Supplementary Materials to

"Hydrate phase equilibrium of CH₄+N₂+CO₂ gas mixtures and cage occupancy behaviors"

You-Hong Sun¹, Sheng-Li Li¹⁺, Guo-Biao Zhang¹, Wei Guo¹, You-Hai Zhu²

- 1 Key Laboratory of Drilling and Exploitation Technology in Complex Conditions of Ministry of Land and Resources, College of Construction Engineering, Jilin University, Changchun, 130026, China
- 2 The Key Laboratory of Unconventional Petroleum Geology, Oil and Gas Survey, China Geological Survey, Beijing, 100029, China

Corresponding information:

Corresponding author: Sheng-Li Li E-mail: lishengli@jlu.edu.cn (S. L. Li). Tel.: +86 431 88502678. Fax: +86 431 88502678. Postal Address: 938 Ximinzhu Street, Changchun, 130026, China.

^{*} To whom correspondence should be addressed. Fax: +86 431 88502678. E-mail: lishengli@jlu.edu.cn (S. L. Li).

Figure captions

Figure S1. The mole ratio of CH₄ in large cages and small cages $(3x/\theta)$ (calculated by CSMHYD program).

Figure S2. Relationship of values of θ/x of N₂ and CO₂ molecules with temperature.

Figure S3. Occupancy ratios of N_2 and CO_2 in hydrate cages (calculated by CSMHYD program).

Figure S4. Mole ratios of N_2/CO_2 in small and large cages(calculated by CSMHYD program).

Figure S5. Relative occupancies of $CH_4/N_2/CO_2$ in small cages (a), large cages (b) and

hydrate cages(c) (calculated by CSMHYD program).

Figure S6. Variation of occupancy of CO₂ in large cages with the concentration of

CH₄ in gas phase.

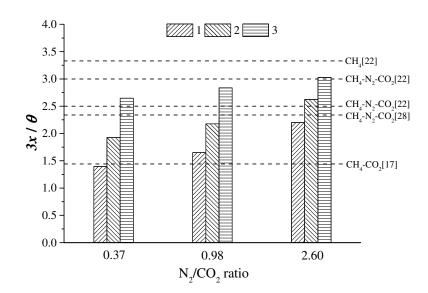


Figure S1. The mole ratio of CH_4 in large cages and small cages $(3x/\theta)$ (calculated by CSMHYD program) The numbers of 1, 2 and 3 respectively represent the CH_4 levels of 20%, 50% and 80% in each group with different N_2/CO_2 ratios.

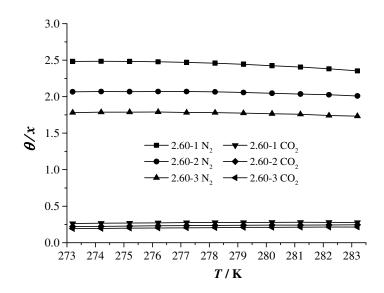


Figure S2. Relationship of values of θ/x of N₂ and CO₂ molecules with temperature. The numbers of 1, 2 and 3 respectively represent the CH₄ levels of 20%, 50% and 80% in each group with different N₂/CO₂ ratios.

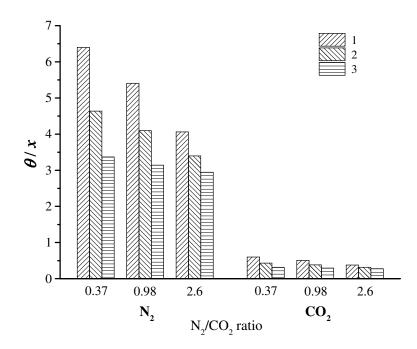
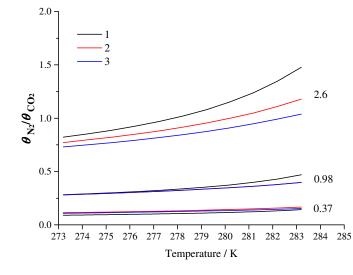
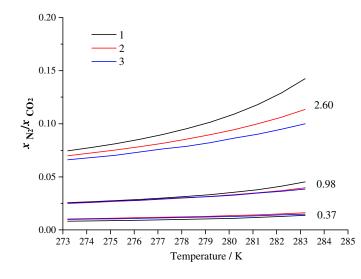
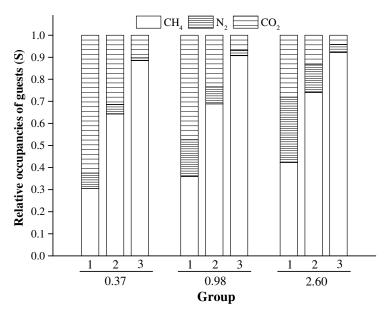




Figure S3. Occupancy ratios of N_2 and CO_2 in hydrate cages (calculated by CSMHYD program). The numbers of 1, 2 and 3 respectively represent the CH₄ levels of 20%, 50% and 80% in each group with different N_2/CO_2 ratios.


a. In small cage

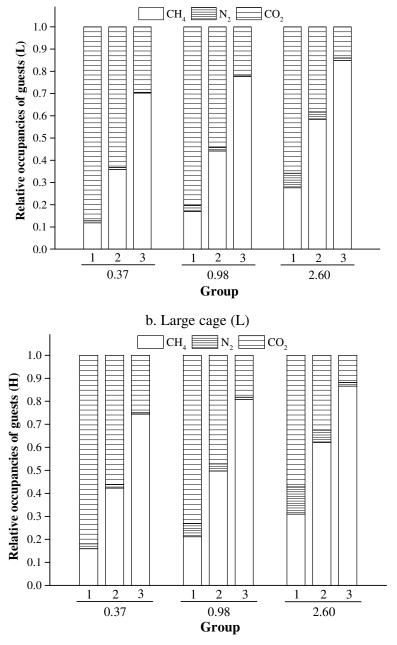

b. In large cage

Figure S4. Mole ratios of N_2/CO_2 in small and large cages (calculated by CSMHYD program). The numbers of 1, 2 and 3 respectively represent the CH₄ levels of 20%,

50% and 80% in each group with different N_2/CO_2 ratios.

a. Small cage (S)

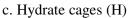


Figure S5. Relative occupancies of $CH_4/N_2/CO_2$ in small cages (a), large cages (b) and hydrate cages (c) (calculated by CSMHYD program). The numbers of 1, 2 and 3 respectively represent the CH_4 levels of 20%, 50% and 80% in each group with different N_2/CO_2 ratios.

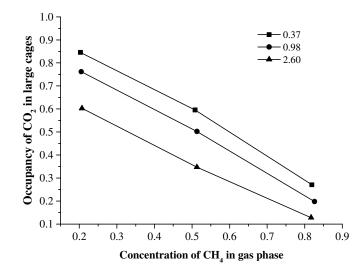


Figure S6. Variation of occupancy of CO₂ in large cages with the concentration of

CH₄ in gas phase