SUPPORTING INFORMATION Vanadium-Catalyzed Oxidative C(CO)-C(CO) Bond Cleavage for C-N Bond Formation: One Pot Domino Transformation of 1,2-Diketones and Amidines into Imides and Amides Chander Singh Digwal, Upasana Yadav, P. V. Sri Ramya, Sravani Sana, Baijayantimala Swain, and Ahmed Kamal* Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India. # **Table of contents** | I. | Table S1 (screening of the catalysts) | S | |------|---|----| | II. | Table S2 (screening of the solvent) | S | | III. | Control Experiments. | S | | IV. | Color change during the reaction of 1a with 2aa. | Se | | V. | ¹ H NMR and ¹³ C NMR Spectra copies of Compounds 3a , 4 , 5 and 6 | S | **I.** Table S1: The screening of metal catalyst for the reaction of benzil (1a) and N-phenylbenzimidamide $(2aa)^a$ | Entry | Cat. (20 mol%) | Yield of products (%) ^b | | | Recovery of | |--------|--------------------------------------|------------------------------------|-----|----|-------------| | Entry | | 3a | 4aa | 5a | 1a (%) | | 1 | none | 0 | 0 | 0 | 98 | | 2 | $Cu(NO_3)_2 \cdot xH_2O$ | 0 | 0 | 0 | 96 | | 3 | CuSO ₄ ·5H ₂ O | 0 | 0 | 0 | 94 | | 4 | $Cu(OAc)_2 \cdot H_2O$ | 26 | 0 | 0 | 67 | | 5 | $CuCl_2 \cdot 2H_2O$ | 38 | 0 | 0 | 55 | | 6 | CuBr | 47 | 0 | 0 | 48 | | 7 | CuI | 55 | 0 | 0 | 40 | | 8 | $Cu(OTf)_2$ | 52 | 21 | 22 | 18 | | 9^c | $Cu(OTf)_2$ | 50 | 24 | 25 | 10 | | 10^d | $Cu(OTf)_2$ | 48 | 27 | 28 | 15 | | 10^e | $Cu(OTf)_2$ | 45 | 10 | 12 | 16 | | 11 | AgOTf | trace | 0 | 0 | n.d. | | 12 | Ag_2CO_3 | 0 | 0 | 0 | n.d. | | 13 | $AgNO_3$ | 0 | 0 | 0 | n.d. | | 14 | $In(OTf)_3$ | 0 | 0 | 0 | n.d. | | 15 | $Zn(OTf)_2$ | 0 | 0 | 0 | n.d. | | 16 | $Sc(OTf)_3$ | trace | 0 | 0 | n.d. | | 17 | FeCl ₃ | trace | 0 | 0 | n.d. | ^aA mixture of **1a** (0.5 mmol), **2aa** (0.6 mmol), H₂O (45 μL) and 20 mol% catalyst in dry DMF (3 mL) was strirred at room temperature for 48 h under air. ^bIsolated yields of products based on **1a**. ^cThe reaction was run for 96 h. ^dThe reaction was carried out with 50 mol% of Cu(OTf)₂. ^eThe reaction was conducted at 80 °C. n.d.: not determined. #### II. Table S2. The screening of solvent^a | Enter | Solvent | H ₂ O (equiv.) – | Yield of products (%) ^b | | | |--------|--------------------|-----------------------------|------------------------------------|-------|-------| | Entry | | | 3a | 4aa | 5a | | 1 | n-hexane | - | 0 | 0 | 0 | | 2 | toluene | - | 8 | 0 | 0 | | 3 | 1,4-dioxane | - | trace | 0 | 0 | | 4 | DCM | - | 0 | 0 | 0 | | 5 | DCE | - | trace | 0 | 0 | | 6 | ethyl acetate | - | trace | 0 | 0 | | 7 | acetone | $H_2O(5)$ | 25 | trace | trace | | 8 | ethanol | $H_2O(5)$ | trace | 0 | 0 | | 9 | THF | $H_2O(5)$ | 32 | trace | trace | | 10^c | CH ₃ CN | $H_2O(5)$ | 0 | 76 | 80 | | 11^d | DMSO | $H_2O(5)$ | 0 | 82 | 88 | | 12^e | DMA | $H_2O(5)$ | 0 | 85 | 84 | $[^]a$ A mixture of **1a** (0.5 mmol), **2aa** (0.6 mmol) and 20 mol% VOSO₄·xH₂O in solvent (3 mL) was stirred at 70 °C for 20 h under air. b Isolated yields of products based on **1a**. c The reaction was run for 48 h. d The reaction was run for 36 h. e The reaction was run for 32 h. ## III. Control experiments 3a $$\xrightarrow{\text{VOSO}_4 (20 \text{ mol}\%)}$$ 4aa + 5a $N_2 \text{ balloon, 24 h}$ 92 % 94 % (S3) ## IV. Colour change during the reaction of benzil (1a) with N-phenylbenzimidamide (2aa): ### Note: Whenever a mixture of 1,2-diketone, amidine, H_2O and 20 mol% of $VOSO_4 \cdot xH_2O$ in dry DMF was heated at 70 °C, the color of the reaction mixture turned black within 1 h, which then turned to green in most of the cases. # V. ¹H- and ¹³C-NMR spectra copies of compounds **3a**, **4**, **5** and **6**