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This text completes parts of the discussion in the main text 

regarding the soliton localization length, the definition of 𝒗𝒈, 

and the topological robustness to disorder and defects.  

 

      Localization length.  The moving soliton solutions, as well as the 

stationary edge-states, share a similar scaling law as their intensity 

approaches 𝒒 = 𝒒𝟏
∗ . In order to see that we solve Eq. (4) in the main text 

under the assumption that 𝜶 ≈ 𝜶𝟎 = 𝑪𝒐𝒏𝒔𝒕, which is exactly true for 

the solitons associated with Fixed points 2, and 3, in the |𝒄| < 𝒗𝒈 case, 

or approximately true for the other solitons in the vicinity of 𝒒𝟏
∗ . In this 

case, the solution to Eq. (4) reads  
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where  𝑞0 = 𝑞(𝜉0). In the case that 𝛼0 = 𝛼2
∗, 𝛼3

∗ the solution is exact 

and Eq. (S1) becomes  
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The solution (S2) exactly coincides with the static edge state solution that 

would be found if 𝑐 = 0, along the blue and red trajectories in the phase 

portrait in Fig. 2 in the main text. This result confirms that the localization 

length of the solitons as well as of the static edge states is similar and 

thereby the intimate relation between them as also discussed for the 

mechanical case in Ref. [6] of the main text.  

 

If the soliton “width” is Δ𝜉 then the temporal bandwidth of the soliton is 

given by  
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For solitons A and B in the two cases |𝑐| < 𝑣𝑔 and |𝑐| > 𝑣𝑔 we can 

approximate Δ𝜉 by  
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This approximation has been carried out based on Eqs. (7-8) together 

with Eq. (4) in the main text.  

For solitons C and D in the case |𝑐| < 𝑣𝑔  we can approximate Δ𝜉by
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where 𝑞𝑎 = (𝑞1
∗ + 𝑞2

∗)/2. The last two results yield the scaling length 

estimation given in the main text for the solitons width.  

 

The meaning of 𝒗𝒈 = 𝜿𝚫. The maximal group velocity of a linear 

SSH chain with coupling coefficients 𝜿 and 𝝂𝟎 is given by 

𝐦𝐚𝐱
𝝋∈𝟏𝑩𝒁

𝒗𝒈 = 𝚫 𝐦𝐢𝐧{𝝂𝟎, 𝜿} which implies that in our case since we 

assume 𝝂∞ < 𝜿 < 𝝂𝟎 the maximal group velocity we expect in the 

linear limit of our chain (low intensities) is given by  

 gv   .                             (S6) 

Therefore, we conclude that the structure we study can support solitons 

that propagate slower or faster than the maximal group velocity in the 

low intensity case. 

 

    Energy conservation of solitons in the discrete equation. Here we 

show that the soliton solutions we find in the main text conserve energy. 

We assume that the solutions are of Eq. (1) in the main text and that they 

satisfy the solution ansatz in Eq. (3) in the main text where 𝑏𝑛
(1,2)

are real. 

For that, we define solution energy as in the main text  
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Then, we calculate the derivative of 𝐸in time, 
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In the derivation above we use the fact the solution is of the discrete 

system in Eq. (1) of the main text (namely, without using the continuum 

limit approximation), and we use the solution ansatz in Eq. (3) of the 

main text, saying that the two resonators amplitude in each dimer have 

phase lag of 90deg with respect to each other. Then, we obtain that the 

solution is conservative, namely, its energy is time invariant and 

therefore the soliton does not lose energy during propagation even in the  

discrete limit. 

   

    Robustness against defects – Further discussion. Robustness 

against defects has been demonstrated in Fig. 5 of the main text and 

discussed there. Here we include additional results to complete the 

discussion, and provide further insights.  

The response to a defect of fast soliton B with velocity 𝒄 = 𝟔×𝟏𝟎−𝟑 

(same velocity as of fast soliton A shown in the main text) is shown in 

Fig. S1. Here, the defect in the linear bond is 𝜿𝑫 = 𝟎. 𝟐𝜿, much stronger 

than the one used in the main text. Nevertheless, the shape of the soliton 

is completely preserved as it hits the defect, as shown in Fig. S1(a) and 

(b). Upon hitting the defect, the fast soliton becomes somewhat slower, 

as evident from the fact that the intensity hole becomes shallower [Fig. 

S1 (a)]. This means that it loses kinetic energy, which is transferred to 

scattered modes. A particular mode to mention, which may be excited 

after the interaction between the fast soliton and the strong defect, is an 

edge state. This edge state decays to a nonzero plateau level through the 

array, as predicated by the slow soliton phase space diagram in Fig. 2a. 

The edge state is clearly seen in Fig. S2, where we show the full scale of 

Fig. S1(a).  The edge state is not excited if the defect is much weaker, as 

in Fig. 5 in the main text.  

 

 
 

Fig. S1. Scattering of fast soliton B. Defect located at cell number 60. 

𝜿𝑫 = 𝟎. 𝟐𝜿. Despite the major defect the soliton preserves its shape  as 

evident by comparing the black and red curves that correspond to the 

soliton before and sufficiently after the impact.  

 

 
Fig. S2. Full scale image of Fig. S1(a). Here, the excitation of an edge 

state at the defect location is clear. This edge state is a result of the very 

strong defect. With a weaker defect of 𝜿 → 𝟎. 𝟕𝟓𝜿 (as used in the main 

text) it will not be excited.  

 

We show in Fig. S3 the scattering simulation of fast soliton A along an 

array with a stronger defect. This is essentially the same data as in Fig. 

5c and 5d, but with 𝜿𝑫 = 𝟎. 𝟐𝜿. As for fast soliton B, the strong defect 

results in the excitation of an edge state at the defect location. The soliton 

here loses more of its kinetic energy compared to the case of a weaker 

defect considered in the main text. Consequently, it slows down further, 

as evident from the fact that it becomes sharper and taller compared to 

Fig. 5c. As for fast soliton B, the major defect yields the excitation of an 

additional edge state.    

 

 
 

Fig. S3. Scattering of fast soliton A by a defect with 𝜿𝑫 = 𝟎. 𝟐𝜿. 
 

These results highlight how fast solitons A and B are quite robust. But 

what is the defect threshold above which this protection vanishes? 



Clearly, for 𝜿𝑫 = 𝟎 no transmission can take place. Therefore, there has 

to be a transition after which the robustness is lost. In order to 

demonstrate this effect, we show in Fig. S4(a) and (b) the scattering 

dynamics of fast soliton A by a defect with 𝜿𝑫 = 𝟎. 𝟎𝟓𝜿. In this case, 

the topological protection is not sufficient, and fast soliton A is converted 

to fast soliton B, with a slower velocity 𝟓. 𝟒×𝟏𝟎−𝟑, rather than 

𝟓. 𝟔×𝟏𝟎−𝟑, as found for the actual velocity of fast soliton A in Fig. 4c.  

The full scale of Fig. S4(a) is shown in Fig. S5. A strong edge state 

excitation is evident. Thus, we may conclude that, given certain initial 

soliton properties, upon hitting a defect, the stronger the defect, the more 

dominant the edge state excitation will be. 

 

 
Fig. S4. Fast soliton A with 𝒄 = 𝟔×𝟏𝟎−𝟑 imping a defect with 𝜿𝑫 =
𝟎. 𝟎𝟓𝜿.  

 
Fig. S5. Full scale of Fig. S4(a). 

 

 

Finally, we demonstrate the robustness of fast soliton A against a widely 

distributed defect. In this case, the defect is located not only over a single 

cell, but over a region of cells between dimer 50 and dimer 75. The 

defects are random in both space and time, namely, they change 

randomly with time during the soliton propagation, maximizing the 

effect of randomness, and making stable propagation more challenging. 

The defected linear bond at cell number 𝒏 is given by 𝜿𝑫(𝒏, 𝒕), which 

is a random function uniformly distributed in the range [𝟎. 𝟐𝜿, 𝜿]. A 

careful observation reveals that the impinging soliton is transmitted and 

converted into two fast solitons of type A and B. However, the total 

transmitted topological charge is perfectly preserved, as evident from 

Fig. S6.   

 
Fig. S6. Scattering of fast soliton A by a collection of random defects in 

both space and time. All the bonds between cell number 50 and number 

75 are defected. The defect is random in space and time, uniformly 

distributed in the range 𝜿𝑫(𝒏, 𝒕) ∼ 𝑼[𝟎. 𝟐𝜿, 𝜿].  
 

 


