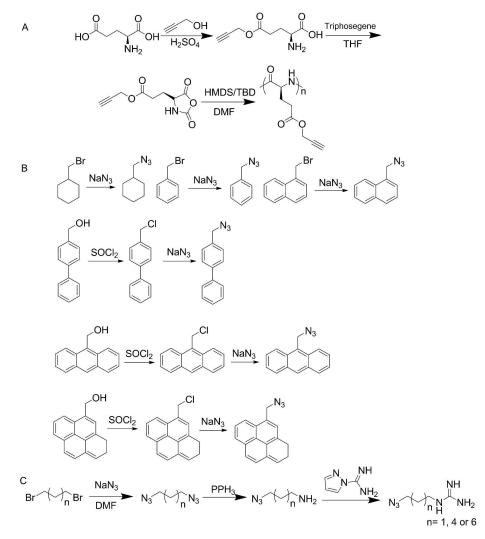
Supporting information

Engineering the Aromaticity of Cationic Helical Polypeptides toward "Self-Activated" DNA/siRNA Delivery

Fangfang Li, ^{a,1} Yongjuan Li, ^{a,1} Zhuchao Zhou, ^{b,1} Shixian Lv, ^a Qiurong Deng, ^a Xin Xu, ^a Lichen Yin ^{a,*}

^aJiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P.R. China.

^bDepartment of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China


*Corresponding authors:

Email: <a>lcyin@suda.edu.cn (Yin L); Phone: 86-512-65882039;

¹ These authors contributed equally.

1. Instrumentation.

¹H NMR spectra were recorded on a Varian U400 MHz spectrometer. Gel permeation chromatography (GPC) experiments were conducted on a system equipped with an isocratic pump (Model 1260, Agilent Technology), a multi-angle laser light scattering (MALLS) detector (Agilent Technology), and a refractive index detector (Agilent Technology). Separations were performed using serially connected size exclusion columns (5 µm, Agilent Technology) using DMF containing 0.05 M LiBr as the mobile phase. The MWs were determined based on the dn/dc value of polymers calculated offline by using the internal calibration system processed by the same software. Circular dichroism (CD) experiments were performed on a JASCO J-815 CD spectrometer. Polypeptides were dissolved in deionized (DI) water at the concentrations of 0.02 mg/mL. The solution was placed in a quartz cell with a light path of 2 mm. The mean residue molar ellipticity of each polypeptide was calculated based on the measured apparent ellipticity by the following equation: Ellipticity ($[\theta]$ in $\deg \cdot \operatorname{cm}^2 \cdot \operatorname{dmol}^{-1}$ = (millidegrees × mean residue weight)/(pathlength in millimeters concentration of polypeptide in mg mL⁻¹). The helicity of the polypeptides was calculated by the following formula: helicity = $(-[\theta_{222}] + 3000)/39000$.¹

Scheme S1. Synthetic routes of alkyne-containing polypeptides (A), small molecular aliphatic and aromatic azides (B), and azide-guanidine small molecules.

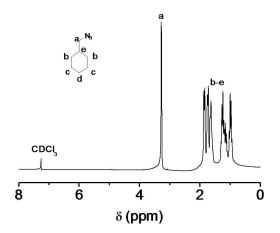


Figure S1. ¹H NMR spectrum of Cy-N₃ (CDCl₃, 400 MHz).

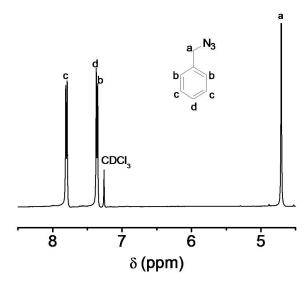
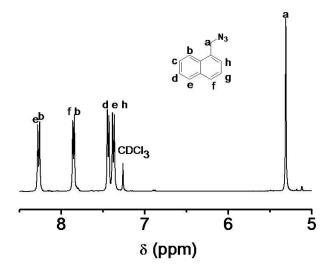



Figure S2. ¹H NMR spectrum of Bn-N₃ (CDCl₃, 400 MHz).

Figure S3. ¹H NMR spectrum of Naph-N₃ (CDCl₃, 400 MHz).

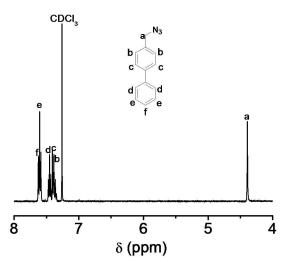
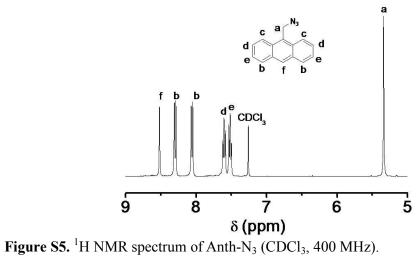



Figure S4. ¹H NMR spectrum of Biph-N₃ (CDCl₃, 400 MHz).

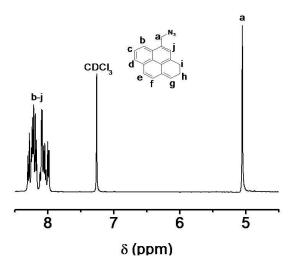


Figure S6. ¹H NMR spectrum of Py-N₃ (CDCl₃, 400 MHz).

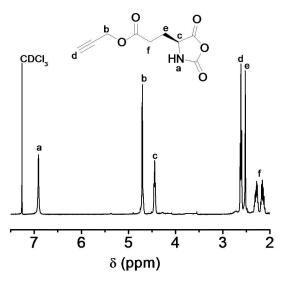


Figure S7. ¹H NMR spectrum of PLG-NCA (CDCl₃, 400 MHz).

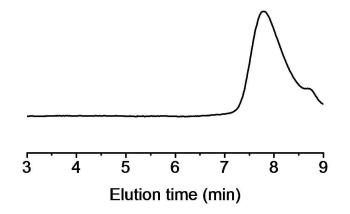
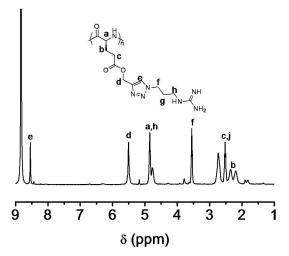
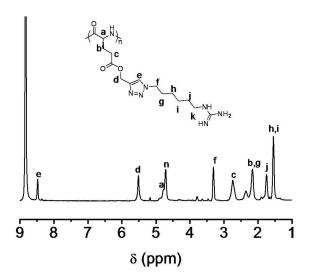




Figure S8. The GPC spectrum of polymer PPLG.

Figure S9. ¹H NMR spectrum of P1 (400 MHz, TFA-d/D₂O (v/v = 9/1)).

Figure S10. ¹H NMR spectrum of P2 (400 MHz, TFA-d/D₂O (v/v = 9/1)).

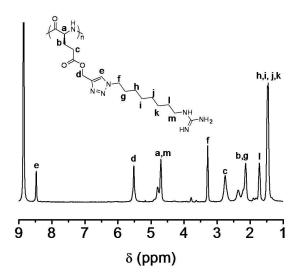
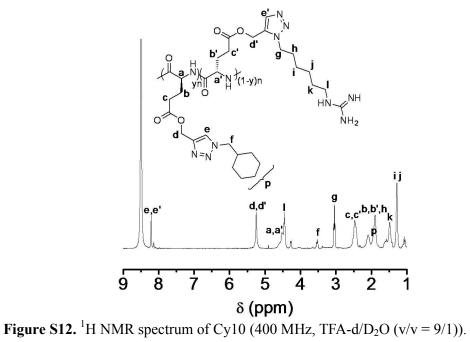



Figure S11. ¹H NMR spectrum of P3 (400 MHz, TFA-d/D₂O (v/v = 9/1)).

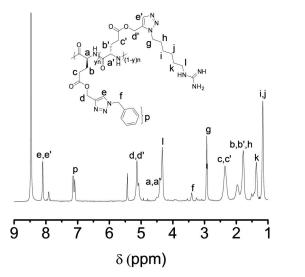
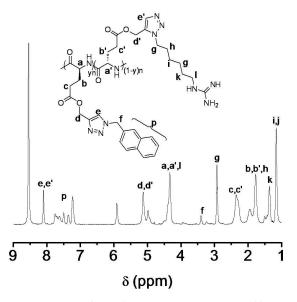



Figure S13. ¹H NMR spectrum of Bn10 (400 MHz, TFA-d/D₂O (v/v = 9/1)).

Figure S14. ¹H NMR spectrum of Naph10 (400 MHz, TFA-d/D₂O (v/v = 9/1)).

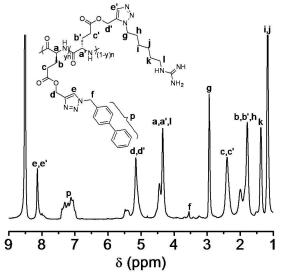
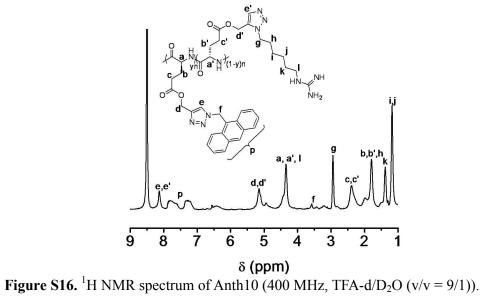
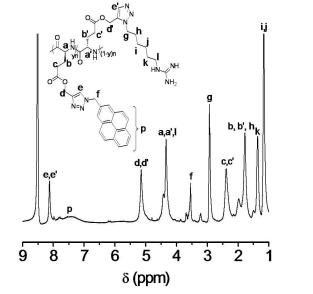




Figure S15. ¹H NMR spectrum of Biph10 (400 MHz, TFA-d/D₂O (v/v = 9/1)).

Figure S17. ¹H NMR spectrum of Py10 (400 MHz, TFA-d/D₂O (v/v = 9/1)).

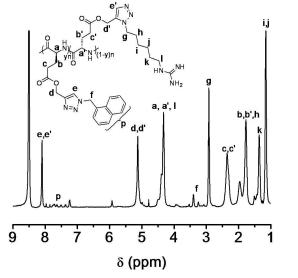
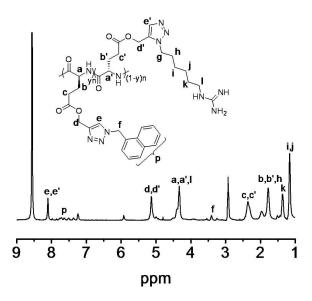
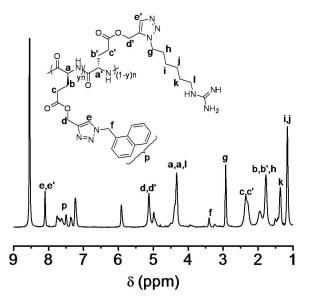
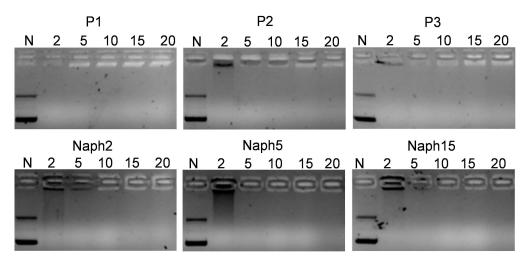
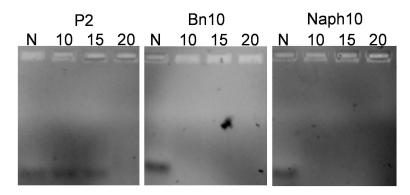
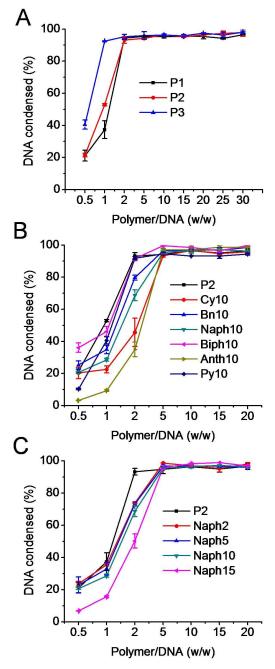
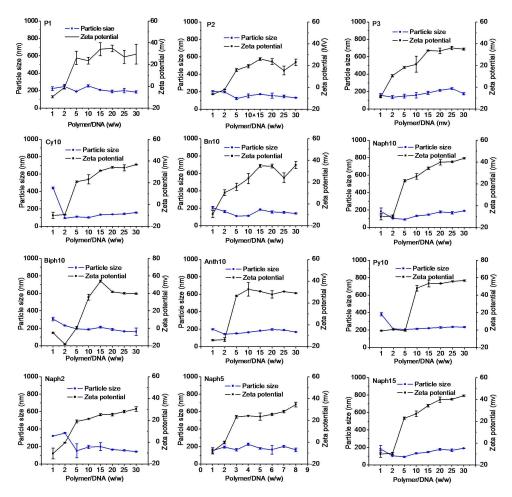


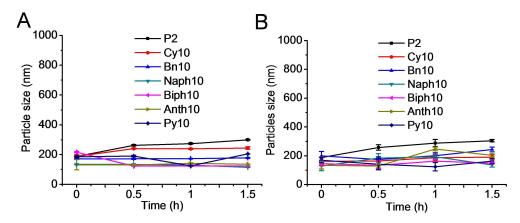
Figure S18. ¹H NMR spectrum of Naph2 (400 MHz, TFA-d/D₂O (v/v = 9/1)).

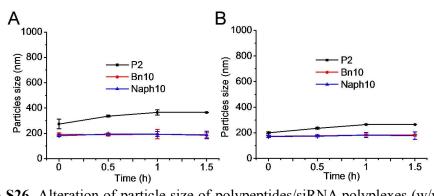




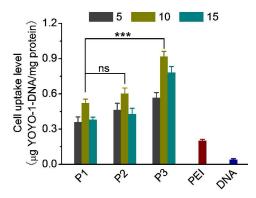

Figure S19. ¹H NMR spectrum of Naph5 (400 MHz, TFA-d/D₂O (v/v = 9/1)).

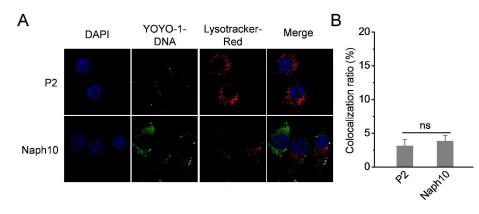

Figure S20. ¹H NMR spectrum of Naph15 (400 MHz, TFA-d/D₂O (v/v = 9/1)).

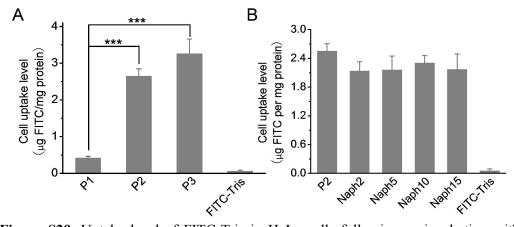

Figure S21. DNA condensation by polypeptides at various polymer/DNA weight ratios. N represents naked DNA.


Figure S22. siRNA condensation by polypeptides at various polymer/siRNA weight ratios. N represents naked siRNA.


Figure S23. DNA condensation levels of polypeptides at various polymer/DNA weight ratios. (A) Homopolypeptides with various triazole-to-guanidine spacer lengths (P1-P3). (B) P2 and co-polypeptides with various aliphatic (Cy10) or aromatic (Bn10, Naph10, Biph10, Anth10, and Py10) side chains at the fixed molar content of 10%. (C) Polypeptides with different molar contents of naphthyl groups on side chains (P2, Naph2, Naph5, Naph10, and Naph15) (n = 3).


Figure S24. Size and zeta potential of polypeptide/DNA polyplexes at various weight ratios.


Figure S25. Alteration of particle size of polypeptides/DNA polyplexes (w/w = 20, prepared in DEPC) upon dilution with PBS (A) and 10% FBS (B) (10 fold).


Figure S26. Alteration of particle size of polypeptides/siRNA polyplexes (w/w = 20, prepared in DEPC) upon dilution with PBS (A) and 10% FBS (B) (10 fold).

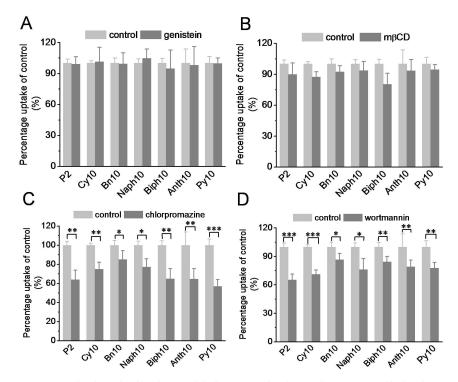

Figure S27. Uptake level of polypeptide/YOYO-1-DNA polyplexes at different polymer/DNA weight ratios (0.1 μ g DNA/well) following incubation for 4 h at 37 °C in HeLa cells (n = 3).

Figure S28. Intracellular distribution of polypeptide/DNA polyplexes in HeLa cells. (A) CLSM images of cells treated with Naph10/YOYO-1-DNA and P2/YOYO-1-DNA complexes (w/w = 10) for 4 h at 4 °C. Cell nuclei were stained with DAPI, and endosomes/lysosomes were stained with LysotrackerRed (bar = 20 μ m). (B) Colocalization ratios between YOYO-1-DNA and Lysotracker Red-stained endosomes as calculated from CLSM images (n = 50).

Figure S29. Uptake level of FITC-Tris in HeLa cells following co-incubation with polypeptides for 2 h at 37 °C. (A) Homopolypeptides with various triazole-to-guanidine spacer lengths (P1-P3). (B) Polypeptides with different molar contents of naphthyl groups on side chains (P2, Naph2, Naph5, Naph10, and Naph15) (n = 3).

Figure S30. Uptake level of polypeptide/DNA polyplexes in HeLa cells in the presence of various endocytic inhibitors including genistein (A), m β CD (B), chlorpromazine (C), and wortmannin (D) (n = 3).

	Sequence
TNF-α sense	5'-GUCUCAGCCUCUUCUCAUUCCUGCT-3'
TNF- α antisense	5'-AGCAGGAAmUGmAAmGAmGGmGGmCUmGAmGACm
	AmU-3'
Scr sense	5'-UUC UCC GAA CGU GUC ACG UTT-3'
Scr antisense	5'-ACG UGA CAC GUU CGG AGA ATT-3'

Table S1. Sequences of TNF- α and Scramble siRNA (Scr)

Table S2. Primer sequences of TNF- α and 36B4

	Sequence
TNF-α F	CCCTCACACTCAGATCATCTTCT
TNF-α R	GCTACGACGTGGGCTACAG
36B4 F	TCCAGGCTTTGGGCATCAC
36B4 R	CTTTATCAGCTGCACATCACTCAGA

REFERENCE

1. Zhang, R.; Zheng, N.; Song, Z.; Yin, L.; Cheng, J. The Effect of Side-Chain Functionality and Hydrophobicity on the Gene Delivery Capabilities of Cationic Helical Polypeptides. *Biomaterials* **2014**, *35*, 3443-3454.