dSERT dDAT	1	MDRSGSSDFAGAAATTGRSNPAPWSDDKESPNNEDDSNEDD	41
dSERT	42	GDHTTPAKVTDPLA <mark>P</mark> KLAN <mark>N</mark> ERILVVSVTERT <mark>RETW</mark> GQKAE	82
dDAT	1	MSPTGHISKSKT <mark>P</mark> TPHD <mark>N</mark> DNNSISD E <mark>RETW</mark> SGKVD	35
dSERT	83	FLLAVIGFAVDL <mark>GNVWRFPYICYQNGGGAFLVPY</mark> CLFLIFG	123
dDAT	36	FLLS <mark>VIGFAVDL</mark> ANVWRFPYLCYKNGGGAFLVPYGIMLVVG	76
dSERT		GLPLFYMELALGQFHRCGCLSIWKRICPALKGVGYAICLID	164
dDAT		GIPLFYMELALGQHNRKGAITCWGRLVPLFKGIGYAVVLIA	117
dSERT		IYMGMYYNTIIGWAVYYLFASFTSKLPWTSCDNPWNTENCM	205
dDAT		FYVDFYYNVIIAWSLRFFFASFTNSLPWTSCNNIWNTPNCR	158
dSERT		QVT <mark>SEN</mark> FTELAT	217
dDAT		PFE <mark>S</mark> QNASRVPVIGNYSDLYAMGNQSLLYNETYMNGSSLDT	199
dSERT	218	SAVGHVEGFQSAASEYFNRYILELNRSEGIHDLGAIKWDMA	248
dDAT	200		240
dSERT		LCVFGVFVLV <mark>YFSLWKG</mark> VRSA <mark>GKVVWVTALAPY</mark> VVLIILLV	289
dDAT		LCLLIVYLIC <u>YFSLWKG</u> ISTS <mark>GKVVWFTALFPY</mark> AVLLILLI	281
dSERT		RGVSLPGADEGIK <mark>YYLTP</mark> EWHKLKNSK <mark>VWIDAA</mark> SQIFFSLG	330
dDAT		RGLT <mark>LPG</mark> SFLGIQ <mark>YYLTP</mark> NFSAIYKAEVWVDAATQVFFSLG	322
dSERT	331	PGFGTLLALSSYNKFNNNCYRDALITSSINCLTSFLAGFVI	371
dDAT	323	PGFGVLLAYASYNKYHNNVYKDALLTSFINSATSFIAGFVI	363
dSERT		FSVLGYMAYVQKTSIDKVGLEGPGLVFIVYPEAIATMSGSV	412
dDAT		FSVLGYMAHTLGVRIEDVATEGPGLVFVVYPAAIATMPAST	404
dSERT		FWSIIFFLMLITLGLDSTFGGLEAMITALCDEYPRVIGRRR	453
dDAT		FWALIFFMMLLTLGLDSSFGGSEAIITALSDEFPK-IKRNR	444
dSERT		ELFVLLLAFIFLCALPTMTYGGVVLVNFLNVYGPGLAILF	494
dDAT		ELFVAGLFSLYFVVGLASCTQGGFYFFHLLDRYAAGYSILV	485
dSERT	495	VVFVEAAGVFWFYGVDRFSSDVEQMLGSKPGLFWRICWTYI	535
dDAT	486	AVFFEAIAVSWIYGTNRFSEDIRDMIGFPPGRYWQVCWRFV	526
dSERT	536	SPVFLLTIFIFSIMGYKEMLGEEYYYPDWSYQVGWAVTCSS	576
dDAT	527	APIFLLFITVYGLIGYEPLTYADYVYPSWANALGWCIAGSS	567
dSERT		VLCIPMYIIYKFFFASKGGCRQRLQESFQPEDNCG <mark>S</mark> VVPGQ	617
dDAT		VVM <mark>IP</mark> AVAIFKLL-STPGSLRQRFTILTTPWRDQQSMAMVL	607
dSERT		QGTSV	622
dDAT		NGVTTEVTVVRLTDTETAKEPVDV	631

Figure S1: Sequence alignment of dSERTand dDAT using Jalview 2.8.1. Conserved amino acid residues are indicated in blue box.

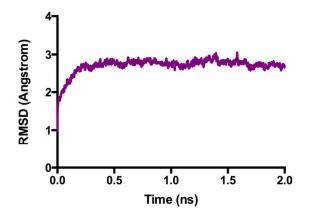


Figure S2: The Root Mean Square Deviations (RMSD) of backbone atoms relative to the starting complex dSERT/4-MTA during the 20 ns molecular dynamics.

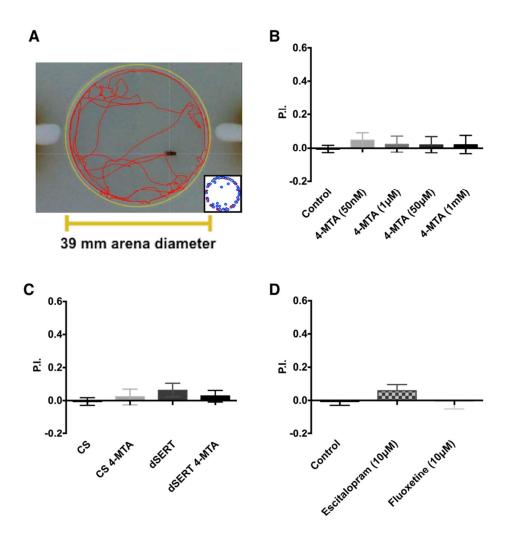


Figure S3: In absence of odorant, flies do not express preference for any side of the arena. (A) Set up for behavioral assay. It is possible to track the movement of fly in a circular arena (red traces). In the representative experiment shown, it is not possible to detect a preference of the fly for a side (left or right). (B) Flies exposed to different concentration of 4-MTA do not show preference for any side in the arena. (C) Control of dSERT mutant flies, fed or not with 4-MTA, show no naïve preference for a side of the arena. The number of experiments ("n") in (B) and (C), in each condition, is as indicated in Fig. 5. (D) Flies show no preference for any side of the arena, even

when fed drugs that act on dSERT (10 μ M escitalopram and 10 μ M fluoxetine). The number of experiments ("n") per condition is 21, 12 and 15 flies, respectively.

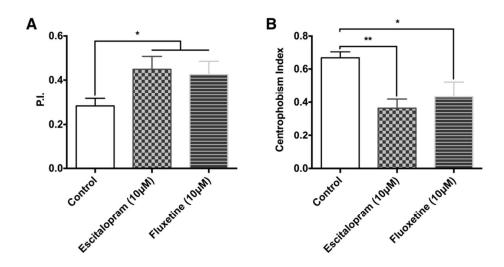


Figure S4: Feeding control flies with escitalopram or fluoxetine affects olfactory response and centrophobism. (A) Aversive response towards Bz, measured as Performance Index (P.I.) is significantly increased after feeding flies escitalopram (10 μ M) or fluoxetine (10 μ M). One-way ANOVA followed by Tukey post-test; * indicates p<0.05 as compared to control situation (no drug) (B) Centrophobism is decreased after flies are fed escitalopram (10 μ M) or fluoxetine (10 μ M) for five minutes. One-way ANOVA followed by Tukey post-test; * indicates p<0.05 as compared to control situation (no drug). The number of experiments ("n") per condition is 21, 12 and 15 flies, respectively.

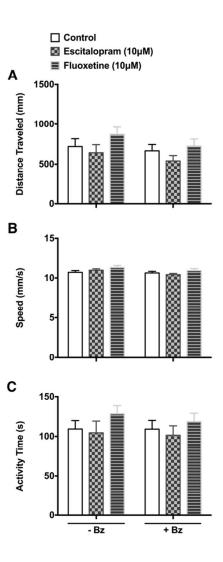


Figure S5: Feeding control flies escitalopram or fluoxetine does not affect motor performance. Flies were fed escitalopram (10 μ M) or fluoxetine (10 μ M) for five minutes. Afterwards, three parameters were assessed: (A) Distance traveled, (B) Speed and (C) Activity time. No statistical differences were observed between the experimental groups. One-way-ANOVA followed by Tukey post-test. The number of experiments ("n") per condition is 21, 12 and 15 flies, respectively.