Supporting Information

Significant Improvement on Enantioselectivity and Diastereoselectivity of Organocatalyzed Asymmetric Aldol Reaction Using Helical Polyisocyanides Bearing Proline Pendants

Li Zhou, Ben-Fa Chu, Xin-Yu Xu, Lei Xu, Na Liu and Zong-Quan Wu*

Department of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, Hefei University of Technology, and Anhui Key Laboratory of Advanced

Catalytic Materials and Reaction Engineering, Hefei, Anhui Province 230009, China
Measurements S3
Materials S3
Synthesis of monomer 1 and 1-A S4-S6
Synthesis of poly- $\mathbf{1}_{\mathrm{m}}$ and poly- $\mathbf{1}_{\mathrm{m}}-\mathrm{A}$ S6-S8
Procedure for aldol reaction S8
Characterization data for Aldol reaction products S8-S11
References S11-S12
Table S1. Optimization on Aldol reaction S13
Table S2. Results of Aldol reaction using recycled poly-1 $\mathbf{1}_{150}-\mathrm{A}$ S14
Figure S1. Plot of ellipticity and optical rotation values of poly-1mS with M_{n} S15
Figure S2. SEC of poly- $\mathbf{1}_{\mathrm{m}}$-As with different $M_{\mathrm{n}} \mathrm{S}$ S15
Figure S3-S4. ${ }^{1} \mathrm{H}$ NMR spectra for poly- $\mathbf{1}_{150}$ and poly-1 $\mathbf{1}_{150}$-A S16
Figure S5. Plots of ellipticity and optical rotation of poly- $\mathbf{1}_{\mathrm{m}}$-As with M_{n} S17
Figure S6-S7. ${ }^{1} \mathrm{H}$ NMR spectra for $\mathbf{3}$ and $\mathbf{4}$ S17-S18
Figure S8-S10. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and FT-IR spectra of 1 S18-S19
Figure S11-S13. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and FT-IR spectra for 1-A S20-S21
Figure S14-S19. ${ }^{1}$ H NMR spectra for Aldol reaction products S21-S24
Figure S21-S32. HPLC curves for Aldol reaction products S24-S30

Measurements.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded using a Bruker 600 MHz spectrometer $\{\mathrm{H}\}$. Size exclusion chromatography (SEC) was performed on Waters 1515 pump and Waters 2414 differential refractive index (RI) detector (set at $40^{\circ} \mathrm{C}$) using a series of two linear TSK gel GMH ${ }_{H R}-H^{\text {H }}$ columns. Molecular weight $\left(M_{\mathrm{n}}\right)$ and its polydispersity $\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)$ data are reported relative to polystyrene standards. The eluent was tetrahydrofuran (THF) at a flow rate of $0.8 \mathrm{~mL} / \mathrm{min}$. FT-IR spectra were recorded on Perkin-Elmer Spectrum BX FTIR system using KBr pellets. Circular dichroism (CD) spectra were obtained in a 1.0 cm quartz cell using a JASCO J1500 spectropolarimeter. The polymer concentration was calculated on the basis of the monomer units and was $0.2 \mathrm{mg} / \mathrm{mL}$. The UV-vis absorption spectra were recorded on a UNICO 4802 UV/vis double beam spectrophotometer. The optical rotations were measured in CHCl_{3}, THF and $\mathrm{CH}_{3} \mathrm{OH}$ with vol. 1% of TFA at room temperature using a 10.0 cm quartz cell on a WZZ-2B polarimeter. Analytical high performance liquid chromatography (HPLC) was carried out on UltiMate 3000 and SHIMADZU LC-20AT equipment using chiral columns.

Materials.

All solvents were obtained from Sinopharm. Co. Ltd., and were purified by the standard procedures before use. All chemicals were purchased from Aladdin, Sinopharm, and Sigma-Aldrich Chemical Co. Ltd., and were used as received without further purification otherwise denoted. Methoxy phenylethynyl $\operatorname{Pd}(I I)$ complex was prepared according to the procedures reported by our group previously, and the structure was confirmed by ${ }^{1} \mathrm{H}$ NMR spectra. ${ }^{1}$

Scheme S1. Synthesis of monomer 1 and 1-A

Compound 3. This compound was prepared according to the reported literature with slight modification. ${ }^{2}$ Boc-Hyp(Bzl)-OH (2, $\left.12.53 \mathrm{~g}, 38.98 \mathrm{mmol}\right)$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C} .1$-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI, $8.23 \mathrm{~g}, 42.87 \mathrm{mmol}$), 4-dimethylaminopyridine (DMAP, $2.38 \mathrm{~g}, 19.49 \mathrm{mmol}$) and tert-butanol $(11.55 \mathrm{~g}, 155.90 \mathrm{mmol})$ were added to this solution at $0^{\circ} \mathrm{C}$. After 2 h , the solution was warmed up to room temperature and stirred overnight. Then, the solvent was evaporated under reduced pressure. The residue was re-dissolved in ethyl acetate (EtOAc, $25 \mathrm{~mL})$ and washed with water $(50 \mathrm{~mL} \times 2)$ and an aqueous solution of sodium bicarbonate $\left(\mathrm{NaHCO}_{3}, 50 \mathrm{~mL} \times 2\right)$. The organic layer was dried over magnesium sulfate $\left(\mathrm{MgSO}_{4}\right)$ and purified by flash column chromatography using petroleum ether and EtOAc as eluent (v / v $=1 / 1)$ to afford 3 as a colorless oil ($12.75 \mathrm{~g}, 87 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.28-7.35 (m, 5H, ArH), 4.47-4.54 (m, 2H, CH2), 4.23-4.30 (m, 1H, CH), 4.14-4.18 (m, $1 \mathrm{H}, \mathrm{CH}), 3.51-3.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.02-2.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.44\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right), 1.45(\mathrm{~s}$, 9H, CH3).

Compound 4. This compound was prepared followed the reported literature with slight modification. ${ }^{2} 10 \% \mathrm{Pd} / \mathrm{C}(1.28 \mathrm{~g})$ was first heated to $140^{\circ} \mathrm{C}$ under vacuum overnight. Then, a degassed solution of $\mathbf{3}(12.75 \mathrm{~g}, 33.78 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ and methanol $(40 \mathrm{~mL})$ was added to the activated Pd / C. The mixed solution was stirred at room temperature under an atmosphere of hydrogen for 12 h . $\mathrm{The} \mathrm{Pd} / \mathrm{C}$ was removed from the solution via filtration through celite. The filtrate was concentrated and the crude product was purified by flash column chromatography using petroleum ether and EtOAc as eluent $(\mathrm{v} / \mathrm{v}=3 / 1)$ to afford 4 as a colorless oil ($7.75 \mathrm{~g}, 82 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.45-4.47(\mathrm{t}, 2 \mathrm{H}$, $\mathrm{CH}), 4.10-4.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.40-3.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.02-2.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.04(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH}), 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$.

Monomer 1. Compound 5 was first prepared followed the procedure reported by our group previously and the structure was confirmed by ${ }^{1} \mathrm{H}$ NMR. ${ }^{3}$ A mixed solution of 4 ($2.31 \mathrm{~g}, 8.03 \mathrm{mmol}), \mathbf{5}(3.76 \mathrm{~g}, 12.01 \mathrm{mmol})$, DMAP ($0.49 \mathrm{~g}, 4.01 \mathrm{mmol})$ in dry THF (20 mL) was stirred at $55^{\circ} \mathrm{C}$ for 12 h under nitrogen. The solvent was removed by evaporation under reduced pressure, the residue was purified by silica gel chromatography using petroleum ether and EtOAc as eluent $(\mathrm{v} / \mathrm{v}=8 / 1)$ to afford $\mathbf{1}$ as a white solid $(2.93 \mathrm{~g}, 88 \%$ yield). ${ }^{4}$ m.p.: $216-218{ }^{\circ} \mathrm{C} ;[\alpha] \mathrm{D}^{20}=-57.0\left(c=0.33, \mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.25^{\circ} \mathrm{C}\right): \delta 8.04-8.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.45-7.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 5.49-5.51(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}), 4.30-$ $4.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.64-3.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.29-2.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.49\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.10,170.07,167.00,156.50,133.59$, 133.16, 129.16, 84.24, 83.17, 75.92, 61.10, 54.61, 39.35, 38.24, 30.96, 30.66. FT-IR (KBr,
$\left.\mathrm{cm}^{-1}\right): 2984\left(v_{\mathrm{C}-\mathrm{H}}\right), 2937\left(v_{\mathrm{C}-\mathrm{H}}\right), 2128\left(v_{\mathrm{C}=\mathrm{N}}\right), 1746\left(v_{\mathrm{C}=\mathrm{o}}\right), 1715\left(v_{\mathrm{C}=0}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}]^{+}: 416.1947$; Found: 416.1976. Anal. Calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}: \mathrm{C}, 63.45$; H, 6.78; N, 6.73. Found (\%): C, 63.42; H, 6.79; N, 6.75.

Compound 1-A. Monomer $\mathbf{1}(1.09 \mathrm{~g}, 2.62 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, trifluoroacetic acid (TFA, 1 mL) was slowly added to the stirring solution under an ice bath. The resulting solution was stirred for 3 h at room temperature. After the solvent was removed by evaporation under reduced pressure, the afforded residues was dissolved in 1 mL water and pH was adjusted to 6.4 by added ammonium hydroxide. After concentrated to dryness, the residue was purified by silica gel chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CH}_{3} \mathrm{OH}$ as eluent $(\mathrm{v} / \mathrm{v}=1 / 1)$ to afford $1-\mathrm{A}$ as a white solid $(0.61 \mathrm{~g}, 83 \%$ yield $) .{ }^{2} \mathrm{~m} . \mathrm{p} .: 68-$ $69^{\circ} \mathrm{C} ;[\alpha] \mathrm{D}^{20}=-59.5\left(c=0.33, \mathrm{CH}_{3} \mathrm{OH}\right),{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 25^{\circ} \mathrm{C}$): $\delta 8.95(\mathrm{~s}$, $0.23 \mathrm{H}, \mathrm{CHO}), 8.36(\mathrm{~s}, 0.77 \mathrm{H}, \mathrm{CHO}), 8.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}), 7.32(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.63-5.64(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}), 4.26-4.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, $3.54-3.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.37-2.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 167.82$, $163.08,145.08,133.19,127.51,121.47,119.31,63.11,56.02,53.61,38.48$. FT-IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3480\left(v_{\mathrm{N}-\mathrm{H}}\right), 3001\left(v_{\mathrm{C}-\mathrm{H}}\right), 2995\left(v_{\mathrm{C}-\mathrm{H}}\right), 1714\left(v_{\mathrm{C}=\mathrm{O}}\right), 1676\left(v_{\mathrm{C}=\mathrm{O}}\right), 1600\left(v_{\mathrm{C}=\mathrm{N})}\right) \mathrm{MS}$ m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O} 5[\mathrm{M}+\mathrm{H}]^{+}$: 279.0981; Found: 279.1019. Anal. Calcd (\%) for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$: C, 56.10 ; H, 5.08; N, 10.06. Found: C, 56.15%; H, 5.09%; N, 10.04%.

Typical polymerization procedure for poly-1 $\mathbf{1}_{m s}$: Typical procedure for the polymerization of poly- $\mathbf{1}_{150}$ is given below as an example. A 10 mL oven-dried flask was charged with monomer $\mathbf{1}(0.20 \mathrm{~g}, 0.48 \mathrm{mmol})$, the methoxy phenylethynyl $\operatorname{Pd}(\mathrm{II})$ catalyst $(1.63 \mathrm{mg}, 3.20$
$\left.\times 10^{-3} \mathrm{mmol}\right)$, $\mathrm{dry} \mathrm{PhCl}(2.40 \mathrm{~mL})$ and a stir bar. The concentrations of monomer $\mathbf{1}$ and the $\operatorname{Pd}(\mathrm{II})$ complex were 0.2 and 0.0013 M , respectively $\left([1]_{0} /[\mathrm{Pd}]_{0}=150\right)$. The reaction flask was then immersed into an oil bath at $80^{\circ} \mathrm{C}$ and stirred for 5 h . After cooled to room temperature, the polymerization solution was precipitated into a large amount of n-hexane, collected by centrifugation, and dried in vacuum at room temperature overnight to afford poly- $\mathbf{1}_{150}$ as a yellow solid $(0.17 \mathrm{mg}, 85 \%$ yield $)$. SEC: $M_{\mathrm{n}}=24.1 \mathrm{kDa}, M_{\mathrm{w}} / M_{\mathrm{n}}=1.07 .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 7.33-7.60(\mathrm{br}, 2 \mathrm{H}, \mathrm{ArH}), 5.65$ (br, 2H, ArH), 4.96 (br, $1 \mathrm{H}, \mathrm{CH}), 4.18(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}), 3.51\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.42-1.46\left(\mathrm{br}, 18 \mathrm{H}, \mathrm{CH}_{3}\right)$. FT-IR (KBr, $\left.\mathrm{cm}^{-1}\right): 2978\left(v_{\mathrm{C}-\mathrm{H}}\right), 2932\left(v_{\mathrm{c}-\mathrm{H}}\right), 2885\left(v_{\mathrm{C}-\mathrm{H}}\right), 1704\left(v_{\mathrm{C}=\mathrm{O}}\right), 1600\left(v_{\mathrm{C}=\mathrm{N}}\right)$.

Typical procedure for poly-1 $\mathbf{1}_{m S}-A$: Typical experimental procedures for the preparation of poly- $\mathbf{1}_{150}-\mathrm{A}$ is given below as an example. Poly- $\mathbf{1}_{150}(0.17 \mathrm{~g})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, TFA $(0.5 \mathrm{~mL})$ was slowly added to the stirred solution under an ice bath. The resulting solution was stirred for 10 h at room temperature. Excess acid was removed from the reaction by a flow of N_{2} gas at the end of the reaction. The resulting residues were dissolved in a DMF/water ($2 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=1 / 1$) and dialyzed exhaustively against nanopure water $(18.2 \Omega)($ MWCO $=3.5 \mathrm{kDa})$ and lyophilized to give deprotected poly- $\mathbf{1}_{150}-\mathrm{A}$, or alternatively dissolved in DMF and precipitated out of solution via the addition of water. The precipitate was then filtered, washed with water and dried in the vacuum at $40^{\circ} \mathrm{C}$ overnight ($0.085 \mathrm{~g}, 80 \%$ yield) $){ }^{2}$ SEC: $M_{\mathrm{n}}=16.1 \mathrm{kDa}, M_{\mathrm{w}} / M_{\mathrm{n}}=1.19 .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, DMSO- $\left.d^{6}, 25^{\circ} \mathrm{C}\right): \delta 7.22-7.56(\mathrm{br}, 2 \mathrm{H}, \mathrm{ArH}), 5.72(\mathrm{br}, 2 \mathrm{H}, \mathrm{ArH}), 4.09-5.11(\mathrm{br}, 6 \mathrm{H}, \mathrm{CH}$, $\left.\mathrm{CH}_{2}\right)$. FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3431\left(v_{\mathrm{N}-\mathrm{H}}\right), 2925\left(v_{\mathrm{C}-\mathrm{H}}\right), 2853\left(v_{\mathrm{C}-\mathrm{H}}\right), 1716\left(v_{\mathrm{C}=0}\right), 1676\left(v_{\mathrm{C}=\mathrm{o}}\right)$,
$1600(v \mathrm{C}=\mathrm{N})$.
General procedure for Aldol reaction: Polymer catalyst with 20% (with respective to repeating units) loading was added to expected solvent, cyclohexanone (4.0 eq) was added to the stirring solution. After 1 h , aromatic aldehyde (1.0 eq) was added, and the resulting solution was stirred for the time indicated in Table S1 and Table 2, 3 in the main text at a specific temperature. Then, n-hexane was added, and the mixture was centrifuged. The solution was concentrated under reduced pressure and the crude product was purified by preparative thin layer chromatography (TLC) on silica gel using petroleum ether and EtOAc as eluent to afford the product. Characterization data for Aldol reaction products are shown below.

(2S 1'R,)-2-(Hydroxyl-(p-nitrophenyl)methyl)cyclohexan-1-one: ${ }^{5}{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 8.22(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{ArH}), 7.51(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{ArH}), 5.49(\mathrm{~s}$, $0.14 \mathrm{H}, \operatorname{syn} \mathrm{CH}), 4.89-4.91\left(\mathrm{dd}, J_{l}=6.0 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 0.85 \mathrm{H}\right.$, anti CH$), 4.07(\mathrm{~d}, 1 \mathrm{H}, J=$ $3.0, \mathrm{OH}), 1.37-2.43\left(\mathrm{~m}, 9 \mathrm{H},-\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right.$). Enantiomeric excess (ee): 81%, diastereomeric ratio (dr): 86/14, determined by HPLC analysis, Chiralpak AD-H; n hexane $/ i-\operatorname{PrOH}=85 / 15(\mathrm{v} / \mathrm{v}) ; 0.5 \mathrm{~mL} \mathrm{~min}^{-1} ; 254 \mathrm{~nm} ; 25^{\circ} \mathrm{C} ; \operatorname{tt}_{\mathrm{R} 1}($ syn. $)=25.01 \mathrm{~min}, \mathrm{t}_{\mathrm{R} 2}($ syn. $)$ $=27.32 \mathrm{~min}, \mathrm{t}_{\mathrm{R} 1}($ anti. $)=30.34 \mathrm{~min}, \mathrm{t}_{\mathrm{R} 2}($ anti. $)=39.60 \mathrm{~min}$.

(2S, 1’R)-2-(Hydroxyl-(m-nitrophenyl)methyl)cyclohexan-1-one: ${ }^{5}{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 8.12-8.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.66-7.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.51-7.54(\mathrm{~m}, 1 \mathrm{H}$, ArH), $5.35\left(\mathrm{~s}, 0.16 \mathrm{H}\right.$, syn CH), 4.89-4.90 (dd, $J_{1}=3.0 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 0.82 \mathrm{H}$, anti CH), $4.12(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}, \mathrm{OH}), 1.28-2.64\left(\mathrm{~m}, 9 \mathrm{H},-\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right) . e e: 82 \%, d r: 75 / 25$, determined by HPLC analysis, Chiralpak IA; n-hexane $/ i-\operatorname{PrOH}=90 / 10(\mathrm{v} / \mathrm{v}) ; 0.5 \mathrm{~mL} \mathrm{~min}^{-1}$, $230 \mathrm{~nm} ; 25^{\circ} \mathrm{C}$; $\mathrm{t}_{\mathrm{R} 1}($ syn. $)=28.69 \mathrm{~min}, \mathrm{t}_{\mathrm{R} 2}($ syn. $)=33.37 \mathrm{~min}, \mathrm{t}_{\mathrm{R} 1}($ anti. $)=36.57 \mathrm{~min}, \mathrm{t}_{\mathrm{R} 2}$ $($ anti. $)=45.09 \mathrm{~min}$.

(2S, 1'R)-2-(Hydroxyl-(o-nitrophenyl)methyl)cyclohexan-1-one: ${ }^{1}{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 7.86(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.78(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.63-7.65$ $(\mathrm{t}, 1 \mathrm{H}, \mathrm{ArH}), 7.42-7.45(\mathrm{t}, 1 \mathrm{H}, \mathrm{ArH}), 5.45(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.26-$ 2.78 ($\mathrm{m}, 9 \mathrm{H},-\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$-). ee: 90%, $d r:>20 / 1$, determined by HPLC analysis, Chiralpak AD-H; n-hexane $/ i-\mathrm{PrOH}=90 / 10(\mathrm{v} / \mathrm{v}) ; 0.5 \mathrm{~mL} \min ^{-1} ; 254 \mathrm{~nm} ; 25^{\circ} \mathrm{C}$; tr1 (syn.) $=18.60 \mathrm{~min}, \mathrm{t}_{\mathrm{R} 1}($ anti. $)=37.38 \mathrm{~min}, \mathrm{t}_{\mathrm{R} 2}($ anti. $)=40.29 \mathrm{~min}$.

(2S, 1’R)-2-(Hydroxyl-(p-cyanophenyl)methyl)cyclohexan-1-one: ${ }^{5}{ }^{1} \mathrm{H}$ NMR (600 MHz ,
$\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 7.41(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.37(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.08(\mathrm{~d}, J$ $=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.98(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 5.61-5.63(\mathrm{t}, 0.23 \mathrm{H}$, syn CH$), 5.33$ (d, $J=6.0 \mathrm{~Hz}, 0.76 \mathrm{H}$, anti CH$), 4.46(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.28-3.40(\mathrm{~m}, 9 \mathrm{H},-$ $\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-$). ee: $77 \%, d r$: 77/23, determined by HPLC analysis, Chiralpak ADH; n-hexane $/ i$-PrOH $=85 / 15(\mathrm{v} / \mathrm{v}) ; 0.5 \mathrm{~mL} \min ^{-1} ; 230 \mathrm{~nm} ; 25^{\circ} \mathrm{C}$; trı $($ syn. $)=20.66 \mathrm{~min}$, $\mathrm{t}_{\mathrm{R} 2}($ syn. $)=26.21 \mathrm{~min}, \mathrm{t}_{\mathrm{R} 1}($ anti. $)=23.29 \mathrm{~min}, \mathrm{t}_{\mathrm{R} 2}($ anti. $)=32.23 \mathrm{~min}$.

(2S, 1'R)-2-(Hydroxyl-(p-trifluoromethylphenyl)methyl)cyclohexan-1-one: ${ }^{6}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): 7.59-7.61 (m, 2H, ArH), 7.42-7.45 (m, 2H, ArH), 5.44 (s, 0.22 H , syn CH$), 4.83-4.85\left(\mathrm{dd}, J_{l}=3.0 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, 0.72 \mathrm{H}\right.$, trans CH$), 4.03(\mathrm{~d}, 2 \mathrm{H}, J$ $=3.0 \mathrm{~Hz}, \mathrm{OH}), 1.25-3.10\left(\mathrm{~m}, 9 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right) . e e: 87 \%$, $d r: 88 / 12$, determined by HPLC analysis, Chiralpak AD-H; n-hexane $/ i-\operatorname{PrOH}=95 / 5(\mathrm{v} / \mathrm{v}) ; 0.8 \mathrm{~mL} \mathrm{~min}{ }^{-1} ; 210 \mathrm{~nm}$; $25^{\circ} \mathrm{C} ; \operatorname{t}_{\mathrm{R} 1}($ syn. $)=11.44 \mathrm{~min}, \operatorname{t}_{\mathrm{R} 2}($ syn. $)=13.75 \mathrm{~min}, \operatorname{t}_{\mathrm{R} 1}($ anti. $)=19.43 \mathrm{~min}, \operatorname{t}_{\mathrm{R} 2}($ anti. $)=$ 24.39 min .

(2S, 1'R)-2-(Hydroxyl-(o-trifluoromethyl)methyl) cyclohexan-1-one: ${ }^{7}{ }^{1} \mathrm{H}$ NMR (600 $\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): 7.71 (d, $\left.J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.59-7.65$ (m, 2H, ArH), 7.39-7.42
(t, 1H, ArH), $5.30(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 1 \mathrm{H}), 1.25-2.76\left(\mathrm{~m}, 9 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$. $e e: 95 \%, d r:>20 / 1$, determined by HPLC analysis, Chiralpak AD-H; n-hexane $/ i-\operatorname{PrOH}=$ $90 / 10(\mathrm{v} / \mathrm{v}) ; 0.5 \mathrm{~mL} \mathrm{~min}-1.254 \mathrm{~nm} ; 25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{R} 1}($ anti. $)=24.55 \mathrm{~min}, \mathrm{t}_{\mathrm{R} 2}($ anti. $)=25.92 \mathrm{~min}$.

References

(1) Xue, Y.-X.; Zhu, Y.-Y.; Gao, L.-M.; He, X.-Y.; Liu, N.; Zhang, W.-Y.; Yin, J.; Ding, Y.-S.; Zhou, H.-P.; Wu, Z.-Q. Air-Stable (Phenylbuta-1,3-diynyl)palladium(II) Complexes: Highly Active Initiators for Living Polymerization of Isocyanides. J. Am. Chem. Soc. 2014, 136, 4706-4713.
(2) Annhelen, L.; Thomas, P. S.; Thomas, H. E.; Deborah, A. L.; Rachel, K. O. L-Proline Functionalized Polymers Prepared by RAFT Polymerization and Their Assemblies as Supported Organocatalysts. Macromolecules 2011, 44, 7233-7241.
(3) Su, M.; Liu, N.; Wang, Q.; Wang, H.-Q.; Yin, J.; Wu, Z.-Q. Facile Synthesis of Poly(phenyleneethynylene)-block-Polyisocyanide Copolymers via Two Mechanistically Distinct, Sequential Living Polymerizations Using a Single Catalyst. Macromolecules 2016, 49, 110-119.
(4) Yin, J.; Xu, L.; Han, X.; Zhou, L.; Li, C.-L.; Wu, Z.-Q. A Facile Synthetic Route to Helical Poly(phenyl isocyanide)s with Defined Pendants and Controlled Helicity. Polym. Chem. 2017, 8, 545-556.
(5) Zhao, Q.-Q..; Lam, Y.-H.; Kheirabadi, M.; Xu, C.-S.; Houk, K. N.; Schafmeister, C. E. Hydrophobic Substituent Effects on Proline Catalysis of Aldol Reactions in

Water. J. Org. Chem. 2012, 77, 4784-4792.
(6) Serra-Pont, A.; Alfonso, I.; Jimeno, C.; Solà, J. Dynamic assembly of a zinc-templated bifunctional organocatalyst in the presence of water for the asymmetric aldol reaction. Chem. Commun. 2015, 51, 17386-17389.
(7) Obregon-Zúniga, A.; Milan, M.; Juaristi, E. Improving the Catalytic Performance of (S)-Proline as Organocatalyst in Asymmetric Aldol Reactions in the Presence of Solvate Ionic Liquids: Involvement of a Supramolecular Aggregate. Org. Lett. 2017, 19, 1108-1111.

Table S1. Optimization of the reaction conditions for Aldol reaction of 4nitrobenzaldehyde with cyclohexanone catalyzed by $\mathbf{1}-\mathrm{A}$ and poly- $\mathbf{1}_{\mathrm{m}}-\mathrm{A} .{ }^{a}$

Run	Solvent	Temp.	Cat.	X	t (h)	Yield ${ }^{\text {b }}$	anti./syn ${ }^{\text {c }}$	$e e^{c}$
1	THF	r.t.	1-A	20	10	85	75/25	17
2	DMF	r.t.	1-A	20	10	86	85/15	14
3	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	poly-150-A	20	12	80	83/17	57
4	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	poly-175-A	20	12	79	83/17	66
5	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	poly-1 $\mathbf{1 0 0}^{\text {-A }}$	20	12	81	85/15	71
6	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	poly-1 $\mathbf{1}_{150}$-A	20	12	80	84/16	72
7	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	poly-1200-A	20	12	81	82/18	71
8	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	poly-1 1_{150-A}	30	12	83	85/15	72
9	$\mathrm{CH}_{3} \mathrm{OBu}-t$	r.t.	poly-1 $\mathbf{1 5 0}^{\text {- }}$ A	20	12	67	60/40	71
10	PhCl	r.t.	poly-1 1_{150}-A	20	12	70	75/25	61
11	EtOAc	r.t.	poly-1 $\mathbf{1}_{150}$-A	20	12	73	72/28	62
12	glycol	r.t.	poly-1 $\mathbf{1}_{150}$-A	20	48	n. $\mathrm{d}^{\text {d }}$.	--	--
13	cyclohexanone	r.t.	poly-1 1_{150}-A	20	12	83	63/37	57

${ }^{a}$ Unless otherwise specified, all reactions were carried out with 4-nitrobenzaldehyde $(0.2 \mathrm{mmol})$, cyclohexanone (0.8 mmol) in specific solvent $(1.0 \mathrm{~mL}) .{ }^{b}$ Yield of isolated products. ${ }^{c}$ ee values are reffered to the major isomer determined by HPLC analysis using a chiral stationary phase. ${ }^{d}$ Not detected.

Table S2. Yield and $e e$ values of the reaction for 2-trifluoromethylbenzaldehyde and cyclohexanone catalyzed by recycled poly-1 $\mathbf{1}_{150}-\mathrm{A}^{a}$

Cycle	Yield $^{b}(\%)$	anti./syn. c	$e e(\%)^{c}$	Recovery (\%)			
1	65	$>20 / 1$	95	92			
2	63	$>20 / 1$	94	91			
3	63	$>20 / 1$	94	90			
4^{d}	58	$>20 / 1$	92	88			
${ }^{a}$ Unless	otherwise	denoted,	all	reactions	were	carried	out

Figure S1. Plot of ellipticity and optical rotation values of poly-1 $\mathbf{1}_{\mathrm{mS}}$ with the M_{n}.

Figure S2. Size exclusion chromatograms of poly-150-A, poly-1 $\mathbf{1}_{75}-\mathrm{A}$, poly- $\mathbf{1}_{100}-\mathrm{A}$, poly-$\mathbf{1}_{150}-\mathrm{A}$, and poly- $\mathbf{1}_{200}-\mathrm{A}$. SEC condition: eluent $=\mathrm{THF}$, temperature $=40^{\circ} \mathrm{C}$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz})$ spectrum of poly- $\mathbf{1}_{150}$ measured in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Figure S4. ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz})$ spectrum of poly- $\mathbf{1}_{150}$-A measured in DMSO- d^{6} at $25^{\circ} \mathrm{C}$.

Figure S5. Plot of ellipticity and optical rotation values of poly-1 $\mathbf{1}_{\mathrm{m}}$-As with the M_{n}.

Figure S6. ${ }^{1} \mathrm{H}$ NMR (600 MHz) spectrum of $\mathbf{3}$ measured in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz})$ spectrum of 4 measured in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Figure $\mathbf{S 8} .{ }^{1} \mathrm{H}$ NMR (600 MHz) spectrum of monomer $\mathbf{1}$ measured in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Figure S9. ${ }^{13} \mathrm{C}$ NMR (150 MHz) spectrum of monomer $\mathbf{1}$ measured in CDCl_{3} at $25{ }^{\circ} \mathrm{C}$.

Figure S10. FT-IR spectrum of monomer $\mathbf{1}$ measured at $25^{\circ} \mathrm{C}$ using KBr pellets.

Figure S11. ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz})$ spectrum of 1-A measured in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Figure S12. ${ }^{13} \mathrm{C}$ NMR $(150 \mathrm{MHz})$ spectrum of 1-A measured in $\mathrm{CD}_{3} \mathrm{OD}$ at $25^{\circ} \mathrm{C}$.

Figure S13. FT-IR spectrum of 1-A measured at $25^{\circ} \mathrm{C}$ using KBr pellets.

Figure S14. ${ }^{1} \mathrm{H}$ NMR (600 MHz) spectrum of (2S,1'R)-2-(hydroxyl-(p-nitrophenyl)methyl) cyclohexan-1-one measured in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Figure S15. ${ }^{1} \mathrm{H} \quad$ NMR (600 MHz) spectrum of (2S,1'R)-2-(hydroxyl- $(m$ nitrophenyl)methyl) cyclohexan-1-one measured in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Figure S16. ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz})$ spectrum of $\left(2 \mathrm{~S}, 1^{\prime} \mathrm{R}\right)$-2-(hydroxyl-(o-nitrophenyl)methyl) cyclohexan-1-one measured in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Figure S17. ${ }^{1} \mathrm{H}$ NMR (600 MHz) spectrum of (2S,1'R)-2-(hydroxyl-(p cyanophenyl)methyl) cyclohexan-1-one measured in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Figure S18. ${ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad(600 \mathrm{MHz}) \quad$ spectrum of $\quad(2 \mathrm{~S}, 1$ 'R)-2-(hydroxyl-(p trifluoromethylphenyl)methyl) cyclohexan-1-one measured in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Figure S19. ${ }^{1} \mathrm{H}$ NMR (600 MHz) spectrum of (2S,1'R)-2-(hydroxyl-(otrifluoromethylphenyl)methyl) cyclohexan-1-one measured in CDCl_{3} at $25^{\circ} \mathrm{C}$.

No.	Ret. Time min	Peak Name	Height mAU	Area mAU**in	Rel.Area \%	Amount	Type
1	23.11	n.a.	53.326	37.468	6.26	n.a.	BMB*
2	26.46	n.a.	52.270	36.035	6.02	n.a.	BMB*
3	28.88	n.a.	360.898	268.796	44.94	n.a.	BMB*
4	36.97	n.a.	272.066	255.869	42.78	n.a.	BMB*
Total:			738.561	598.168	100.00	0.000	

Figure S20. HPLC curve of racemic 2-(hydroxyl-(p-nitrophenyl)methyl) cyclohexan-1one (Chiralpak AD-H; n-hexane $/ i-\mathrm{PrOH}=85 / 15(\mathrm{v} / \mathrm{v}) ; 0.5 \mathrm{~mL} \mathrm{~min}{ }^{-1} ; 254 \mathrm{~nm} ; 25^{\circ} \mathrm{C}$).

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	25.01	n.a.	36.903	28.704	5.41	n.a.	BMB* *
2	27.32	n.a.	61.145	45.064	8.49	n.a.	BMB* *
3	30.34	n.a.	57.835	44.412	8.37	n.a.	BMB *
4	39.60	n.a.	427.806	412.620	77.74	n.a.	BMB *
Total:			583.689	530.799	100.00	0.000	

Figure S21. HPLC curve of (2S, 1^{\prime} R)-2-(hydroxyl-(p-nitrophenyl)methyl) cyclohexan-1one (Chiralpak AD-H; n-hexane $/ i$ - $\mathrm{PrOH}=85 / 15(\mathrm{v} / \mathrm{v}) ; 0.5 \mathrm{~mL} \mathrm{~min}{ }^{-1} ; 254 \mathrm{~nm} ; 25^{\circ} \mathrm{C}$).

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	28.59	n.a.	115.466	97.972	21.42	n.a.	BM *
2	33.21	n.a.	106.317	100.116	21.89	n.a. MB *	
3	36.56	n.a.	128.350	129.411	28.30	n.a.	BMB *
4	44.89	n.a.	119.010	129.853	28.39	n.a.	BMB *
Total:			469.143	457.352	100.00	0.000	

Figure S22. HPLC curve of racemic 2-(hydroxyl-(m-nitrophenyl)methyl) cyclohexan-1one (Chiralpak IA; n-hexane $/ i$ - $\operatorname{PrOH}=90 / 10(\mathrm{v} / \mathrm{v}) ; 0.5 \mathrm{~mL} \mathrm{~min}^{-1} ; 230 \mathrm{~nm} ; 25^{\circ} \mathrm{C}$).

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	28.69	n.a.	34.586	29.987	15.80	n.a.	BMB *
2	33.37	n.a.	18.223	16.791	8.85	n.a.	BMB *
3	36.57	n.a.	129.405	130.279	68.65	n.a.	BMB *
4	45.09	n.a.	12.027	12.706	6.70	n.a.	BMB *
Total:			194.241	189.764	100.00	0.000	

Figure S23. HPLC curve of (2S,1'R)-2-(hydroxyl-(m-nitrophenyl)methyl) cyclohexan-1one (Chiralpak IA; n-hexane $/ i$-PrOH $=90 / 10(\mathrm{v} / \mathrm{v}) ; 0.5 \mathrm{~mL} \mathrm{~min}^{-1} ; 230 \mathrm{~nm} ; 25^{\circ} \mathrm{C}$).

Figure S24. HPLC curve of racemic 2-(hydroxyl-(o-nitrophenyl)methyl) cyclohexan-1one (Chiralpak AD-H; n-hexane $/ i$ - $\mathrm{PrOH}=90 / 10(\mathrm{v} / \mathrm{v}) ; 0.5 \mathrm{~mL} \mathrm{~min}{ }^{-1} ; 254 \mathrm{~nm} ; 25^{\circ} \mathrm{C}$).

Figure S25. HPLC curve of (2S,1'R)-2-(hydroxyl-(o-nitrophenyl)methyl) cyclohexan-1one (Chiralpak AD-H; n-hexane $\left./ i-\mathrm{PrOH}=90 / 10(\mathrm{v} / \mathrm{v}) ; 0.5 \mathrm{~mL} \mathrm{~min}^{-1} ; 254 \mathrm{~nm} ; 25^{\circ} \mathrm{C}\right)$.

No.	Ret.Time min	Peak Name	Height mAU	Area mAU $\mathbf{m i n}^{2}$	Rel.Area $\%$	Amount	Type
1	20.52	n.a.	44.518	30.024	26.81	n.a.	BMB *
2	23.14	n.a.	35.439	25.807	23.04	n.a.	BMB *
3	26.03	n.a.	37.068	28.432	25.39	n.a.	BMB *
4	32.05	n.a.	33.755	27.736	24.76	n.a.	BMB *
Total:			150.779	112.000	100.00	0.000	

Figure S26. HPLC curve of racemic 2-(hydroxyl-(p-cyanophenyl)methyl) cyclohexan-1one (Chiralpak AD-H; n-hexane $/ i$ - $\mathrm{PrOH}=85 / 15(\mathrm{v} / \mathrm{v}) ; 0.5 \mathrm{~mL} \mathrm{~min}{ }^{-1} ; 230 \mathrm{~nm} ; 25^{\circ} \mathrm{C}$).

No.	Ret.Time min	Peak Name	Height mAU	$\begin{gathered} \text { Area } \\ \mathrm{mAU} \text { 'min } \end{gathered}$	$\begin{gathered} \hline \text { Rel.Area } \\ \% \end{gathered}$	Amount	Type
1	20.66	n.a.	80.522	50.928	16.89	n.a.	BMB*
2	23.29	n.a.	38.751	26.769	8.88	n.a.	BMB*
3	26.21	n.a.	25.676	17.947	5.95	n.a.	BMB*
4	32.23	n.a.	257.601	205.839	68.28	n.a.	BMB*
Total:			402.551	301.482	100.00	0.000	

Figure S27. HPLC curve of (2S,1'R)-2-(hydroxyl-(p-cyanophenyl)methyl) cyclohexan-1one (Chiralpak AD-H; n-hexane $/ i$ - $\mathrm{PrOH}=85 / 15(\mathrm{v} / \mathrm{v}) ; 0.5 \mathrm{~mL} \min ^{-1} ; 230 \mathrm{~nm} ; 25^{\circ} \mathrm{C}$).

Figure S28. HPLC curve of racemic 2-(hydroxyl-(p-trifluoromethylphenyl)methyl) cyclohexan-1-one (Chiralpak AD-H; n-hexane $/ i-\operatorname{PrOH}=95 / 5(\mathrm{v} / \mathrm{v}) ; 0.8 \mathrm{~mL} \mathrm{~min}{ }^{-1} ; 210 \mathrm{~nm}$; $25^{\circ} \mathrm{C}$.

No.	Ret.Time min	Peak Name	Height $m A U$	Area mAU*	Rel.Area $\%$	Amount	Type
1	11.44	n.a.	19.010	10.114	4.82	n.a.	BMB *
2	13.75	n.a.	24.798	14.063	6.70	n.a.	BMB *
3	19.43	n.a.	17.983	11.824	5.64	n.a.	BMB *
4	24.39	n.a.		234.537	173.751	82.84	n.a.
BMB *							
Total:			296.328	209.751	100.00	0.000	

Figure S29. HPLC curve of (2S,1’R)-2-(hydroxyl-(p-trifluoromethylphenyl)methyl) cyclohexan-1-one (Chiralpak AD-H, n-hexane $/ i-\mathrm{PrOH}=95 / 5(\mathrm{v} / \mathrm{v}) ; 0.8 \mathrm{~mL} \mathrm{~min}^{-1} ; 210 \mathrm{~nm}$; $\left.25^{\circ} \mathrm{C}\right)$.

Peak table						
Detector A 254 nm						
No.	Ret. Time	Area	Height	Concentration	Concentration unit	Mark
1	24.548	3715592	104257	97.376		
2	25.921	100131	3207	2.624		V
Total		3815723	107464			

Figure S30. HPLC curve of racemic 2-(hydroxyl-(o-trifluoromethylphenyl)methyl) cyclohexan-1-one (Chiralpak AD-H; n-hexane $/ i-\mathrm{PrOH}=90 / 10(\mathrm{v} / \mathrm{v}) ; 0.5 \mathrm{~mL} \mathrm{~min}^{-1} ; 254$ $\left.\mathrm{nm} ; 25^{\circ} \mathrm{C}\right)$.

Peak table						
Detector A 254 nm						
No.	Ret. Time	Area	Height	Concentration	Concentration unit	Mark
1	24.548	3715592	104257	97.376		
2	25.921	100131	3207	2.624		V
Total		3815723	107464			

Figure S32. HPLC curve of (2S,1’R)-2-(hydroxyl-(o-trifluoromethylphenyl)methyl) cyclohexan-1-one (Chiralpak AD-H; n-hexane $/ i-\mathrm{PrOH}=90 / 10(\mathrm{v} / \mathrm{v}) ; 0.5 \mathrm{~mL} \mathrm{~min}{ }^{-1} ; 254$ $\mathrm{nm} ; 25^{\circ} \mathrm{C}$).

