Supporting Information

Total Synthesis, and structural revision of chaetoviridins A
Mehdi Makrerougras, Romain Coffinier, Samuel Oger, Arnaud Chevalier, Cyrille Sabot,* and Xavier Franck*
Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA, UMR 6014, 76000
Rouen, France

Table of Contents

I. Materials and Methods 2
II. Chiral HPLC traces for compound $\mathbf{1 2}$ and its racemic mixture 3
III. Circular dichroism spectroscopy of chaetoviridins 24, 25, 29-32 4
IV. Experimental procedures 5
IV.1. Synthesis of the ($7 S, 4^{\prime} S, 5^{\prime} R, 11 S$)-chaetoviridin-A 24 and its epimer ($7 R, 44^{\prime} S, 5^{\prime} R, 11 S$)- chaetoviridin-A 25 5
IV.2. Synthesis of the ($7 S, 4^{\prime} S, 5^{\prime} S, 11 S$)-chaetoviridin-A 29 and its epimer ($7 R, 4^{\prime} S, 5^{\prime} S, 11 S$)- chaetoviridin-A $\mathbf{3 0}$ 12
IV.3. Synthesis of the revised structure of chaetoviridin-A, ($7 S, 4^{\prime} R, 5^{\prime} R, 11 S$)-chaetoviridin-A 31 and its ($7 R$)-epimer ($7 R, 4^{\prime} R, 5^{\prime} R, 11 S$)-chaetoviridin-A 32 17
V. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} N M R$ 22
VI. References 52

I. Materials and Methods

General Information

All solvents were dried following standard procedures: toluene, methylene chloride (DCM) was obtained from MB SPS-800 apparatus from MBRAUN. THF: distillation over $\mathrm{Na}^{\circ} /$ benzophenone. Cyclohexane and ethyl acetate (EtOAc) were purchased at ACS grade quality and used without further purification, unless otherwise stated. Commercially available reagents were used without further purification, unless otherwise stated. All reactions involving air- and moisture sensitive reagents were performed under Argon using syringe-septum cap technique. Column chromatography purifications were performed on silica gel (40-63 $\mu \mathrm{m}$). Thin-layer chromatography (TLC) analyses were carried out on Merck DC Kieselgel 60 F-254 aluminum sheets. The spots were visualized through illumination with UV lamp ($\lambda=254 \mathrm{~nm}$) and/or staining with KMnO_{4}. Phosphate buffer PB ($0.1 \mathrm{M}, \mathrm{pH} 7.4$) was prepared using water purified with a Milli-Q system (purified to $18.2 \mathrm{M} \Omega . \mathrm{cm}$).

Instruments and methods

Circular dichroism (CD) spectra were acquired on a MOS 500 dichrograph (Bio-Logic, Claix, France). Each chaetoviridin was dissolved in MeOH at a final concentration of $0.2 \mathrm{mg} / \mathrm{mL}$. Data points were collected from 200 to 500 nm at a scan rate of $1 \mathrm{~nm} / \mathrm{s}$ with a 1 mm optical path length quartz cell, and were measured at room temperature $\left(20^{\circ} \mathrm{C}\right)$. IR spectra were recorded with a universal ATR sampling accessory. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (C13APT or C13CPD experiments) were recorded on a 300 MHz spectrometer. Chemical shifts are expressed in parts per million (ppm) from the residual nondeuterated solvent signal contained in $\mathrm{CDCl}_{3}(\delta \mathrm{H}=7.26, \delta \mathrm{C}=77.16)$. Multiplicities are described as s (singlet), d (doublet), t (triplet), q (quartet), qn (quintet), st (sextet), sp (septet), m (multiplet), bs (broad singlet), dm (doublet of multiplets) and associated combinations dd, ddd, etc. (doublet of doublets, doublet of doublets of doublets, etc.). Coupling constants, J values, are reported in Hz . High-resolution mass spectra (HRMS) were obtained using an orthogonal acceleration time-of-flight (oa-TOF) mass spectrometer equipped with an electrospray source and in the positive and negative modes (ESI+/-). Optical rotations were determined on a Perkin Elmer 341 digital polarimeter at $\lambda=$ 589 nm (i.e., sodium D line), using a 1.0 mL cell ($I=1 \mathrm{dm}$), and are given as $[\alpha]^{\top}{ }^{\mathrm{D}}$, which were calculated as following: $[\alpha]_{D}^{\top}=100 \times(\alpha / I \times c)$ where c : concentration in $g / 100 \mathrm{~mL}$ solvent.

II. Chiral HPLC traces for compound 12 and its racemic mixture

Column: Chiralpak IC ($5 \mu \mathrm{~m}, 4.6 \times 250 \mathrm{~mm}$);
Eluent system: Heptane/isopropanol A (95:5);
Flow rate: $1 \mathrm{~mL} / \mathrm{min}$;

Figure S1. Chiral HPLC trace overlay of the enantiopure lactone $\mathbf{1 2}$ and its racemic mixture.

III. Circular dichroism spectroscopy of chaetoviridins 24, 25, 29-32

Figure S2. Circular dichroism spectra of chaetoviridins: (a) 24 (black line), 25 (dotted line); (b) 29 (black line), $\mathbf{3 0}$ (dotted line); (c) $\mathbf{3 1}$ (black line), $\mathbf{3 2}$ (dotted line), recorded in MeOH at $20^{\circ} \mathrm{C}$.

IV. Experimental procedures

IV.1. Synthesis of the ($7 S, 4^{\prime} S, 5^{\prime} R, 11 S$)-chaetoviridin-A 24 and its epimer (7R, 4'S, 5'R, 11S)-chaetoviridin-A 25

Methyl 3-chloro-4,6-dihydroxy-2,5-dimethylbenzoate:

To a solution of methyl atratate 7 ($20 \mathrm{~g}, 101.9 \mathrm{mmol}, 1$ eq.) in $\mathrm{MeCN}(150 \mathrm{~mL})$ was added N -chlorosuccinimide ($16.3 \mathrm{~g}, 122 \mathrm{mmol}, 1.2 \mathrm{eq}$.) at room temperature. The mixture was then heated at $50^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was concentrated under reduced pressure. The crude product was then purified by flash chromatography (silica gel, cyclohexane/EtOAc 95:5) to give the title compound ($23 \mathrm{~g}, 100$ $\mathrm{mmol}, 98 \%)$ as a white solid. $R_{f}=0.5$ (Cyclohexane/EtOAc 95:5); m.p.: 94-96 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 11.70(\mathrm{~s}, 1 \mathrm{H}), 6.16(\mathrm{brs}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (300MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 172.0,160.9153 .9,135.7,113.7,110.5,106.4,52.3,19.8,8.8$; IR (Neat) $v\left(\mathrm{~cm}^{-1}\right):$ 3465, 2783, 1725, 1653, 1581, 1433, 1409, 1381, 1300, 1269, 1193, 1163, 1098; HRMS (ESITOF): calculated for $\mathrm{C}_{1} \mathrm{OH}_{10} \mathrm{O}_{4} \mathrm{Cl}\left(\left[\mathrm{M}^{35} \mathrm{Cl}+\mathrm{H}\right]^{+}\right)\left(\left[\mathrm{M}^{35} \mathrm{Cl}-\mathrm{H}\right]^{-}\right)$: 229.0268, found 229.0258.

Methyl 3-chloro-4,6-bis(methoxymethoxy)-2,5-dimethylbenzoate 8:

To a solution of methyl 3-chloro-4,6-dihydroxy-2,5-dimethylbenzoate (13.2 $\mathrm{g}, 57.2 \mathrm{mmol}, 1$ eq.) in DMF (250 mL) at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(60 \%$ in mineral oil, $6.86 \mathrm{~g}, 171.6 \mathrm{mmol}, 3 \mathrm{eq}$. .). The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 20 min , then a solution of chloromethyl methyl ether $(2.1 \mathrm{M}$ in toluene, $83.6 \mathrm{~mL}, 171.6 \mathrm{mmol}, 3$ eq.) was slowly added. The resulting mixture was warmed to room temperature and stirred for 3 h before it was quenched with a solution of saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated and the aqueous layer was extracted with cyclohexane ($4 \times 200 \mathrm{~mL}$). The combined organic layers were washed with a solution of saturated aq NaHCO_{3}, dried over anhydrous MgSO_{4} and concentrated under reduced pressure. Finally, the crude product was purified by chromatography (silica gel, cyclohexane/EtOAc 90:10) to afford the corresponding ester 8 ($13.6 \mathrm{~g}, 43,75 \%$) as pale yellow oil. $R_{f}=0.5$ (cyclohexane/EtOAc 80:20); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 5.06(\mathrm{~s}, 2 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 2.29$ (s, 3H), $2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 168.0,153.9,151.9,132.4,126.8,125.4$, $124.9,100.5,99.6,57.9,57.6,52.5,17.7,11.2$; IR (Neat) $v\left(\mathrm{~cm}^{-1}\right): 2952,2830,1730,1590,1561,1433$,

1384, 1322, 1302, 1270, 1210, 1193, 1154, 1111, 1086, 1041, 994. HRMS (ESITOF): calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{Cl}\left(\left[\mathrm{M}^{35} \mathrm{Cl}+\mathrm{H}\right]^{+}\right): 319.0948$, found 319.0936.

2-(2-chloro-6-(methoxycarbonyl)-3,5-bis(methoxymethoxy)-4-methylphenyl)acetic acid 9:

To a stirred solution of DIPA ($5.74 \mathrm{~mL}, 41.7 \mathrm{mmol}, 1.3 \mathrm{eq}$.) in THF (200 mL) at $-78{ }^{\circ} \mathrm{C}$ was slowly added 15.5 mL of n-BuLi solution (2.5 M in hexane, $11.2 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) . The resulting mixture was warmed to 0{ }^{\circ} \mathrm{C}$ and stirred for 20 min before re-cooling to $-78^{\circ} \mathrm{C}$. Then a solution of ester $8(10 \mathrm{~g}, 31.3$ $\mathrm{mmol}, 1$ eq.) in THF (10 mL) was added. The resulting reddish mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 min before adding dry ice. Then, the reaction mixture was stirred for 10 min at $-78^{\circ} \mathrm{C}$ before warming up to room temperature. Aqueous 1 M HCl was carefully added until $\mathrm{pH}=1$. The layers were separated and the aqueous layer was extracted with EtOAc ($5 \times 60 \mathrm{~mL}$), washed with brine (100 mL), dried over anhydrous MgSO_{4} and concentrated under reduced pressure to furnish the crude product 9 as pale yellowish solid ($10.9 \mathrm{~g}, 30.1 \mathrm{mmol}, 95 \%$). $R_{f}=0.4$ (cyclohexane/EtOAc 50:50); m.p.: 80-82 ${ }^{\circ} \mathrm{C}^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 5.08(\mathrm{~s}, 2 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.85$ ($\mathrm{s}, 2 \mathrm{H}$), $3.63(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 175.4,167.3,154.5$, 152.9, 128.8, 127.9, 126.6, 125.9, 100.6, 99.7, 58.0, 57.7, 52.7, 36.7, 11.4; IR (Neat), v (cm ${ }^{-1}$): 2953, 2831, 1728, 1561, 1423, 1384, 1299, 1276, 1210, 1195, 1154, 1046, 974; HRMS (ESITOF): calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{Cl}\left[\mathrm{M}^{35} \mathrm{Cl}_{-\mathrm{CO}_{2}}\right]^{-}$317.0792, found 317.0797.

Methyl 3-chloro-4,6-bis(methoxymethoxy)-5-methyl-2-(2-oxo-2-(perfluorophenoxy)ethyl)benzoate 10:

To a stirred solution of acid 9 ($5 \mathrm{~g}, 13.8 \mathrm{mmol}, 1 \mathrm{eq}$.) and pentafluorophenol ($3.1 \mathrm{~g}, 16.5 \mathrm{mmol}, 1.2$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ were added EDCI ($3.2 \mathrm{~g}, 16.5 \mathrm{mmol}, 1.2 \mathrm{eq}$.) and DMAP (337 mg , $2.76 \mathrm{mmol}, 0.2$ eq.). The mixture was stirred at rt for 1 h before it was quenched with a solution of saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\times 40 \mathrm{~mL}$), and the organic layers were combined and dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. Finally, the crude product was purified by chromatography (silica gel, cyclohexane/EtOAc 93:7) to afforded ester 10 ($4.7 \mathrm{~g}, 1.7$ mmol, 65 \%) as a white solid: $\mathrm{R}_{\mathrm{f}}=0.4$ (cyclohexane/EtOAc 85:15); mp: $74-76{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 5.10(\mathrm{~s}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 166.9,165.7,154.7,153.3,141.2(\mathrm{dm}, \mathrm{J}=247.5 \mathrm{~Hz}, 2 \mathrm{C}), 139.6$
(dm, J = 255 Hz), 137.9 ($\mathrm{dm}, \mathrm{J}=255 \mathrm{~Hz}, 2 \mathrm{C}$), 128.6, 127.6, 126.7, 125.8, 125.1, 100.7, 99.8, 58.0, 57.7, 52.6, 36.0, 11.5; ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 152.5(\mathrm{~d}, \mathrm{~J}=16.9 \mathrm{~Hz}, 2 \mathrm{~F}), 157.8(\mathrm{t}, \mathrm{J}=21.4 \mathrm{~Hz}$, 1F), 162.4 (t, J = $19.7 \mathrm{~Hz}, 2 F)$; IR (Neat), v (cm-1) : 2961, 1783, 1745, 1516, 1434, 1416, 1327, 1302, 1251, 1155, 1102, 1085, 992 ; HRMS (ESITOF): calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{ClF}_{5} \mathrm{KO}_{8}\left[\mathrm{M}^{35} \mathrm{Cl}+\mathrm{K}\right]^{+}$567.0247, found 567.0248.

(S,E)-5-chloro-6,8-bis(methoxymethoxy)-7-methyl-3-(3-methylpent-1-en-1-yl)-1H-isochromen-1one 12 :

To a stirred solution of dimethyl (trimethylsilyl)methylphosphonate ${ }^{1}$ ($\left.5.09 \mathrm{~g}, 26.0 \mathrm{mmol}, 2.2 \mathrm{eq}.\right)$ in THF (30 mL) at $-78{ }^{\circ} \mathrm{C}$ was added n-BuLi $(10 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexane, $24.8 \mathrm{mmol}, 2.1 \mathrm{eq}$.$) . The mixture was stirred for 30 \mathrm{~min}$ at $-78{ }^{\circ} \mathrm{C}$ before adding a solution of ester $10(6.24 \mathrm{~g}, 11.8$ mmol, 1 eq.) in THF (20 mL). After stirring for 1 h at $-78^{\circ} \mathrm{C}$, the orange reaction medium was hydrolyzed by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added and allowed to reach room temperature. The mixture was extracted with EtOAc $(4 \times 100 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was filtered through a thick pad of silica gel, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 99: 1$ to give a yellow oil containing a 65:35 (${ }^{1} \mathrm{H}$ NMR estimation) mixture of ketophosphonate 11 and dimethylphosphonate which was used in the next step without further purification. 1.6 g of this crude mixture dissolved in anhydrous EtOH (25 mL) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(920 \mathrm{mg}, 6.63 \mathrm{mmol}, 3$ eq.) at room temperature. The reaction mixture was stirred 20 min and the freshly prepared aldehyde (S) - $\mathbf{1 3}^{2}$ ($571 \mathrm{mg}, 6.63 \mathrm{mmol}, 3$ eq.) was added. The resulting mixture was stirred at room temperature overnight before it was quenched with a solution of saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc $(3 \times 40 \mathrm{~mL})$, then combined organic layers were washed with brine (50 mL), dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by chromatography on silica gel, eluting with cyclohexane/EtOAc 95:5 to afford the lactone 12 (660 mg, 1.78 mmol), as a white solid in 37% yield on the three steps (phosphonatation, wittig and lactonization). $R_{f}=0.4$ (cyclohexane/EtOAc : 80/20); m.p.: $53-55^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm) : $6.61(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{dd}, \mathrm{J}=15,9 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 3.63$ $(\mathrm{s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{sp}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H})$, $0.87(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 158.7,158.4,158.3,153.1,143.4,136.3$, $128.0,120.2,118.8,110.6,101.9,100.2,99.8,58.1,57.8,38.8,29.4,19.6,11.8,11.5$; IR (Neat), v (cm^{-} ${ }^{1}$): 2961, 2918,1737, 1651, 1617, 1571, 1537, 1438, 1383, 1360, 1301, 1277, 1236, 1161, 1111, 1083,

1054, 979. HRMS (ESITOF): calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{6}{ }^{35} \mathrm{CINa}\left[\mathrm{M}^{35} \mathrm{Cl}+\mathrm{Na}\right]^{+} 419.1237$, found 419.1232; $[\alpha]_{D}{ }^{25.0}=+22\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

7RS,11S cazisochromene 14:

To a stirred solution of lactone 12 ($530 \mathrm{mg}, 1.33 \mathrm{mmol}, 1 \mathrm{eq}$.) in toluene (20 mL) at $-78^{\circ} \mathrm{C}$ was added DiBAI-H (1.2 M in toluene, 1.44 $\mathrm{mL}, 1.72 \mathrm{mmol}, 1.3$ eq.). The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 min before it was quenched with an aqueous solution of 1 M HCl . The reaction medium was diluted with EtOAc and the two layers were separated. The combined organic layers were washed with an aqueous solution of $1 \mathrm{M} \mathrm{HCl}(4 \times 10 \mathrm{~mL})$, brine, dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure to afford the lactol as a yellow oil containing a mixture of diastereomers, which was immediately used without further purification. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at room temperature, and TFA ($717 \mu \mathrm{~L}, 9.31$ $\mathrm{mmol}, 7$ eq.) was added, followed by water ($480 \mu \mathrm{~L}, 26.6 \mathrm{mmol}, 20 \mathrm{eq}$.) and IBX (1.12, $4 \mathrm{mmol}, 3 \mathrm{eq}$.). The resulting mixture was stirred for 3 h before it was filtered to remove the insoluble IBX residue and the filtrate was dried over anhydrous MgSO_{4}, then concentrated under reduced pressure. The crude product was purified by chromatography (silica gel, cyclohexane/EtOAc from 80:20 to 60:40) afforded alcohol 14 as an inseparable mixture of C-7 epimers ($138 \mathrm{mg}, 0.45 \mathrm{mmol}, 34 \%$) and as an orange/brown oil. $R_{f}=0.2$ (cyclohexane/EtOAc $60: 40$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.92$ (s, $1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=9.0 ; 15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{qn}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.58$ ($s, 3 \mathrm{H}$), $1.45(\mathrm{qn}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.09(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 194.0,189.9,157.7,151.7,148.0,140.0,119.8,115.3,109.5,105.7,84.1,39.1$ and 39.0 (2 dias), 29.2, 28.7, 19.3 and 19.3 (2 dias), 11.8; IR (Neat), $v\left(\mathrm{~cm}^{-1}\right): 3361,2970,1719,1615$, 1518, 1420, 1241, 1215, 1173, 1139, 1100, 1016, 977; HRMS (ESITOF): calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4}{ }^{35} \mathrm{Cl}$ $\left[\mathrm{M}^{35} \mathrm{Cl}+\mathrm{H}\right]^{+}$309.0894, found 309.0896.

(2S,3R)-methyl 3-hydroxy-2-methylbutanoate 17: ${ }^{3}$

To a stirred solution of aldol $16^{4}(1,00 \mathrm{~g}, 3.2 \mathrm{mmol}, 1 \mathrm{eq}$.) in $\mathrm{MeOH}(50 \mathrm{~mL})$ was added DMAP ($100 \mathrm{mg}, 0.8 \mathrm{mmol}, 0.25 \mathrm{eq}$.) at room temperature. The mixture was stirred for 16 h and the solvent was removed under reduced pressure. The crude product was purified by chromatography (silica gel, cyclohexane/EtOAc 85:15) to afford ester 17 (230 $\mathrm{mg}, 55 \%$) as a colorless oil. $R_{f}=0.2$ (cyclohexane/EtOAc 70:30); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: $4.07(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{bs}, 1 \mathrm{H}), 2.52(\mathrm{qd}, J=7.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.17$ ($\mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}$). This ${ }^{1} \mathrm{H}$ NMR analysis was consistent with reported data. ${ }^{3}$

(4S,5R)-tert-butyl 5-hydroxy-4-methyl-3-oxohexanoate 18: ${ }^{3}$

To a stirred solution of DIPA ($1.4 \mathrm{~mL}, 9.9 \mathrm{mmol}, 3.3 \mathrm{eq}$.) in THF (20 mL) at -78 ${ }^{\circ} \mathrm{C}$ was slowly added n-BuLi (2.5 M in hexane, $3.7 \mathrm{~mL}, 9.3 \mathrm{mmol}, 3.2 \mathrm{eq}$.). The resulting mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 20 min before re-cooling to $-78^{\circ} \mathrm{C}$. Then, a solution of ester 17 ($400 \mathrm{mg}, 3.03 \mathrm{mmol}, 1 \mathrm{eq}$.) in THF (5 mL) was added, and the resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1.5 h before it was warmed to room temperature. The reaction was quenched by addition of 15 mL of a solution of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the two layers were separated. The aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), then combined organic layers were washed with brine (20 mL) dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The crude was purified by column chromatography on silica gel, eluting with cyclohexane/AcOEt 70:30 to afford the β-ketoester 18 in equilibrium with minor amounts of its enol form ($600 \mathrm{mg}, 2.77 \mathrm{mmol}, 91 \%$) as a colorless oil. $R_{f}=0.3$ (cyclohexane/EtOAc 80:20); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 4.17(\mathrm{dq}, J=6.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.41$ $(\mathrm{d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dq}, J=7.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=7.2$ $\mathrm{Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 208.0,166.6,82.3,67.3,51.9,49.9,28.1,20.0,9.9$; IR (Neat), $v\left(\mathrm{~cm}^{-1}\right): 3432,2976,2930,1729,1704,1456,1368,1317,1250,1145,1073,951$; HRMS (ESITOF): calculated for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$239.1259, found 239.1261; The ${ }^{1} \mathrm{H}$ NMR analysis was consistent with reported data. ${ }^{3}$

(4S,5R)-tert-butyl 5-acetoxy-4-methyl-3-oxohexanoate 19a:

To a stirred solution of β-ketoester 18 ($550 \mathrm{mg}, 2.54 \mathrm{mmol}, 1 \mathrm{eq}$.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(33 \mathrm{~mL})$ at room temperature were successively added $\mathrm{Et}_{3} \mathrm{~N}$ (696 $\mu \mathrm{L}, 5.09 \mathrm{mmol}, 2 \mathrm{eq}$.), 4-DMAP ($62 \mathrm{mg}, 0.51 \mathrm{mmol}, 0.2 \mathrm{eq}$.) and acetic anhydride ($264 \mu \mathrm{~L}, 2.81 \mathrm{mmol}, 1.1 \mathrm{eq}$.). The resulting mixture was stirred for 2 h before it was quenched by 15 mL a solution of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the two layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20)$, then organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by chromatography (silica gel, cyclohexane/EtOAc 80:20) to afford the corresponding acetylated product 19a in equilibrium with minor amounts of its enol form ($577 \mathrm{mg}, 2.23 \mathrm{~mol}, 88 \%$) as a pale orange oil. $R_{f}=0.4$ (cyclohexane/EtOAc $80: 20$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 5.17$ (qn, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{qn}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H})$, $1.46(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 204.2$, $170.3,166.4,82.1,70.8,50.5,50.3,28.1,21.2,17.5,11.8 ; \operatorname{IR}, v\left(\mathrm{~cm}^{-1}\right): 2984,1734,1712,1644,1456$,

1368, 1320, 1236, 1145, 1075, 1021, 946 ; HRMS (ESITOF): calculated for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ 281.1365, found 281.1359 .
(2R,3S)-3-(2,2-dimethyl-4-oxo-4H-1,3-dioxin-6-yl)butan-2-yl acetate 20:

To a stirred solution of acetylated β-ketoester 19a ($400 \mathrm{mg}, 1.54 \mathrm{mmol}, 1$ eq.) in acetone ($1.13 \mathrm{~mL}, 15.4 \mathrm{mmol}, 10 \mathrm{eq}$.) at $0{ }^{\circ} \mathrm{C}$ were successively added acetic anhydride ($2.2 \mathrm{~mL}, 23.1 \mathrm{mmol}, 15 \mathrm{eq}$.) and sulfuric acid ($83 \mu \mathrm{~L}, 1.54 \mathrm{mmol}, 1$ eq.). The resulting mixture was stirred for 1 h before it was quenched with a solution of saturated aq NaHCO_{3} and the two layers were separated. The aqueous layer was extracted with EtOAc $(3 \times)$, then organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by chromatography (silica gel, cyclohexane/EtOAc 90:10) afforded the dioxinone 20 ($277 \mathrm{mg}, 75 \%$) as a white solid: $\mathrm{R}_{\mathrm{f}}=0.5$ (cyclohexane/EtOAc 80:20); mp: 48-50 ${ }^{\circ} \mathrm{C}^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 5.24$ (s, 1H), 5.02 (qn, J $=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{qn}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$, $1.13(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 171.9,170.3,161.1,106.5,94.1,70.5,43.0$, 25.6, 24.3, 21.1, 17.9, 12.5; IR (Neat), v (cm^{-1}): 2929, 1721, 1634, 1457, 1365, 1314, 1271, 1238, 1203, 1079, 1054, 1024, 998 ; HRMS (ESITOF): calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$265.1052, found 265.1060; $[a]_{D}^{22}=+25\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

6-((2S,3R)-3-hydroxybutan-2-yl)-2,2-dimethyl-4H-1,3-dioxin-4-one:

To a suspension of lipase Candida cylindracea in 0.1 M phosphate buffer ($\mathrm{pH}=$ 7.4, 12 mL) was added dioxinone 20 ($256 \mathrm{mg}, 1.05 \mathrm{mmol}, 1$ eq.) in THF (3.5 mL) at room temperature. The resulting mixture was stirred for 6 days at $30^{\circ} \mathrm{C}$ before it was quenched by a mixture of water/EtOAc (1:1) and the two layers were separated. The aqueous layer was extracted with $\operatorname{EtOAc}(5 \times 10 \mathrm{~mL})$, then organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure to afford the deprotected dioxinone ($186 \mathrm{mg}, 0.93$ $\mathrm{mmol}, 88 \%)$ as a pale yellow residue which was used without further purification ; $R_{f}=0.2$ (cyclohexane/EtOAc 50:50); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 5.28(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{qn}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.2(\mathrm{qn}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{bs}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 6 \mathrm{H}), 1.21(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta(\mathrm{ppm}): 172.4,160.3,105.4,92.6,67.8,44.2,24.3,23.6,20.2,10.9$; IR (neat), $v(c m-1): 3437,2974,2928,1708,1626,1456,1391,1377,1274,1253,1203,1145,1096,1014,996 ;$ HRMS (ESITOF): calculated for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$201.1127, found 201.1115; $[a]_{D}^{22}=+10(c=1.0$, CHCl_{3}).

6-((2S,3R)-3-((tert-butyldimethylsilyl)oxy)butan-2-yl)-2,2-dimethyl-4H-1,3-dioxin-4-one 21:

To a stirred solution of dioxinone 33 ($96 \mathrm{mg}, 0.48 \mathrm{mmol}, 1 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 mL) were successively added imidazole ($95 \mathrm{mg}, 0.72 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and TBDMSCl ($95 \mathrm{mg}, 0.62 \mathrm{mmol}, 1.3 \mathrm{eq}$.). The resulting mixture was stirred for 48 h at room temperature before addition of supplementary imidazole ($95 \mathrm{mg}, 0.72 \mathrm{mmol}$, 1.5 eq.) and TBDMSCl ($95 \mathrm{mg}, 0.62 \mathrm{mmol}, 1.3 \mathrm{eq}$). The reaction was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel, eluting with cyclohexane/EtOAc (95:5) to afford the dioxinone 21 ($119 \mathrm{mg}, 0.38 \mathrm{mmol}, 79 \%$) as a yellow oil: $R_{f}=$ 0.5 (cyclohexane/EtOAc : 80/20); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 5.24(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{qn}, J=6 \mathrm{~Hz}$, 1H), 2.25 (qn, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 6 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H})$, $0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 173.8,161.5,106.3,93.8,69.3,46.5,25.8$, 25.2, 25.1, 21.9, 18.1, 12.9, -4.0, -4.7; IR (Neat), v (cm-1): 2929, 2863, 1732, 1628, 1464, 1389, 1376, 1271, 1250, 1203, 1100, 1030, 995; HRMS (ESITOF): calculated for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{Si}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 315.1992$, found 315.1996; $[a]_{D}^{22}=-5\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

Procedure for the condensation of dioxinone 21 on dearomatized alcohol 14.

To a stirred solution of dearomatized alcohol 14 ($109 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.0$ equiv.) in dry toluene (4 mL) under were added $4 \AA ̊$ molecular sieves (50 mg) and the dioxinone 21 ($133 \mathrm{mg}, 0.42 \mathrm{mmol}, 1.2$ equiv.). The resulting mixture was stirred for 10 min at room temperature then 1 h under toluene reflux. Triethylamine ($91 \mu \mathrm{~L}, 0.706 \mathrm{mmol}, 2.0$ equiv.) was added and the reaction was stirred for 1 h under reflux. The reaction was then cooled down to room temperature, hydrolyzed with 10 mL 1 M aqueous HCl , extracted with EtOAc ($4 \times 10 \mathrm{~mL}$), washed with brine (15 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. ${ }^{1} \mathrm{H}$ NMR analysis of the crude indicated the formation of two products. The crude mixture was dissolved in dry THF (5 mL), and HF-pyridine complex was added was added portionwise every 6 h (i.e. 70% HF basis, $1.1 \mathrm{~mL}, 105 \mathrm{mmol}, 300$ equiv.) until complete reaction. Reaction was quenched by slow addition of saturated aqueous sodium bicarbonate (30 mL). The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), washed with brine (50 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. Diastereiosomers 24 and 25 were separated by column chromatography on silica gel, eluting with cyclohexane/EtOAc $85: 15$ to furnish ($7 R, 4^{\prime} S, 5^{\prime} R, 11 S$)-chaetoviridine A 25 as a yellow oil ($30 \mathrm{mg}, 0.07 \mathrm{mmol}, 20 \%$) and with cyclohexane/EtOAc $60: 40$ to furnish ($7 \mathrm{~S}, 4^{\prime} \mathrm{S}, 5^{\prime} \mathrm{R}, 11 \mathrm{~S}$)chaetoviridine A 24 as an orange oil ($25 \mathrm{mg}, 0.06 \mathrm{mmol}, 17 \%$). Overall yield 37\%.

(7S,4'S,5'R,11S)-chaetoviridine-A 24

$R_{f}=0.23$ (cyclohexane/EtOAc : 70/30); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) : 8.77 (s, 1H), 6.63 (dd, J = 15.7, $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $6.58(\mathrm{~s}, 1 \mathrm{H}), 6.09$ (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dq}, J=6.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dq}, J=7.2,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.39-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{qn}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.24$ (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$), $1.11 .10(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, 0.91 ($\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 201.2$, 183.2, 168.0, 165.3, 157.2, 152.1, 148.5, 139.8, 123.2, 119.8, 110.4, 109.2, 105.5, 88.0, 67.4, 48.8, $39.2,30.5,29.3,26.4,19.7,19.5,11.95,9.9 ;$ IR, v (cm^{-1}): $3441,2964,2928,1764,1684,1643,1620$, 1513; HRMS (ESITOF): calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{6}{ }^{37} \mathrm{Cl}\left(\left[\mathrm{M}^{35} \mathrm{Cl}+\mathrm{H}\right]^{+}\right)$: 433.1418 , found 433.1434 . calculated for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{O}_{6}{ }^{37} \mathrm{Cl}\left(\left[\mathrm{M}^{37} \mathrm{Cl}+\mathrm{H}\right]^{+}\right)$: 435.1388, found 435.1422. $[a]_{D}^{26}=+139\left(c=0.7, \mathrm{CHCl}_{3}\right)\left(\right.$ lit.: $[a]_{D}^{30}=-$ $44\left(c=0.03, \mathrm{CHCl}_{3}\right),{ }^{5}$ and $\left.[a]_{D}^{20}+16\left(c=0.002, \mathrm{CHCl}_{3}\right)^{6}\right) ; \mathrm{CD}\left(c=4.6 \times 10^{-4} \mathrm{M}, \mathrm{MeOH}\right) \lambda_{\max }(\Delta \varepsilon)=371(-$ 24.3).

(7R,4'S,5'R,11S)-chaetoviridine-A 25

$R_{f}=0.34$ (cyclohexane/EtOAc: 70/30); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) : 8.77 (s, 1H), $6.61(\mathrm{dd}, J=15.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.08$ $(\mathrm{d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{dq}, J=6.8,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.39-2.21 (m, 1H), $1.72(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{qn}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=$ 7.4 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 200.1, 183.3, 168.0, $163.8,157.1,151.6,148.2,139.7,124.2,119.7,110.4,109.1,105.4,87.7,68.3,49.7,39.0,29.2,26.3$, 20.5, 19.3, 11.7, 8.8; IR, $v\left(\mathrm{~cm}^{-1}\right): 3476,2966,2927,2874,1762,1683,1644,1616,1511,1167,895$, 851, 734, 692; HRMS (ESITOF): calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{6}{ }^{37} \mathrm{Cl}\left(\left[\mathrm{M}^{35} \mathrm{Cl}+\mathrm{H}\right]^{+}\right)$: 433.1418, found 433.1438 . calculated for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{O}_{6}{ }^{37} \mathrm{Cl}\left(\left[\mathrm{M}^{37} \mathrm{Cl}+\mathrm{H}\right]^{+}\right)$: 435.1388, found 435.1423. $[a]_{D}^{25}=-36\left(c=0.2, \mathrm{CHCl}_{3}\right) ; \mathrm{CD}(c$ $\left.=4.6 \times 10^{-4} \mathrm{M}, \mathrm{MeOH}\right) \lambda_{\max }(\Delta \varepsilon)=364(+19.7)$.

IV.2. Synthesis of the ($7 S, 4^{\prime} S, 5^{\prime} S, 11 S$)-chaetoviridin-A 29 and its epimer (7R,4'S,5'S,11S)-chaetoviridin-A 30

Synthesis of the dioxinone (S,S)-28:

$(S, S)-28$

(2S, 3S)-methyl 3-hydroxy-2-methylbutanoate (S,S)-27

To a stirred solution of N, N-diisopropylamine ($3.57 \mathrm{~mL}, 25.4 \mathrm{mmol}, 3.0$ equiv.) in dry THF (10 mL) was added n-BuLi (2.5 M in hexanes, $9.8 \mathrm{~mL}, 24.5 \mathrm{mmol}, 2.9$ equiv.) at $-78{ }^{\circ} \mathrm{C}$. After 30 min at $-78{ }^{\circ} \mathrm{C}$, (S)-methyl-3-hydroxybutyrate (S)-26 ($950 \mu \mathrm{~L}, 8.47 \mathrm{mmol}, 1.0$ equiv.). The resulting mixture was stirred for 30 min at $78{ }^{\circ} \mathrm{C}$, after which time methyl iodide ($3.13 \mathrm{~mL}, 50.82 \mathrm{mmol}, 6.0$ equiv.) was added. The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for further 1.5 h after which time it was allowed to reach room temperature and aqueous $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ was added. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the organic layer was washed with brine (15 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The oily crude was purified by column chromatography on silica gel, eluting with cyclohexane/EtOAc 4:1 to 1:1 to furnish the desired compound as a pale yellow oil ($884 \mathrm{mg}, 79 \%$). IR (neat): $v_{\max } 3435,2978,1717,1457,1437 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.86(\mathrm{bq}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{bd}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{p}, J=7.2,1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.5,69.5,51.9,47.0,20.8,14.2 .[a]_{D}^{20}=+27\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13}$ C NMR spectra were consistent with reported data. ${ }^{9}$
(4S,5S)-tertbutyl 5-hydroxy-4-methyl-3-oxohexanoate

To a stirred solution of N, N-diisopropylamine ($4.73 \mathrm{~mL}, 33.68 \mathrm{mmol}, 3.2$ equiv.) in dry THF (35 mL) at $-78{ }^{\circ} \mathrm{C}$ was added n-BuLi (2.5 M in hexane, $13.05 \mathrm{~mL}, 32.60 \mathrm{mmol}, 3.1$ equiv.). The resulting mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 30 min after which time tertbutylacetate ($4.31 \mathrm{~mL}, 31.57 \mathrm{mmol}, 3.0$ equiv.). Then, a solution of ester (S, S)-27 ($1.39 \mathrm{~g}, 10.52 \mathrm{mmol}, 1$ equiv.) in THF (9 mL) was added, and
the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1.5 h and allowed to warm up to room temperature overnight. The reaction was quenched by addition of a solution of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ and the two layers were separated. The aqueous layer was extracted with EtOAc ($4 \times 20 \mathrm{~mL}$), then combined organic layers were washed with brine (20 mL), dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure to afford the crude β-ketoester which was purified by column chromatography on silica gel, eluting with cyclohexane/EtOAc 80:20 to furnish the titled compound in equilibrium with minor amounts of its enol form ($1.179 \mathrm{mg}, 52 \%$) as a pale yellow oil. $R_{f}: 0.37$ (Cyclohexane/EtOAc 70:30); IR (neat): $v_{\max }$ 3430, 2979, 2935, 2881, 1730, 1705,1644, 1369, 1262 cm ${ }^{1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl $\left.)^{2}\right): \delta 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2,69(\mathrm{~m}$, $2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.18(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} N \mathrm{NR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 208.1$, 166.6, 82.2, 69.8, 53.7, 50.6, 28.1 (3C), 21.1, 13.6; HRMS (ESITOF): calculated for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 234.1705, found 234.1709; $[a]_{D}^{20}=+27\left(c=0.4, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were consistent with reported data. ${ }^{7}$

(4S,5S)-tert-butyl 5-acetoxy-4-methyl-3-oxohexanoate

To a stirred solution of β-ketoester ($257 \mathrm{mg}, 11.86 \mathrm{mmol}, 1.0$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$ were successively added 4- N, N-dimethyl-4aminopyridine ($29 \mathrm{mg}, 0.23 \mathrm{mmol}, 0.2$ equiv.), triethylamine ($177 \mu \mathrm{~L}, 2.38$ mmol, 2.0 equiv.) and acetic anhydride ($124 \mu \mathrm{~L}, 1.30 \mathrm{mmol}, 1.1$ equiv). The resulting solution was stirred at room temperature for 2 h after which time a solution of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added and the two layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, then combined organic layers were washed with brine (20 mL), dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The crude acetylated β-ketoester was purified by column chromatography on silica gel, eluting with cyclohexane/EtOAc 90:10 to furnish the compound in a 50:50 mixture with corresponding enol form, as a colorless oil ($234 \mathrm{mg}, 76$ \%). R_{f} : 0.61 (Cyclohexane/EtOAc 80:20); IR (neat): $\mathrm{v}_{\max } 2982,2933,1775$, $1733,1715,1659,1457,1369,1238 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $5.55(\mathrm{~s}, 1 \mathrm{H}), 5.13-4.91(\mathrm{~m}, 3 \mathrm{H})$, $3.42(\mathrm{~s}, 2 \mathrm{H}), 2.92(\mathrm{p}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}$, 6 H), 1.46 (d, J = $7.3 \mathrm{~Hz}, 18 \mathrm{H}$), 1.22 ($\mathrm{dd}, \mathrm{J}=6.3,4.5 \mathrm{~Hz}, 6 \mathrm{H}$), 1.11 (dd, J = 7.0, 2.0 Hz, 6H). 13C NMR (76 $\mathrm{MHz}, \mathrm{CDCl} 3):{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.6,170.5,170.2,167.7,166.3,163.4,161.2,110.3,82.1$, 80.7, 71.7, 71.0, 51.0, 50.3, 44.5, 28.5, 28.3, 28.1, 21.4, 21.3, 21.2, 17.2, 16.7, 13.0, 12.1; HRMS (ESITOF): calculated for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{NO}_{5}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 276.1811$, found 276.1812; $[a]_{D}^{23}=+20\left(c=0.4, \mathrm{CHCl}_{3}\right)$.

(2S,3S)-3-(2,2-dimethyl-4-oxo-4H-1,3-dioxin-6-yl)-butan-2-yl acetate (S, S)

To a stirred solution of acetylated β-ketoester ($200 \mathrm{mg}, 0.77 \mathrm{mmol}, 1.0$ equiv.) in acetone (1.0 mL) at $0^{\circ} \mathrm{C}$ were successively added acetic anhydride (1.0 mL , $11.6 \mathrm{mmol}, 15.0$ equiv) and sulfuric acid ($41 \mu \mathrm{~L}, 0.77 \mathrm{mmol}, 1.0$ equiv). The reaction solution was stirred at $0^{\circ} \mathrm{C}$ for 2 hours and at room temperature for 2 h . The reaction mixture was diluted in EtOAc (10 mL) and cooled down to $0^{\circ} \mathrm{C}$. A satured aqueous sodium bicarbonate solution was added dropwise until no bubbling appeared. aqueous layer was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$, then the combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The crude was purified by column chromatography on silica gel, eluting with cyclohexane/EtOAc 90:10 to furnish the desired compound as a pale yellow oil (126 mg, 68 \%). R_{f} : 0.28 (Cyclohexane/EtOAc 80:20); IR (neat): $v_{\max } 2988,2921,2852,1725,1632,1391,1370 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.29(\mathrm{~s}, 1 \mathrm{H})$, $5.01(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{dq}, J=14.6$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=6.3$ $\mathrm{Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.1,170.3,161.3,106.6,94.1,71.0$, 43.4, 25.4, 24.7, 21.3, 17.4, 13.3; LRMS (ESITOF): $243\left(35,[\mathrm{M}+\mathrm{H}]^{+}\right), 260\left(100,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 284(26$, $\left.[\mathrm{M}+\mathrm{ACN}+\mathrm{H}]^{+}\right)$; HRMS (ESITOF): calculated for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{5}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right): 260.1498$, found 260.1507; $[a]_{D}^{20}$ $=+11\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right)$.

6-[(2S,3S)-3-hydroxybutan-2-yl]-2,2-dimethyl-4H-1,3-dioxin-4-one:

To a stirred solution of acetylated dioxinone ($106 \mathrm{mg}, 0.77 \mathrm{mmol}, 1.0$ equiv.) in THF (1.6 mL) at room temperature were successively added 0.1 M aqueous phosphate buffer at $\mathrm{pH}=7.41(6 \mathrm{~mL})$ and the Lipase from Candida Cylindracea ($424 \mathrm{mg}, 0.007 \mathrm{mmol}, 0.01$ equiv). The resulting mixture was gently stirred at $35^{\circ} \mathrm{C}$ for 6 days (0.01 equiv. of enzyme were added each 48 h). Reaction was then diluted in EtOAC $(10 \mathrm{~mL})$, extracted with EtOAc $(4 \times 10 \mathrm{~mL})$, then the combined organic layers were washed with brine (30 mL), dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure to furnish the pure dioxinone as a yellow oil without further purification ($79 \mathrm{mg}, 90 \%$). R_{f} : 0.4 (Cyclohexane/EtOAc 50:50); IR (neat): $v_{\max }$ 3440, 2977, 2883, 1705, 1625, 1391, $1377 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.29(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{dq}, J=12.7$ and $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dq}, J=12.7$ and $7.1 \mathrm{~Hz}, 1 \mathrm{H}$), $1.69(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl $)^{2}$: δ 173.3, 161.4, 106.7, 94.2, 69.3, 46.3, 25.19 and 25.16, 21.0, 13.8; HRMS (ESITOF): calculated for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$201.1127, found 201.1125; $[a]_{D}^{20}=+17\left(\mathrm{c}=0.6, \mathrm{CHCl}_{3}\right)$.

6-[(2S,3S)-3-tertbutyldimetylsilyloxybutan-2-yl]-2,2-dimethyl-4H-1,3-dioxin-4-one (S,S)-28:

To a stirred solution of crude dioxinone ($74 \mathrm{mg}, 0.37 \mathrm{mmol}, 1.0$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at room temperature were successively added 1 H imidazole ($38 \mathrm{mg}, 0.48 \mathrm{mmol}, 1.5$ equiv) and tertbutyl(chloro)dimethylsilane ($72 \mathrm{mg}, 0.56 \mathrm{mmol}, 1.3$ equiv). The reaction solution was stirred at room temperature for 24 hours after which time additional $1 H$ imidazole ($38 \mathrm{mg}, 0.48 \mathrm{mmol}, 1.5$ equiv) and tertbutyl(chloro) dimethylsilane ($72 \mathrm{mg}, 0.56 \mathrm{mmol}, 1.3$ equiv) were added and reaction was stirred for 24 h at room temperature. The reaction mixture was concentrated under reduced pressure and purified by column chromatography on silica gel, eluting with cyclohexane/EtOAc 95:5 to furnish the silylated dioxinone compound (S, S)-28 as a pale yellow oil (126 mg, 68 \%).; R_{f} : 0.17 (Cyclohexane/EtOAc 95:5); IR (neat): $\mathrm{v}_{\max }$ 2959,2933, 2855, 1732, 1631 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.28(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{p}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{~Hz}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.66$ $(\mathrm{s}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ; 13 \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.6,161.6,106.3,94.2,69.6,46.4,26.1,25.9(3 \mathrm{C}), 24.3,21.0,18.1,13.2,-4.2,-$ 4.9.; LRMS (ESITOF): 315 (36, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right), 332\left(95,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 356\left(100,[\mathrm{M}+\mathrm{ACN}+\mathrm{H}]^{+}\right)$; HRMS (ESITOF): calculated for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{Si}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 315.1992$, found 315.1986.; $[a]_{D}^{20}=+30\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

Reaction condensation starting from (S,S)-dioxinone enantiomer :

To a stirred solution of dearomatized alcohol 14 ($74 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.0$ equiv.) in dry toluene (4 mL) under were added 4A molecular sieves (50 mg) and the dioxinone (S, S) - $\mathbf{2 8}(90 \mathrm{mg}, 0.29 \mathrm{mmol}, 1.2$ equiv.). The resulting mixture was stirred for 10 min at room temperature then 1 h under toluene reflux. Triethylamine ($61 \mu \mathrm{~L}, 0.706 \mathrm{mmol}, 2.0$ equiv.) was added and the reaction was stirred for 1 h under reflux. The reaction was then cooled down to room temperature, hydrolyzed with 10 mL 1 M aqueous HCl , extracted with $\mathrm{EtOAc}(4 \times 10 \mathrm{~mL})$, washed with brine $(15 \mathrm{~mL})$, dried over MgSO_{4}, filtered and concentrated under reduced pressure. ${ }^{1} \mathrm{H}$ NMR analysis of the crude indicated the formation of two products. The crude mixture was dissolved in dry THF (5 mL), and HF-pyridine complex was added was added portionwise every 6 h (i.e. $70 \% \mathrm{HF}$ basis, $1.1 \mathrm{~mL}, 105 \mathrm{mmol}, 300$ equiv.) until complete reaction. Reaction was quenched by slow addition of saturated aqueous sodium bicarbonate (30 mL). The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), washed with brine $(50 \mathrm{~mL})$, dried over MgSO_{4}, filtered and concentrated under reduced pressure. Diastereiosomers were separated by column chromatography on silica gel, eluting with cyclohexane/EtOAc $85: 15$ to furnish ($7 R, 4^{\prime} S, 5^{\prime} S, 11 S$)-chaetoviridin A 30 as an orange oil (15 mg ,
$0.03 \mathrm{mmol}, 15 \%$) and with cyclohexane/EtOAc 60:40 to furnish ($7 S, 4^{\prime} S, 5^{\prime} S, 11 S$)-chaetoviridin A 29 as an orange oil (14 mg, $0.04 \mathrm{mmol}, 14 \%)$. Overall yield 29\%.

(7S,4'S,5'S,11S)-chaetoviridin-A 29:

R_{f} : 0.29 (Cyclohexane/ EtOAc 70:30); IR (neat): $v_{\max } 3385,2969,2924$, $1768,1685,1645,1621,1510 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.88$ $(\mathrm{s}, 1 \mathrm{H}), 6.63(\mathrm{dd}, \mathrm{J}=15.7$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.09(\mathrm{~d}, \mathrm{~J}=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H})$, $1.45(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 201.0, 183.3, 168.8, 165.0, 157.2, 152.4, 148.5, 139.9, 123.8, 119.8, 110.4, 109.1, 105.5, 88.1, 71.9 , 50.6, 39.2, 29.3, 26.3, 21.8, 19.5, 14.4, 11.9; LRMS (ESITOF): 433 (100, $[\mathrm{M}+\mathrm{H}]^{+}$); HRMS (ESITOF): calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{6}{ }^{35} \mathrm{Cl}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 433.1418, found 433.142; $[a]_{D}^{25}=+69\left(c=0.5, \mathrm{CHCl}_{3}\right)\left(\right.$ lit.: $[a]_{D}^{20}$ $\left.=+40\left(c=0.002, \mathrm{CHCl}_{3}\right)^{6}\right) ; \mathrm{CD}\left(c=4.6 \times 10^{-4} \mathrm{M}, \mathrm{MeOH}\right) \lambda_{\max }(\Delta \varepsilon)=370(-18.3)$.
($7 R, 4^{\prime} S, 5^{\prime} S, 11 S$)-chaetoviridin-A 30:

$\mathrm{R}_{f}: 0.51$ (Cyclohexane/ EtOAc 70:30); IR (neat): $\mathrm{v}_{\max }$ 2962, 1768, 1683, 1617, 1512, $1414 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.78$ (s, $1 \mathrm{H}), 6.61(\mathrm{dd}, J=15.7$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=15.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.86(\mathrm{p}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~s}$, $3 \mathrm{H}), 1.44(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.09(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): ~ \delta 201.3,183.5,168.1,163.1,157.2,151.7,148.2,139.8,125.1,119.9,110.6,109.1,105.6$, 87.8, 71.1, 51.1, 39.1, 29.3, 26.5, 21.7, 19.4, 13.8, 11.9; LRMS (ESITOF): 433 (100, $[\mathrm{M}+\mathrm{H}]^{+}$); HRMS (ESITOF): calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{6}{ }^{35} \mathrm{Cl}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 433.1418, found 433.141; $[a]_{D}^{20}=+34(c=0.6, \mathrm{MeOH})$ (lit.: $\left.[a]_{D}^{27}=+39\left(c=0.4, \mathrm{CHCl}_{3}\right)^{8}\right) ; \mathrm{CD}\left(c=4.6 \times 10^{-4} \mathrm{M}, \mathrm{MeOH}\right) \lambda_{\max }(\Delta \varepsilon)=365(+14.3)$.

IV.3. Synthesis of the revised structure of chaetoviridin-A, ($7 S, 4^{\prime} R, 5^{\prime} R, 11 S$)-chaetoviridin-A 31 and its ($7 R$)-epimer ($7 R, 4^{\prime} R, 5^{\prime} R, 11 S$)-chaetoviridin-A 32

Synthesis of the dioxinone (R, R)-28:

(2R,3R)-methyl 3-hydroxy-2-methylbutanoate (R, R)-27

The same procedure as for the preparation of the (R, R) enantiomer was used starting from (S)-methyl-3-hydroxybutyrate (R)-26 (950 $\mu \mathrm{L}, 8.47 \mathrm{mmol}, 1.0$ equiv.). The oily crude was purified by column chromatography on silica gel, eluting with cyclohexane/EtOAc 4:1 to 1:1 to furnish the desired compound as a pale yellow oil as ($839 \mathrm{mg}, 75 \%$). IR (neat): $v_{\max } 3423,2977,1717,1457,1436 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.87$ $(\mathrm{m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{bd}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{p}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl $)_{3}$: $\delta 176.5,69.5,51.9,47.0,20.8,14.1 .[a]_{D}^{20}=-30(c=1.0$, $\left.\mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were consistent with reported data. ${ }^{9}$
(4R,5R)-tert-butyl 5-hydroxy-4-methyl-3-oxohexanoate

The same procedure as for the preparation of the (S, S) enantiomer was used starting from $(R, R)-27(789 \mathrm{~g}, 5.97 \mathrm{mmol}, 1.0$ equiv.). The oily crude was purified by column chromatography on silica gel, eluting with cyclohexane/EtOAc 80:20. It was obtained in equilibrium with minor amounts of its enol form ($579 \mathrm{mg}, 45 \%$), as colorless oil. $\mathrm{R}_{f}: 0.37$ (Cyclohexane/EtOAc 70:30); IR (neat): $v_{\max } 3430,2978,2937,2885,1730,1704,1645,1368$, $1262 \mathrm{~cm}^{-1}$; $^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.43(\mathrm{~s}, 9 \mathrm{H}), 1.18(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 208.1,166.7$, 82.2, 69.7, 53.7, 50.6, $28.0(3 \mathrm{C}), 21.0,13.5$; HRMS (ESITOF): calculated for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 234.1705, found 234.1699; $[a]_{D}^{20}=-36\left(c=0.8, \mathrm{CHCl}_{3}\right)$.

(4R,5R)-tertbutyl 5-acetoxy-4-methyl-3-oxohexanoate

The same procedure as for the preparation of the (R, R) enantiomer was used starting from (4S,5S)-tertbutyl 5-hydroxy-4-methyl-3-oxohexanoate ($492 \mathrm{mg}, 2.27 \mathrm{mmol}, 1.0$ equiv.). The oily crude was purified by column chromatography on silica gel, eluting with cyclohexane/EtOAc 90:10 to furnish the compound in equilibrium with minor amounts of its enol form ($354 \mathrm{mg}, 60 \%$)as a pale yellow oil. R_{f} : 0.61 (Cyclohexane/EtOAc 80:20); IR (neat): $\mathrm{v}_{\max }$ 2981, 2937, 2886, 1733, 1713, 1646, 1456, 1369, $1235 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.04(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 2 \mathrm{H}), 2.92(\mathrm{p}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.99(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~m}, 9 \mathrm{H}), 1.20(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 204.5, 170.1, 166.2, 82.1, 71.7, 50.9, 50.3, 29.1 (3C), 21.2, 17.1, 12.1; HRMS (ESITOF): calculated for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{NO}_{5}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 276.1811$, found 276.1822; $[a]_{D}^{20}=-19\left(\mathrm{c}=2.5, \mathrm{CHCl}_{3}\right)$

(2R,3R)-3-(2,2-dimethyl-4-oxo-4H-1,3-dioxin-6-yl)-butan-2-yl acetate

The same procedure as for the preparation of the (S, S) enantiomer was used starting from (4R,5R)-tert-butyl 5-acetoxy-4-methyl-3-oxohexanoate (310 $\mathrm{mg}, 1.20 \mathrm{mmol}, 1.0$ equiv.). The oily crude was purified by column chromatography on silica gel, eluting with cyclohexane/EtOAc 80:20 to furnish the pure dioxinone compound as a yellow oil (204 mg, 70 \%); $R_{f}: 0.28$ (Cyclohexane/EtOAc 80:20); IR (neat): $\mathrm{v}_{\max } 2991,2923,2852,1725,1633,1392,1370 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $5.29(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{dq}, \mathrm{J}=12.7$ and $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dq}, J=12.7$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}$, $3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.1$, 170.2, 161.3, 106.6, 93.9, 70.9, 43.3, 25.3, 24.6, 21.2, 17.4, 13.4.; HRMS (ESITOF): calculated for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{5}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right): 260.1498$, found 260.1501; $[a]_{D}^{20}=-7\left(c=0.7, \mathrm{CHCl}_{3}\right)$.

6-[(2R,3R)-3-hydroxybutan-2-yl]-2,2-dimethyl-4H-1,3-dioxin-4-one:

The same procedure as for the preparation of the (S, S) enantiomer was used starting from (2R,3R)-3-(2,2-dimethyl-4-oxo-4H-1,3-dioxin-6-yl)-butan-2-yl acetate ($160 \mathrm{mg}, 1.20 \mathrm{mmol}, 1.0$ equiv.). Pure dioxinone was obtained as a yellow oil without further purification $(127 \mathrm{mg}, 96 \%) . \quad R_{f}: 0.4$ (Cyclohexane/EtOAc 50:50); IR (neat): $v_{\max } 3420,2977,2887,1705,1625,1391,1377 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.29(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{dq}, J=12.7$ and $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dq}, J=12.7$ and $7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.69(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 173.5, 161.5, 106.6, 94.1, 69.2, 46.2, 25.13 and 25.11, 21.0, 13.8; LRMS (ESITOF): $201\left(100,[\mathrm{M}+\mathrm{H}]^{+}\right)$,

218 (40, $\left.\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$, $242\left(40,[\mathrm{M}+\mathrm{ACN}+\mathrm{H}]^{+}\right)$; HRMS (ESITOF): calculated for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 201.1127, found 201.1129; $[a]_{D}^{20}=-25\left(c=1.2, \mathrm{CHCl}_{3}\right)$.

6-[(2R,3R)-3-tertbutyldimetylsilyloxybutan-2-yl]-2,2-dimethyl-4H-1,3-dioxin-4-one (R, R)-28:

The same procedure as for the preparation of the (R, R) enantiomer was used starting from 6-[(2S,3S)-3-hydroxybutan-2-yl]-2,2-dimethyl-4H-1,3-dioxin-4-one ($112 \mathrm{mg}, 0.56 \mathrm{mmol}, 1.0$ equiv.). The oily crude was purified by column chromatography on silica gel, eluting with cyclohexane/EtOAc 95:5 to furnish the desired compound (R, R)-28 as a pale yellow oil (137 $\mathrm{mg}, 78$ \%). $\mathrm{R}_{f}: 0.17$ (Cyclohexane/EtOAc 95:5); IR (neat): $\mathrm{v}_{\max }$ 2961,2926, 2851, 1732, $1637 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl $)_{3}$: $\delta 5.28(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{p}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{~Hz}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H})$, $1.13(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.6,161.6,106.3,94.2,69.6,46.4,26.1,25.9$ (3C), 24.3, 21.0, 18.1, 13.2, -4.2, -4.9 ; LRMS (ESITOF): $315\left(34,[\mathrm{M}+\mathrm{H}]^{+}\right), 332\left(78,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 356\left(100,[\mathrm{M}+\mathrm{ACN}+\mathrm{H}]^{+}\right) ;$HRMS (ESITOF): calculated for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{Si}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 315.1992$, found 315.1989; $[a]_{D}^{20}=-30\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

Reaction condensation starting from (R, R)-dioxinone enantiomer

To a stirred solution of dearomatized alcohol 14 ($48 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.0$ equiv.) in dry toluene (2 mL) under argon were added 4Å molecular sieves (20 mg) and the dioxinone $(R, R)-28(60 \mathrm{mg}, 0.19 \mathrm{mmol}$, 1.2 equiv.). The resulting mixture was stirred for 5 min at room temperature then 1.5 h under toluene reflux. Triethylamine ($45 \mu \mathrm{~L}, 0.32 \mathrm{mmol}, 2.0$ equiv.) was added and the reaction was stirred for 1.5 h under reflux. The reaction was then cooled down to room temperature, hydrolyzed with 10 mL 1 M aqueous HCl , extracted with EtOAc ($4 \times 15 \mathrm{~mL}$), washed with brine (20 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. ${ }^{1} \mathrm{H}$ NMR analysis of the crude indicated the formation of two products. The crude mixture was dissolved in dry THF (2 mL), and HF-pyridine complex was added was added portionwise every 2 h (i.e. $70 \% \mathrm{HF}$ basis, $290 \mu \mathrm{~L}, 16 \mathrm{mmol}, 100$ equiv.) until complete reaction. Reaction was slowly poured into saturated aqueous sodium bicarbonate (10 mL). The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), washed with brine (50 mL), dried over MgSO , filtered and concentrated under reduced pressure. Diastereiosomers were separated by preparative TLC on silica gel, eluting with cyclohexane/EtOAc 55:45 to furnish ($7 S, 4^{\prime} R, 5^{\prime} R, 11 S$)-chaetroviridin-A 31 as a yellow oil ($8 \mathrm{mg}, 0.018 \mathrm{mmol}, 11 \%$) and ($7 R, 4^{\prime} R, 5^{\prime} R, 11 S$)-chaetroviridin-A 32 as an orange oil (10 mg, $0.023 \mathrm{mmol}, 14 \%$). Overall yield 25%.

(7S, $4^{\prime} R, 5^{\prime} R, 11 S$)-chaetroviridin-A 31 :

$\mathrm{R}_{f}: 0.53$ (Cyclohexane/EtOAc 70:30); IR (neat): $\mathrm{v}_{\max } 3363,2974,2928$, 1766, 1683, 1645, 1620, $1512 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.79$ $(\mathrm{s}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=15.7$ and $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~d}, \mathrm{~J}=$ $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{p}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 1.71$ $(\mathrm{s}, 3 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.10(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 201.2,183.5,168.1,163.2,157.1,151.8,148.2,139.7,125.0,119.9,110.6,109.2,105.5$, 87.8, 71.1, 51.1, 39.2, 29.3, 26.5, 21.7, 19.5, 13.8, 11.9. LRMS (ESITOF): 433 (100, $[\mathrm{M}+\mathrm{H}]^{+}$). HRMS (ESITOF): calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{6}{ }^{35} \mathrm{Cl}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 433.1418, found 433.1410. $[a]_{D}^{20}=+96\left(c=1.0, \mathrm{CHCl}_{3}\right)$; (lit.: $[a]_{D}^{30}=+98\left(c=0.05, \mathrm{CHCl}_{3}\right),{ }^{10}$ and $\left.[a]_{D}^{27}+97\left(c=1.0, \mathrm{CHCl}_{3}\right)^{11}\right) \mathrm{CD}\left(c=4.6 \times 10^{-4} \mathrm{M}, \mathrm{MeOH}\right) \lambda_{\max }$ $(\Delta \varepsilon)=365(-26.6)$.
(7R,4'R, $5^{\prime} R, 11 S$)-chaetroviridin-A 32

$\mathrm{R}_{f}: 0.28$ (Cyclohexane/ EtOAc 70:30); IR (neat): $\mathrm{v}_{\max } 3471,2962$, 2926, 2855, 1765, 1685, 1645, 1621, $1513 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.87(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{dd}, \mathrm{J}=15.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57$ (s, 1H), 6.09 (d, J = $15.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.96-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.68-$ $3.56(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.39(\mathrm{~m}$, $3 H$), 1.33 ($d, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=6.7$ $\mathrm{Hz}, 3 \mathrm{H}$), $1.02(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 201.0,183.3$, $168.8,165.0,157.2,152.3,148.5,139.9,123.8,119.9,110.5,109.2,105.5,88.1,71.9,50.6,39.2$, 29.9, 29.3, 26.3, 21.8, 19.4, 14.4, 11.9. HRMS (ESITOF) : calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{6}{ }^{35} \mathrm{Cl}\left([\mathrm{M}-\mathrm{H}]^{-}\right): 431.1295$, found 431.1273. $[a]_{D}^{23}=-9.4\left(c=0.2, \mathrm{CHCl}_{3}\right) ; \mathrm{CD}\left(c=4.6 \times 10^{-4} \mathrm{M}, \mathrm{MeOH}\right) \lambda_{\max }(\Delta \varepsilon)=370(+25.1)$.

V. Copies of ${ }^{\mathbf{1}} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR

[^0]

Γ	1	+	1		1	1		,	1		,		1	1		1	1			
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	C

21

(S,S)-27

(S,S)-27

																						,
210	200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0	-10

$2 \stackrel{\infty}{\infty}_{\infty}^{\sim}$

 $\iiint\|\|$
30

$(R, R)-27$

														1					1	1		1
210	200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0	-10

[^1]

32

VI. References

[^2]
[^0]:

[^1]:

[^2]: ${ }^{1}$ Specklin, S.; J. Cossy, J Org. Chem. 2015, 80, 3302-3308.
 ${ }^{2}$ Anelli, P.L.; Montanari, F. ; Quici, S. Org. Synth. 1990, 69, 212-219.
 ${ }^{3}$ Trotter, N. S.; Takahashi, S.; Nakata, T. Org. Lett. 1999, 1, 957-959.
 ${ }^{4}$ Crimmins, M. T.; Dechert, A.-M. R. Org. Lett., 2012, 14, 2366-2369.
 ${ }^{5}$ Phonkerd, N.; Kanokmedhakul, S.; Kanokmedhakul, K.; Soytong, K.; Prabpai, S.; Kongsaeree, P. Tetrahedron, 2008, 64, 9636-9645.
 ${ }^{6}$ Borges, W. S.; Mancilla, G.; Guimarães, D. O.; Duràn-Patrón, R.; Collado, I. G.; Pupo, M. T. J. Nat. Prod. 2011, 74, 1182-1187. Correction : J. Nat. Prod. 2011, 74, 2028.
 ${ }^{7}$ Lüdeke, S.; Richter, M.; Müller, M. Adv. Synt. Catal. 2009, 351, 253-259.
 ${ }^{8}$ Chen, G.-D.; Li, Y.-J.; Gao, H.; Chen, Y.; Li, X.-X.; Li, J.; Guo, L.-D.; Cen, Y.-Z.; Yao, X.-S. Planta Med. 2012, 78, 1683-1689.
 ${ }^{9}$ Jacolot, M.; Jean, M.; Levoin, N.; van de Weghe, P. Org. Lett. 2012, 14, 58-61 and references cited herein.
 ${ }^{10}$ Takahashi, M.; Koyama, K.; Natori, S. Chem. Pharm. Bull. 1990, 38, 625-628.
 ${ }^{11}$ Phonkerd, N.; Kanokmedhakul, S.; Kanokmedhakul, K.; Soytong, K.; Prabpai, S.; Kongsaeree, P. Tetrahedron, 2008, 64, 9636-9645.

