Supporting Information:

Predicted Structures of the Active Sites Responsible for the Improved Reduction of Carbon Dioxide by

Gold Nanoparticles

Tao Cheng, Yufeng Huang, Hai Xiao and William A Goddard III*

Materials and Process Simulation Center (MSC) and

Joint Center for Artificial Photosynthesis (JCAP),

California Institute of Technology, Pasadena, California 91125, United States

* E-mail: wag@wag.caltech.edu

simulation methods

We used LAMMPS (1 Feb 2014 version) ${ }^{1}$ with the USER-REAXC package and fix qeq/reax. ${ }^{2}$ for the Molecular Mechanics (MM) Dynamics simulations. A Nose-Hoover thermostat was used to control the temperature with a damping parameter of 100 time steps.

To grow a gold (Au) nanoparticle (NP), we used a zigzag carbon nanotube (CNT) with a diameter of 8.39 nm as the catalysis support, which was kept fixed during all the simulations. The Embedded-atom-model (EAM) ${ }^{3}$ was used to describe the interaction between Au atoms, and a Lennard-Jones (LJ) potential was used to describe the interaction between Au and the CNT. The temperature for the growth simulation was 300 K , and the deposition rate for the growth simulation was $3.0 \AA \mathrm{~ns}^{-1}$. The time step was 1 fs . After 35 ns of growth simulation, an Au NP with a normal thickness of about 10 nm was obtained on the CNT support. Annealing simulations were carried out to heal the defect and increase the grain size. Each annealing cycle included 10 ps cook-off simulation from 300 K to $1200 \mathrm{~K}, 5 \mathrm{ps}$ NVT simulation at $1,164 \mathrm{~K}, 10$ ps annealing from $1,164 \mathrm{~K}$ to 300 K and 15 ps NVT simulation at 300 K . After 120 annealing cycles, a fully crystallized Au NP formed on CNT support. In the annealing trajectory, the AuNP structure after 63 annealing cycles is mostly close to the experimental structure, which was further refined by using 20 ps ReaxFF reactive force field (ReaxFF) simulation at 300 K using a previous published $\mathrm{Cu}-\mathrm{C}$ ReaxFF parameters. ${ }^{4}$ The time step for the reactive force field (ReaxFF) simulations was 0.25 fs .

Quantum mechanics calculations were performed with VASP package ${ }^{5-7}$, using the PBE flavor ${ }^{8}$ of DFT and the projector augmented wave (PAW) method ${ }^{9}$ to account for core-valence interactions. The kinetic energy cutoff for plane wave expansions was set to 400 eV . The Methfessel-Paxton smearing of second order with a width of 0.2 eV was applied. The convergence criteria are $1 \times 10^{-5} \mathrm{eV}$ energy differences for solving the electronic wave function. All geometries (atomic coordinates) are converged to $1 \times 10^{-2} \mathrm{eV} / \AA$ for maximal components of forces.

Cluster models for VASP calculations were cut from the simulated nanoparticle using a cut-off of $8 \AA$ taking the selected site as a center. We consider that this provides an accuracy 0.02 eV while keeping the computational cost modest. For cluster calculations, a $20 \AA$ cubic box was used, and only gamma point was considered in these calculations. All the Au atoms were fixed in cluster calculations.

Debyer, (freely available on https://github.com/wojdyr/debyer), was used to calculate the diffraction pattern for the synchrotron x-ray source. QSTEM (freely available on http://qstem.org/) was used to simulate the TEM images.

Figure S1. The simulated XRD-diffraction pattern.

The simulated XRD-diffraction pattern of Au NP shows peaks of FCC Au. The widened peak of Au NP is due to the Nano-size effect.

Figure S2. Comparison of the equation of state of FCC Au between ReaxFF and QM.

Figure S3. Au octahedral with a length of $6.93 \mathrm{~nm}(10,425 \mathrm{Au}$ atoms), which consists of 2,024 facet sites (87.77%), 276 edge sites (11.97%) and six corner sites (0.26%).

```
2017-06-25 16:33:21 : C|Au
    39
        50.0000
            9.5469
        26.5405
                1.5105
                6.6630
                0.0000
                1.0588
                4.6000
        12.1176
        13.3056
        -70.1292
            0.0000
        10.0000
            0.0000
        33.8667
            6.0891
            1.0563
            2.0384
            6.1431
            6.9290
            0.3989
            3.9954
            0.0000
            5.7796
            10.0000
                1.9487
                0.0000
                2.1645
                1.5591
                0.1000
                2.1365
                0.6991
            50.0000
                1.8512
                0.0000
                0.0000
                0.0000
                0.0000
            2.6962
    2 ! Nr of atoms; cov.r; valency;a.m;Rvdw;Evdw;gammaEEM;cov.r2;#
                                    alfa;gammavdW;valency;Eunder;Eover;chiEEM; etaEEM;n.u.
                        cov r3;Elp;Heat inc.;n.u.;n.u.;n.u.;n.u.
                        ov/un;val1;n.u.;val3,vval4
    Cllllllllllll
4.0000
            9.7602 2.1346 4.0000 33.2433 79.5548 5.8678 7.0000
0.0000
            1.2104 0.0000 199.0303 8.6991 34.7289 13.3894 0.8563
0.0000
    -2.8983 2.5000 1.0564 4.0000 2.9663 0.0000 0.0000
0.0000
```


References

(1) Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1-19.
(2) Aktulga, H. M.; Fogarty, J. C.; Pandit, S. A.; Grama, A. Y. Parallel Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques. Parallel Comput 2012, 38, 245-259.
(3) Foiles, S. M.; Baskes, M. I.; Daw, M. S. Embedded-Atom-Method Functions for the FCC Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys. Phys. Rev. B: Condens. Matter Mater. Phys. 1986, 33, 7983-7991.
(4) Järvi, T. T.; van Duin, A. C. T.; Nordlund, K.; Goddard, W. A. Development of Interatomic Reaxff Potentials for Au-S-C-H Systems. J. Phys. Chem. A 2011, 115, 10315-10322.
(5) Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B: Condens. Matter Mater. Phys. 1993, 47, 558-561.
(6) Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15-50.
(7) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169-11186.
(8) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
(9) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 1758-1775.

