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simulation methods 
We used LAMMPS (1 Feb 2014 version)1 with the USER-REAXC package and fix 

qeq/reax.2 for the Molecular Mechanics (MM) Dynamics simulations. A Nose-Hoover 
thermostat was used to control the temperature with a damping parameter of 100 time steps.  

To grow a gold (Au) nanoparticle (NP), we used a zigzag carbon nanotube (CNT) with a 
diameter of 8.39 nm as the catalysis support, which was kept fixed during all the simulations. 
The Embedded-atom-model (EAM) 3 was used to describe the interaction between Au atoms, 
and a Lennard-Jones (LJ) potential was used to describe the interaction between Au and the 
CNT. The temperature for the growth simulation was 300K, and the deposition rate for the 
growth simulation was 3.0 Å ns-1. The time step was 1 fs. After 35 ns of growth simulation, an 
Au NP with a normal thickness of about 10 nm was obtained on the CNT support. Annealing 
simulations were carried out to heal the defect and increase the grain size. Each annealing cycle 
included 10 ps cook-off simulation from 300 K to 1200 K, 5 ps NVT simulation at 1,164 K, 10 
ps annealing from 1,164 K to 300 K and 15 ps NVT simulation at 300 K. After 120 annealing 
cycles, a fully crystallized Au NP formed on CNT support. In the annealing trajectory, the Au-
NP structure after 63 annealing cycles is mostly close to the experimental structure, which was 
further refined by using 20 ps ReaxFF reactive force field (ReaxFF) simulation at 300K using a 
previous published Cu-C ReaxFF parameters.4 The time step for the reactive force field 
(ReaxFF) simulations was 0.25 fs. 

Quantum mechanics calculations were performed with VASP package 5-7, using the PBE 
flavor8 of DFT and the projector augmented wave (PAW) method9 to account for core-valence 
interactions. The kinetic energy cutoff for plane wave expansions was set to 400 eV. The 
Methfessel-Paxton smearing of second order with a width of 0.2 eV was applied. The 
convergence criteria are 1 × 10-5 eV energy differences for solving the electronic wave function. 
All geometries (atomic coordinates) are converged to 1 × 10-2 eV/Å for maximal components of 
forces.  

Cluster models for VASP calculations were cut from the simulated nanoparticle using a 
cut-off of 8 Å taking the selected site as a center. We consider that this provides an accuracy 0.02 
eV while keeping the computational cost modest. For cluster calculations, a 20 Å cubic box was 
used, and only gamma point was considered in these calculations. All the Au atoms were fixed in 
cluster calculations. 

Debyer, (freely available on https://github.com/wojdyr/debyer), was used to calculate the 
diffraction pattern for the synchrotron x-ray source. QSTEM (freely available on 
http://qstem.org/) was used to simulate the TEM images. 
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Figure S1. The simulated XRD-diffraction pattern. 

The simulated XRD-diffraction pattern of Au NP shows peaks of FCC Au. The widened peak of 
Au NP is due to the Nano-size effect.  
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Figure S2. Comparison of the equation of state of FCC Au between ReaxFF and QM. 
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Figure S3. Au octahedral with a length of 6.93 nm (10,425 Au atoms), which consists of 2,024 

facet sites (87.77%), 276 edge sites (11.97%) and six corner sites (0.26%). 
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 2    ! Nr of atoms; cov.r; valency;a.m;Rvdw;Evdw;gammaEEM;cov.r2;# 

            alfa;gammavdW;valency;Eunder;Eover;chiEEM;etaEEM;n.u. 

            cov r3;Elp;Heat inc.;n.u.;n.u.;n.u.;n.u. 

            ov/un;val1;n.u.;val3,vval4 

 C    1.3825   4.0000  12.0000   1.9133   0.1853   0.9000   1.1359   

4.0000 

      9.7602   2.1346   4.0000  33.2433  79.5548   5.8678   7.0000   

0.0000 

      1.2104   0.0000 199.0303   8.6991  34.7289  13.3894   0.8563   

0.0000 

     -2.8983   2.5000   1.0564   4.0000   2.9663   0.0000   0.0000   

0.0000 



 S7

 Au   2.0271   1.0000 196.9665   2.2078   0.3446   0.5126  -1.0000   

1.0000 

     11.9754   2.0434   1.0000   0.0000   0.0000   1.0082   8.9305   

0.0000 

     -1.0000   0.0000  92.5070   6.2293   5.2294   0.1542   0.8563   

0.0000 

    -24.7561   2.9867   1.0338   6.2998   2.5791   0.0000   0.0000   

0.0000 

 3      ! Nr of bonds; Edis1;LPpen;n.u.;pbe1;pbo5;13corr;pbo6 

                         pbe2;pbo3;pbo4;n.u.;pbo1;pbo2;ovcorr 

  1  1 156.5953 100.0397  80.0000  -0.8157  -0.4591   1.0000  37.7369   

0.4235 

         0.4527  -0.1000   9.2605   1.0000  -0.0750   6.8316   1.0000   

0.0000 

  1  2  66.7504   0.0000   0.0000   0.3297  -0.2000   0.0000  16.0000   

0.1769 

         0.1314  -0.2000  15.0000   1.0000  -0.1324   5.9552   0.0000   

0.0000 

  2  2 146.6542   0.0000   0.0000  -0.0295  -0.2000   0.0000  16.0000   

0.3319 

         0.2793  -0.2000  15.0000   1.0000  -0.1591   5.3892   0.0000   

0.0000 

 1    ! Nr of off-diagonal terms; Ediss;Ro;gamma;rsigma;rpi;rpi2 

  1  2   0.0673   1.9638   9.9501   1.9677  -1.0000  -1.0000 

 4    ! Nr of angles;at1;at2;at3;Thetao,o;ka;kb;pv1;pv2 

  1  1  1  67.2326  22.0695   1.6286   0.0000   1.7959  15.4141   1.8089 

  1  1  2  58.3918  13.9641   2.0300   0.0000   1.2404   0.0000   2.2787 

  1  2  1  71.3861   3.9232   2.1478   0.0000   1.1259   0.0000   2.1341 

  1  2  2  20.0000   7.2189   1.6647   0.0000   0.9966   0.0000   1.2857 

 1    ! Nr of torsions;at1;at2;at3;at4;;V1;V2;V3;V2(BO);vconj;n.u;n 

  1  1  1  1  -0.2500  11.5822   0.1879  -4.7057  -2.2047   0.0000   

0.0000 

  0    ! Nr of hydrogen bonds;at1;at2;at3;Rhb;Dehb;vhb1 
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