9 g, 0.40 mol) and dichloromethane (21 mL) were added. The reaction was carried out below 5°C in an ice bath, and once all the reagents are added, the mixture was continuously stirred at room temperature overnight. The reaction mixture was washed with 5% sodium bicarbonate solution (1.05 L) and deionized water (0.45 L). The mixture was dried with calcium sulfate and filtered after washing. 1% (w/v) monomethyl hydroquinone (MEHQ) was added to the solution before purification. The Vigreux distillation of the product produced a clear liquid (86 mL, 82.6 g, 62% yield, and 97% purity). ¹H NMR δ 1.17

(-C(CH₃)₂, d, 6H, J=6.2 Hz), δ 1.95 (alpha CH₃, s, 3H), δ 3.62 (-CH-O, m, 1H J= 6.0, 6.1, 6.1, 6.1 Hz), δ 3.66 (-O-CH₂, t, 2H, J= 5.1, 4.9 Hz), δ 4.26 (-O-CH₂CH₂, t, 2H, J= 5.0, 5.0 Hz), δ 5.56 (-C=CH, s, 1H), δ 6.12 (-C=CH, s, 1H); ¹³C NMR (CDCl₃, 500 MHz) δ 167.2 (C=O), δ 136.1 (C=), δ 125.5 (=CH₂), δ 71.9 (CH), δ 65.8(CH₂), δ 64.1 (CH₂), δ 21.9 (2 CH₃), δ 18. 2 (CH₃); MS (ESI FT-MS) m/z 173.11732 (calcd for [C₉H₁₆O₃ + H]⁺, 173.11778).¹H and ¹³C NMR spectra of IEMA monomer are available in Figure S1 in SI.

TEMA. This monomer was prepared similarly to IEMA. To a solution of 2-tertbutoxy ethanol (58.0 g, 0.49 mol) in pyridine (108 mL) and dichloromethane (162 mL), methacryloyl chloride (57.6 g, 0.55 mol) and dichloromethane (30 mL) were added. The reaction was carried out below 5°C in an ice bath, and once all the reagents are added, the mixture was continuously stirred at room temperature overnight. The reaction mixture was washed with 5% sodium bicarbonate solution (1.05 L) and deionized water (0.45 L). The mixture was dried with calcium sulfate and filtered after washing.1% (w/v) monomethyl hydroquinone (MEHQ) was added to the solution before purification The Vigreux distillation of the product produced a clear liquid (99 mL, 91.8 g, 50% yield, and 98% purity). ¹H NMR δ 1.17 (-C(CH₃)₃, s, 9H), δ 1.92 (alpha CH₃, s, 3H), δ 3.58 (-O-CH₂, t, 2H, J= 5.2, 5.2 Hz), δ 4.21 (-OCH₂CH₂, t, 2H, J= 5.2, 5.2 Hz), δ 5.53 (-C=CH, s, 1H), δ 6.09 (-C=CH, s, 1H); ¹³C NMR (CDCl₃, 500 MHz) δ 167.2 (C=O), δ 136.2 (C=), δ 125.3 (=CH₂), δ 73.1 (C), δ 64.4 (CH₂), δ 59.8 (CH₂), δ 27.3 (3 CH₃), δ 18.2 (CH₃); MS (ESI FT-MS) m/z 187.13290 (calcd for [C₁₀H₁₈O₃ + H]⁺, 187.13342). ¹H and ¹³C NMR spectra of TEMA monomer are available in Figure S2 in SI.

¹H and ¹³C NMR of monomers.

Figure S1. A. ¹H NMR and B. ¹³C NMR spectra of the synthesized IEMA monomer

Figure S2. A. ¹H and B. ¹³C NMR spectra of the synthesized TEMA monomer.

Figure S3. A representative gold spectrum obtained from the sum of four gold spectra obtained at the for IR centers of 2800 cm^{-1} , 2900 cm^{-1} , 3000 cm^{-1} , and 3100 cm^{-1} . The spectrum was fitted using the Gaussian equation to determine the ω_{IR}^L and $\delta\omega_L$. These two parameters are used in the SFG curve-fitting equation (Equation 2 in the manuscript). The values obtained were used to fit the PhEMA monomer SSP and PPP spectra.

Figure S4. Example SFG SSP spectrum collected at different centers from 2800 cm⁻¹ (black), 2900 cm⁻¹ (red), 3000 cm⁻¹ (blue), and 3100 cm⁻¹ (magenta). The green SFG spectrum is the sum of the spectra from the four centers, which constitute the distribution of several peaks.

Figure S5. A. IR and Raman spectra of the 2-methoxyethyl methacrylate (MEMA) monomer are presented from 500-4000 cm⁻¹. B. SFG spectra of MEMA monomer at SSP PPP and PSS polarization combinations plotted with vertcicle offset for clarity with SFG spectrum of PSS polarization shown as the inset. The vibrational peak assignments are available in Table S1.

Vibrational Assignment		Ν	ИЕМА		
	IR	Raman	SSP	PPP	PSS
1) Unassigned ¹	2732	2732	2751	2751	
2) O-CH ₃ symmetric stretch ²⁻⁵	2820	2826	2819	2819	
3) CH ₂ symmetric stretch (SSP) ^{2, 5-8} / Fermi related methylene vibrational mode (PPP) ⁹⁻¹⁰	2842	2846	2861	2861	2846
4) CH ₃ symmetric stretch ^{7-9, 11}	2890	2897	2905	2905	
5) CH ₃ symmetric stretch (FR) $^{9, 12-13}$	2930	2931	2937		2934
6) CH ₃ asymmetric stretch (in-plane)	2956	2958		2959	2968
 7) O- CH₃ asymmetric stretch^{7, 9, 14-17} / CH₃ asymmetric stretch (out-of-plane) 	2983	2994		2985	
8) Alkene- methylene CH stretch ¹⁸	3020	2999	3011		
10) Presence of hydroxyl peaks of adsorbed water ^{16, 19-21}	3104, 3150	3108, 3153	3149	3149	3065

Table S1. List the peak positions of 2-methoxyethyl methacrylate (MEMA) including their suggested peak vibrational assignments.

Figure S6. A. IR and Raman spectra of the 2-ethoxyethyl methacrylate (EEMA) monomer are presented from 500-4000 cm⁻¹. B. SFG spectra of EEMA monomer at SSP PPP and PSS polarization combinations plotted with vertcicle offset for clarity with SFG spectrum of PSS polarization shown as the inset. The vibrational peak assignments are available in Table S2.

Table S2. List the peak positions of 2-ethoxyethyl methacrylate (EEMA) including their suggested peak vibrational assignments.

Vibrational Assignment			EEMA		
	IR	Raman	SSP	PPP	PSS
1) Unassigned ¹	2747	2741	2756		
3) CH ₂ symmetric stretch(SSP) ^{2, 5-8} / Fermi related methylene vibrational mode (PPP) ⁹⁻¹⁰	2869	2875	2868	2868	2856
 4) CH₃ symmetric stretch^{7-9, 11} 	2807	2904	2903	2903	2050
5) CH ₃ symmetric stretch (FR) $^{9, 12-13}$	2932	2934	2939		
6) CH ₃ asymmetric stretch (in-plane)	2953	2955		2968	
7) CH ₃ asymmetric stretch (out-of- plane) ^{7, 9, 14-17}	2979	2979		2990	2976
8) Alkene- methylene CH stretch ¹⁸	3019	3001	3016		
10) Presence of hydroxyl peaks of adsorbed water ^{16, 19-21}	3104	3114		3098	3120

Figure S7. A. IR and Raman spectra of the 2-isoproxyethyl methacrylate (IEMA) monomer are presented from 500-4000 cm⁻¹. B. SFG spectra of IEMA monomer at SSP PPP and PSS polarization combinations plotted with vertcicle offset for clarity with SFG spectrum of PSS polarization shown as the inset. The vibrational peak assignments are available in Table S3.

Table S3. List the peak positions of 2-isopropoxyethyl methacrylate (IEMA) including their suggested peak vibrational assignments.

Vibrational Assignment		Ι	EMA		
	IR	Raman	SSP	PPP	PSS
1) Unassigned ¹	2738	2739	2737		
3) CH ₂ symmetric stretch (SSP) ^{2-3, 7-9} /Fermi					
related methylene vibrational mode (PPP) ⁹⁻¹⁰	2868	2877	2869	2869	2870
4) CH ₃ symmetric stretch ^{8-9, 12-13}	2900	2890	2910	2910	
5) CH ₃ symmetric stretch (FR) $^{9, 12-13}$	2930	2930	2938	2938	2929
7) CH ₃ asymmetric stretch ^{7, 15}	2973	2977		2980	2975
8) Alkene-methylene CH stretch ¹⁸	3021	3024	3017		
10) Presence of hydroxyl peaks of adsorbed					
water ^{16, 19-21}	3107	3106		3089	3064

Figure S8. A. IR and Raman spectra of the 2-tertbutoxyethyl methacrylate (TEMA) monomer are presented from 500-4000 cm⁻¹. B. SFG spectra of TEMA monomer at SSP PPP and PSS polarization combinations plotted with vertcicle offset for clarity with SFG spectrum of PSS polarization shown as the inset. The vibrational peak assignments are available in Table S4.

Vibrational Assignment		Т	EMA		
	IR	Raman	SSP	PPP	PSS
1) Unassigned ¹	2738	2743	2739		
3) CH ₂ symmetric stretch $(SSP)^{2-3,7-9}$ /Fermi related methylene vibrational mode $(PPP)^{9-10}$	2872	2873	2872	2872	
4) CH ₃ symmetric stretch ^{8-9, 12-13}	2908	2899	2912	2912	
5) CH ₃ symmetric stretch (FR) $^{9, 12-13}$	2929	2931	2935	2935	2934
7) CH ₃ asymmetric stretch ^{7, 15}	2974	2979		2982	2984
8) Alkene-Methylene CH stretch ¹⁸	3021	3028	3016		
10) Presence of hydroxyl peaks of adsorbed water ^{21, 25-27}	3103	3108		3106	3057

Table S4. List the peak positions of 2-terbutoxyethyl methacrylate (TEMA) including their suggested peak vibrational assignments.

Figure S9. A. IR and Raman spectra of the 2-phenoxyethyl methacrylate (PhEMA) monomer are presented from 500-4000 cm⁻¹. B. SFG spectra of PhEMA monomer at SSP PPP and PSS polarization combinations plotted with vertcicle offset for clarity with SFG spectrum of PSS polarization shown as the inset. The vibrational peak assignments are available in Table S5.

Vibrational Assignment		Pl	hEMA		
	IR	Raman	SSP	PPP	PSS
1) Unassigned ¹	2739	2740	2738		
3) CH ₂ symmetric stretch ^{2-3, 7-9}	2876	2866	2861		2859
4) α -CH ₃ symmetric stretch ^{8-9, 12-13}	2879	2885	2902	2902	
5) CH ₃ symmetric Stretch (FR) ^{9, 12-13} / CH ₂ asymmetric Stretch ^{14, 22}	2928	2930	2934	2934	
6) in-plane αCH_3 asymmetric Stretch	2954	2957		2959	2950
7) out-of-plane α -methyl (-CH ₃) asymmetric stretch ^{3, 7, 11, 14-17}	2979	2980		2985	2978
8) Alkene- methylene CH stretch ¹⁸	3014	3001	3005		
9) Aromatic CH stretch ²³	3043, 3064	3043, 3071	3053	3053	
10) Presence of hydroxyl peaks of adsorbed water ^{21, 25-27}	3190	3172	3151		

Table S5. List the peak positions of 2-phenoxyethyl methacrylate (PhEMA) including their suggested peak vibrational assignments.

Figure S10. A. IR and Raman spectra of the methyl methacrylate (MMA) monomer are presented from 500-4000 cm⁻¹. B. IR, Raman, and SFG SSP and PPP spectra of MMA monomer are illustrated with the peak positions labeled from 1-8. The vibrational peak assignments are available in Table S6.

Vibrational Assignment	ММА				
	IR	Raman	SSP	PPP	
1) O-CH ₃ symmetric stretch ²⁴	2844	2850	2840		
2) α -CH ₃ symmetric stretch ^{8-9, 12-13}	2908	2907	2891		
3) α -CH ₃ symmetric stretch (FR) ^{9, 12-13}	2929	2933	2936		
4) α -CH ₃ asymmetric stretch (in-plane) ^{7, 14-15, 24-26}	2955	2957	2963	2957	
5) α -CH ₃ asymmetric stretch (out-of-plane) ¹⁴ , 25-26	2985	2985		2984	
6) O- CH ₃ asymmetric stretch ^{5, 7, 14-17}	2996	2999		2997	
7) Alkene- methylene CH stretch $(=CH_2)^{18}$	3021	3022	3006	3010	
8) Presence of hydroxyl peaks of adsorbed water ^{21, 25-27}	3106	3109	3113	3098	

Table S6. List the peak positions of methyl methacrylate (MMA) including their suggested peak vibrational assignments.

Parameters	Estimated Values		Standa	rd Error	Uncertaint	y Error with	
					95% Confi	dence Level	
	SSP	PPP	SSP	PPP	SSP	PPP	
A1	1.011	3.310	0.266	0.0583	±0.532	<u>+</u> 1.166	
A2	3.504	5.28E-05	0.204	0.171	<u>+0.408</u>	<u>+0.342</u>	
A3	2.589	7.092	0.534	0.955	<u>+</u> 1.068	<u>+</u> 1.911	
A4	1.809	0.238	0.383	0.241	<u>+</u> 0.765	<u>+0.482</u>	
A5	2.472	0.142	0.153	0.259	±0.306	<u>+</u> 0.518	
A6	0.001	2.720	0.204	0.870	<u>+</u> 0.408	<u>+</u> 1.740	
A7	0.008	0.586	0.113	0.267	±0.225	<u>+</u> 0.533	
A8	2.420	0.002	0.649	0.433	<u>+</u> 1.298	<u>+</u> 0.865	
A9	5.750	3.136	0.762	0.563	±0.125	<u>+</u> 1.127	
f1		50		6	±	12	
f2		20		1	=	-1	
f3		46		5		±10	
f4		22		2		<u>±</u> 5	
f5		14		0.5		<u>-</u> 1	
f6	23			5		11	
f7		10		2		<u>-</u> 5	
f8		32	7		±	14	
f9		50	6		<u>+</u>	11	
w1	2	751	2		±5		
w2	2	819	0.5		<u>±1</u>		
w3	2	861	2		<u>+</u> 3		
w4	2	905		1		<u>-</u> 2	
w5	2	937		1	=	-1	
w6	2	958		2	-	<u>⊦</u> 3	
w7	2	985		1	-	<u>-</u> 2	
w8	3	012		4	-	<u>-</u> 7	
w9	3	150		6	<u>+</u>	13	
n	0.044	0.015	0.004	0.005	± 0.007	<u>±0.010</u>	
р	2	.26	0	.20	<u>±</u> (0.40	
n1	0.0005	0.0004	0.0004	0.0004	0.0007	<u>+0.0009</u>	
R-square	0.9	9920					
value							

Table S7. Global Fitting results using Mathematica for MEMA in SSP and PPP polarization combinations

Parameters	Estimate	Estimated Values Standard Error Uncertainty Error		y Error with		
					95% Confi	dence Level
	SSP	PPP	SSP	PPP	SSP	PPP
A1	0.001	0.847	0.129	0.385	<u>+</u> 0.257	<u>±0.770</u>
A2	2.612	1.217	1.245	0.436	<u>+</u> 2.490	<u>±0.872</u>
A3	0.891	0.184	1.797	0.547	<u>+</u> 3.593	<u>+</u> 1.094
A4	2.753	0.001	0.615	0.173	±1.230	<u>+0.346</u>
A5	0.001	0.166	0.166	0.547	<u>+0.333</u>	<u>+</u> 1.094
A6	0.062	1.313	0.173	0.455	<u>+</u> 0.346	<u>+</u> 0.910
A7	1.240	0.634	0.614	0.641	<u>+</u> 1.228	<u>+</u> 1.281
A8	2.909	5.205	0.833	1.670	<u>+</u> 1.666	<u>+</u> 3.341
f1		37]	3	<u>+</u>	26
f2		28		5	<u>+</u>	11
f3		29	35		<u>+</u> 70	
f4	15		2		<u>±</u> 4	
f5	14		4		-	<u>+</u> 8
f6	11		3		-	<u>+</u> 5
f7	24		8		<u>+</u>	16
f8	2	43	7		±	13
w1	27	754	10		±20	
w2	28	368	4		± 8	
w3	29	903	1	12		24
w4	29	939	1		=	<u>+</u> 2
w5	29	968		2	-	<u>-</u> 4
w6	29) 90		1	-	<u>+</u> 2
w7	30)16		4	-	<u>-</u> 8
w8	30)97		6	<u>+</u>	13
n	0.022	0.038	0.004	0.006	<u>±0.007</u>	<u>+</u> 0.011
р	2.	.81	0.	.68	<u>±</u>]	.35
n1	0.001	0.002	0.0003	0.006	<u>+0.001</u>	± 0.001
R-square value	0.9	587				

Table S8. Global Fitting results using Mathematica for EEMA in SSP and PPP polarization combinations

Parameters	Estimate	ed Values	Standard Error		Uncertainty Error with	
					95% Confi	dence Level
	SSP	PPP	SSP	PPP	SSP	PPP
A1	0.202	0.001	0.206	0.137	<u>+</u> 0.411	<u>+0.274</u>
A2	3.000	0.617	0.654	0.150	<u>+</u> 1.308	<u>+0.300</u>
A3	3.915	0.102	1.461	0.163	<u>+</u> 2.922	<u>+0.325</u>
A4	3.971	0.001	0.742	1.230	<u>+</u> 1.484	± 0.260
A5	0.009	6.709	0.210	0.331	<u>+</u> 0.421	<u>+</u> 0.663
A6	1.577	0.0001	0.453	0.545	<u>+0.905</u>	<u>+</u> 1.090
A7	3.671	5.360	0.797	0.993	<u>+</u> 1.594	<u>+</u> 1.986
f1		31	2	26	<u>+</u>	52
f2	2	26		2	-	<u>-</u> 5
f3		30	6		<u>+</u> 12	
f4	1	18	1		±3	
f5	2	20	0.5		<u>+</u> 1	
f6	2	23	5		<u>+</u>	10
f7	4	41	7		<u>+</u>	13
w1	27	737	9		±18	
w2	28	368	1		<u>+</u> 3	
w3	29	910	2		4	<u>-</u> 4
w4	29	939	0	.5	1	<u>-</u> 1
w5	29	980		1	1	<u>+</u> 2
w6	30	017		3	1	<u>+</u> 5
w7	30)89		7	<u>+</u>	15
n	0.053	0.069	0.006	0.008	<u>+</u> 0.014	<u>+</u> 0.015
р	2	.32	0.	20	<u>+</u> ().40
n1	4.24E-05	0.0027	0.0007	0.0009	0.0013	<u>+</u> 0.0018
R-square value	0.9	910				

Table S9. Global Fitting results using Mathematica for IEMA in SSP and PPP polarization combinations

Parameters	Estimate	ed Values	Standard Error		Uncertainty Error with		
					95% Confi	dence Level	
	SSP	PPP	SSP	PPP	SSP	PPP	
A1	0.070	0.207	0.033	0.033	<u>+</u> 0.067	<u>+</u> 0.065	
A2	3.394	0.647	0.470	0.089	<u>+</u> 0.941	<u>+</u> 0.177	
A3	4.251	0.121	0.608	0.052	<u>+</u> 1.216	<u>+</u> 0.105	
A4	2.019	0.031	0.306	0.036	<u>+</u> 0.611	<u>±0.072</u>	
A5	0.102	6.946	0.187	0.285	<u>+</u> 0.373	<u>+</u> 0.570	
A6	1.724	0.802	0.762	0.662	<u>+</u> 1.523	<u>+</u> 1.324	
A7	3.898	8.631	0.342	0.537	<u>+</u> 0.683	<u>+</u> 1.075	
f1	1	14		6	<u>+</u>	12	
f2	-	33		2	<u>+</u>	<u>-</u> 4	
f3		24		2		<u>±</u> 4	
f4	15		1		<u>±2</u>		
f5	20		0.4		<u>±1</u>		
f6	2	14]	14	<u>+</u>	28	
f7	2	49	3		<u>+</u>	<u>-</u> 5	
w1	27	740	3		<u>+</u> 7		
w2	28	872	1		<u>+</u> 2		
w3	29	911	1		<u>+</u>	<u>-</u> 1	
w4	29	936	0.5		±1		
w5	29	982	C	0.3	±	0.6	
w6	30	017		7	<u>+</u>	15	
w7	31	106		4	<u>+</u>	<u>-</u> 7	
n	0.05	0.08	0.002	0.004	<u>+0.01</u>	<u>+</u> 0.01	
р	2.	.01	0	.05	<u>+</u> (0.10	
n1	0.0003	0.0018	0.00022	0.00053	0.0004	<u>+0.001</u>	
R-square	0.9	907					
value							

Table S10. Global Fitting results using Mathematica for TEMA in SSP and PPP polarization combinations

Parameters	Estimate	ed Values	Standard Error		Standard Error Uncertainty Error		y Error with
					95% Confi	dence Level	
	SSP	PPP	SSP	PPP	SSP	PPP	
A1	0.020	0.107	0.017	0.048	<u>+0.034</u>	<u>+0.095</u>	
A2	2.876	1.561	0.807	0.486	<u>+</u> 1.613	<u>+0.972</u>	
A3	2.376	1.233	0.728	0.405	<u>+</u> 1.456	<u>+</u> 0.810	
A4	2.514	0.002	0.180	0.121	<u>+0.360</u>	<u>+0.241</u>	
A5	0.002	3.471	0.271	0.538	<u>+</u> 0.541	<u>+</u> 1.076	
A6	0.235	1.580	0.171	0.350	<u>+0.342</u>	<u>+</u> 0.700	
A7	1.716	0.120	0.175	0.153	<u>+0.350</u>	<u>+</u> 0.307	
A8	4.734	5.830	0.909	1.060	<u>+</u> 1.818	<u>+</u> 2.120	
A9	2.293	1.948	0.687	0.674	<u>+</u> 1.374	<u>+</u> 1.348	
f1		7		4	<u>_</u>	-8	
f2	4	41		5	<u>+</u>	10	
f3		28	4		±7		
f4		14	0.5		±1		
f5		19		2		<u>-</u> 3	
f6	13		2		<u>+</u> 3		
f7		15		1		<u>-</u> 2	
f8	4	41	3		<u>+</u>	<u>-</u> 7	
f9	-	36	7		<u>+</u>	14	
w1	2	739	3		± 6		
w2	23	861	3		<u>±</u> 6		
w3	29	901	1		<u>+</u>	-2	
w4	29	935	1		<u> </u>	<u>-</u> 1	
w5	29	959		1	1	-2	
w6	29	985		1	<u> </u>	<u>-</u> 1	
w7	30	005		1	1	-2	
w8	30	053		3	<u> </u>	<u>-</u> 7	
w9	3	152		6	<u>+</u>	14	
n	0.04	0.04	0.01	0.01	± 0.02	± 0.02	
р	2	.28	0.	.45	<u>±(</u>).91	
n1	9.2E-05	0.00293	0.0006	0.0007	0.0013	<u>+</u> 0.0015	
R-square value	0.9	9877					

Table S11. Global Fitting results using Mathematica for PhEMA in SSP and PPP polarization combinations

Paran	neters
Refractive indices: n ₁ (air), n ₂ (liquid) and n _i (interface)	$n_{1,SFG} = n_{1,vis} = n_{1,IR} = 1.0$ $n_{2,SFG} = 1.4884$ $n_{2,vis} = 1.4848$ $n_{2,IR} = 1.4810$
P value	$n_{i,SFG} = n_{i,vis} = n_{i,IR} = 1.2442$
R-value Broom	3.4(-CH3)
$\beta_{a,a,c} = \beta_{b,b,c} = \beta_{c,c,c}$	1.0
$N_{\rm s}$ (number density)	1.0
$\omega_{vis}(\text{cm}^{-1})$	12578.6
$\omega_{IR}(\text{cm}^{-1})$	2900
$\omega_{SFG}(\text{cm}^{-1})$	15478.6
$ heta_{vis}(^{\circ})$	50
$ heta_{IR}(^{\circ})$	60
$ heta_{SFG}(^{\circ})$	51.7
$L_{xx,SFG}$	0.5943
$L_{xx,vis}$	0.6081
L _{xx,IR}	0.5228
L _{VV.SFG}	0.6578
$L_{yy,vis}$	0.6714
$L_{\gamma\gamma,IR}$	0.5878
L _{zz,SFG}	0.5278
$L_{zz,vis}$	0.5216
L _{zz,IR}	0.5339
Example: $\chi^{(2)}_{eff,ssp,ss}$	$0.117905 (4.4 \cos[\theta] + 2.4 \cos[\theta]^3)$

Table S12. Parameter values for generating the simulated SFG curves to obtain the orientation distribution for the monomers.

Figure S11. Orientational Analysis obtained from global or simultaneous fitting of SSP and PPP polarization combinations for A) MEMA and B) PhEMA. The simulated SFG amplitude ratios between CH₃ SS (SSP) to CH₃ SS (PPP) are plotted as a function of distribution angle with 95% CL.

Table S13. ST measurements of w	vater, MEMA,	PhEMA,	EEMA,	IEMA, a	and TE	MA	using
the Du Noüy ring method. ²⁷⁻²⁸							0

			Apparen	t ST	Correction Factor		Real ST ((dynes/cm)
		(dynes/cm)						
Liquid	Density	Tempe	Mean	Standard	Mean	Standard	Mean	Standard
	(g/mL)	rature		Deviation		Deviation		Deviation
		(° C)						
Water	1.000	22.5	80.9	0.1	0.9	9E-05	75.1	0.1
MEMA	0.993	24.3	34.3	0.3	0.9	4E-04	30.5	0.3
PhEMA	1.08	23.5	41.5	0.2	0.9	4E-04	36.9	0.2
EEMA	0.964	24.3	30.2	0.2	0.9	2E-04	26.9	0.2
IEMA	0.961	23.7	28.0	0.3	0.9	4E-04	24.9	0.2
TEMA	0.924	29.9	26.8	0.1	0.9	4E-04	23.8	0.1

***Equations Used:**

$$ST(\Upsilon) = f * P$$

(1)

where

f = correction factor

P = apparent ST

Correction factor (F) =
$$a + \sqrt{\frac{4b}{(\pi R_{mean})^2} * \frac{P}{\Delta \rho} - \frac{1.679r}{R} + 0.04534}$$
 (2)

where

R/r = 50.50 (given for the Pt ring)

Mean circumference= $2\pi R_{mean} = 6.161$ (given for the Pt ring) $\Delta \rho = (D-d)$ i.e., Density of liquid - density of air (0.001 g/mL) a = 0.725b = 0.0009705

S25

References:

1. Woods, D. A.; Petkov, J.; Bain, C. D., Surfactant Adsorption Kinetics by Total Internal Reflection Raman Spectroscopy. 1. Pure Surfactants on Silica. *J Phys Chem B* **2011**, *115*, 7341-7352.

2. Hirata, T.; Matsuno, H.; Kawaguchi, D.; Yamada, N. L.; Tanaka, M.; Tanaka, K., Effect of Interfacial Structure on Bioinert Properties of Poly(2-Methoxyethyl Acrylate)/Poly(Methyl Methacrylate) Blend Films in Water. *Phys Chem Chem Phys* **2015**, *17*, 17399-17405.

3. Oda, Y.; Horinouchi, A.; Kawaguchi, D.; Matsuno, H.; Kanaoka, S.; Aoshima, S.; Tanaka, K., Effect of Side-Chain Carbonyl Groups on the Interface of Vinyl Polymers with Water. *Langmuir* **2014**, *30*, 1215-1219.

4. Chen, C.; Loch, C. L.; Wang, J.; Chen, Z., Different Molecular Structures at Polymer/Silane Interfaces Detected by SFG. *The Journal of Physical Chemistry B* **2003**, *107*, 10440-10445.

5. Chen, Z.; Ward, R.; Tian, Y.; Baldelli, S.; Opdahl, A.; Shen, Y. R.; Somorjai, G. A., Detection of Hydrophobic End Groups on Polymer Surfaces by Sum-Frequency Generation Vibrational Spectroscopy. *J Am Chem Soc* **2000**, *122*, 10615-10620.

6. Hirata, T.; Matsuno, H.; Kawaguchi, D.; Hirai, T.; Yamada, N. L.; Tanaka, M.; Tanaka, K., Effect of Local Chain Dynamics on a Bioinert Interface. *Langmuir* **2015**, *31*, 3661-3667.

7. Kweskin, S. J.; Komvopoulos, K.; Somorjai, G. A., Molecular Restructuring at Poly(N-Butyl Methacrylate) and Poly(Methyl Methacrylate) Surfaces Due to Compression by a Sapphire Prism Studied by Infrared - Visible Sum Frequency Generation Vibrational Spectroscopy. *Langmuir* **2005**, *21*, 3647-3652.

8. Jakobsen, R. J.; Mikawa, Y.; Allkins, J. R.; Carlson, G. L., Vibrational Spectra of Propanoic Acid. *J Mol Struct* **1971**, *10*, 300-&.

9. Yu, Y.; Lin, K.; Zhou, X.; Wang, H.; Liu, S.; Ma, X., New C–H Stretching Vibrational Spectral Features in the Raman Spectra of Gaseous and Liquid Ethanol. *The Journal of Physical Chemistry C* **2007**, *111*, 8971-8978.

10. Quast, A. D.; Wilde, N. C.; Matthews, S. S.; Maughan, S. T.; Castle, S. L.; Patterson, J. E., Improved Assignment of Vibrational Modes in Sum-Frequency Spectra in the C-H Stretch Region for Surface-Bound C-18 Alkylsilanes. *Vib Spectrosc* **2012**, *61*, 17-24.

11. Li, B. L.; Zhou, J.; Xu, X.; Yu, J. C.; Shao, W.; Fang, Y.; Lu, X. L., Solvent Quality Affects Chain Conformational Order at the Polymer Surface Revealed by Sum Frequency Generation Vibrational Spectroscopy. *Polymer* **2013**, *54*, 1853-1859.

12. Ishiyama, T.; Sokolov, V. V.; Morita, A., Molecular Dynamics Simulation of Liquid Methanol. I. Molecular Modeling Including C-H Vibration and Fermi Resonance. *J Chem Phys* **2011**, *134*.

13. Ishiyama, T.; Sokolov, V. V.; Morita, A., Molecular Dynamics Simulation of Liquid Methanol. II. Unified Assignment of Infrared, Raman, and Sum Frequency Generation Vibrational Spectra in Methyl C-H Stretching Region. *J Chem Phys* **2011**, *134*.

14. Wang, J.; Chen, C.; Buck, S. M.; Chen, Z., Molecular Chemical Structure on Poly(Methyl Methacrylate) (PMMA) Surface Studied by Sum Frequency Generation (SFG) Vibrational Spectroscopy. *The Journal of Physical Chemistry B* **2001**, *105*, 12118-12125.

15. Ye, S.; Morita, S.; Li, G.; Noda, H.; Tanaka, M.; Uosaki, K.; Osawa, M., Structural Changes in Poly (2-Methoxyethyl Acrylate) Thin Films Induced by Absorption of Bisphenol A. An Infrared and Sum Frequency Generation (SFG) Study. *Macromolecules* **2003**, *36*, 5694-5703.

16. Rao, A.; Rangwalla, H.; Varshney, V.; Dhinojwala, A., Structure of Poly(Methyl Methacrylate) Chains Adsorbed on Sapphire Probed Using Infrared-Visible Sum Frequency Generation Spectroscopy. *Langmuir* **2004**, *20*, 7183-7188.

17. Tateishi, Y.; Kai, N.; Noguchi, H.; Uosaki, K.; Nagamura, T.; Tanaka, K., Local Conformation of Poly(Methyl Methacrylate) at Nitrogen and Water Interfaces. *Polym Chem-UK* **2010**, *1*, 303-311.

18. Larkin, P., Infrared and Raman Spectroscopy; Principles and Spectral Interpretation; Elsevier, 2011.

19. Wang, J.; Clarke, M. L.; Zhang, Y. B.; Chen, X. Y.; Chen, Z., Using Isotope-Labeled Proteins and Sum Frequency Generation Vibrational Spectroscopy to Study Protein Adsorption. *Langmuir* **2003**, *19*, 7862-7866.

20. Du, Q.; Freysz, E.; Shen, Y. R., Surface Vibrational Spectroscopic Studies of Hydrogen-Bonding and Hydrophobicity. *Science* **1994**, *264*, 826-828.

21. Ye, S.; Nihonyanagi, S.; Uosaki, K., Sum Frequency Generation (SFG) Study of the pH-Dependent Water Structure on a Fused Quartz Surface Modified by an Octadecyltrichlorosilane (OTS) Monolayer. *Phys Chem Chem Phys* **2001**, *3*, 3463-3469.

22. Zhu, H.; Jha, K. C.; Bhatta, R. S.; Tsige, M.; Dhinojwala, A., Molecular Structure of Poly(Methyl Methacrylate) Surface. I. Combination of Interface-Sensitive Infrared–Visible Sum Frequency Generation, Molecular Dynamics Simulations, and Ab Initio Calculations. *Langmuir* **2014**, *30*, 11609-11618.

23. Chen, C. Y.; Even, M. A.; Wang, J.; Chen, Z., Sum Frequency Generation Vibrational Spectroscopy Studies on Molecular Conformation of Liquid Polymers Poly(Ethylene Glycol) and Poly(Propylene Glycol) at Different Interfaces. *Macromolecules* **2002**, *35*, 9130-9135.

24. Zhu, H.; Jha, K. C.; Bhatta, R. S.; Tsige, M.; Dhinojwala, A., Molecular Structure of Poly(Methyl Methacrylate) Surface. I. Combination of Interface-Sensitive Infrared Visible Sum Frequency Generation, Molecular Dynamics Simulations, and Ab Initio Calculations. *Langmuir* **2014**, *30*, 11609-11618.

25. Lipschitz, I., The Vibrational-Spectrum of Poly(Methyl Methacrylate) - a Review. *Polym-Plast Technol* **1982**, *19*, 53-106.

26. Cimatu, K. A.; Chan, S. C.; Jang, J. H.; Hafer, K., Preferential Organization of Methacrylate Monomers and Polymer Thin Films at the Air Interface Using Femtosecond Sum Frequency Generation Spectroscopy. *J Phys Chem C* **2015**, *119*, 25327-25339.

27. Zuidema, H.; Waters, G., Ring Method for the Determination of Interfacial Tension. *Industrial & Engineering Chemistry Analytical Edition* **1941**, *13*, 312-313.

28. *Operation Manual for CSC Dunouy Tensiometers*.