SUPPORTING INFORMATION

Vanadium-Catalyzed Oxidative C(CO)-C(CO) Bond Cleavage for C-N Bond Formation: One Pot Domino Transformation of 1,2-Diketones and Amidines into Imides and Amides

Chander Singh Digwal, Upasana Yadav, P. V. Sri Ramya, Sravani Sana, Baijayantimala Swain, and Ahmed Kamal*

Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India.

Table of contents

I.	Table S1 (screening of the catalysts)	S
II.	Table S2 (screening of the solvent)	S
III.	Control Experiments.	S
IV.	Color change during the reaction of 1a with 2aa.	Se
V.	¹ H NMR and ¹³ C NMR Spectra copies of Compounds 3a , 4 , 5 and 6	S

I. Table S1: The screening of metal catalyst for the reaction of benzil (1a) and N-phenylbenzimidamide $(2aa)^a$

Entry	Cat. (20 mol%)	Yield of products (%) ^b			Recovery of
Entry		3a	4aa	5a	1a (%)
1	none	0	0	0	98
2	$Cu(NO_3)_2 \cdot xH_2O$	0	0	0	96
3	CuSO ₄ ·5H ₂ O	0	0	0	94
4	$Cu(OAc)_2 \cdot H_2O$	26	0	0	67
5	$CuCl_2 \cdot 2H_2O$	38	0	0	55
6	CuBr	47	0	0	48
7	CuI	55	0	0	40
8	$Cu(OTf)_2$	52	21	22	18
9^c	$Cu(OTf)_2$	50	24	25	10
10^d	$Cu(OTf)_2$	48	27	28	15
10^e	$Cu(OTf)_2$	45	10	12	16
11	AgOTf	trace	0	0	n.d.
12	Ag_2CO_3	0	0	0	n.d.
13	$AgNO_3$	0	0	0	n.d.
14	$In(OTf)_3$	0	0	0	n.d.
15	$Zn(OTf)_2$	0	0	0	n.d.
16	$Sc(OTf)_3$	trace	0	0	n.d.
17	FeCl ₃	trace	0	0	n.d.

^aA mixture of **1a** (0.5 mmol), **2aa** (0.6 mmol), H₂O (45 μL) and 20 mol% catalyst in dry DMF (3 mL) was strirred at room temperature for 48 h under air. ^bIsolated yields of products based on **1a**. ^cThe reaction was run for 96 h. ^dThe reaction was carried out with 50 mol% of Cu(OTf)₂. ^eThe reaction was conducted at 80 °C. n.d.: not determined.

II. Table S2. The screening of solvent^a

Enter	Solvent	H ₂ O (equiv.) –	Yield of products (%) ^b		
Entry			3a	4aa	5a
1	n-hexane	-	0	0	0
2	toluene	-	8	0	0
3	1,4-dioxane	-	trace	0	0
4	DCM	-	0	0	0
5	DCE	-	trace	0	0
6	ethyl acetate	-	trace	0	0
7	acetone	$H_2O(5)$	25	trace	trace
8	ethanol	$H_2O(5)$	trace	0	0
9	THF	$H_2O(5)$	32	trace	trace
10^c	CH ₃ CN	$H_2O(5)$	0	76	80
11^d	DMSO	$H_2O(5)$	0	82	88
12^e	DMA	$H_2O(5)$	0	85	84

 $[^]a$ A mixture of **1a** (0.5 mmol), **2aa** (0.6 mmol) and 20 mol% VOSO₄·xH₂O in solvent (3 mL) was stirred at 70 °C for 20 h under air. b Isolated yields of products based on **1a**. c The reaction was run for 48 h. d The reaction was run for 36 h. e The reaction was run for 32 h.

III. Control experiments

3a
$$\xrightarrow{\text{VOSO}_4 (20 \text{ mol}\%)}$$
 4aa + 5a
 $N_2 \text{ balloon, 24 h}$ 92 % 94 % (S3)

IV. Colour change during the reaction of benzil (1a) with N-phenylbenzimidamide (2aa):

Note:

Whenever a mixture of 1,2-diketone, amidine, H_2O and 20 mol% of $VOSO_4 \cdot xH_2O$ in dry DMF was heated at 70 °C, the color of the reaction mixture turned black within 1 h, which then turned to green in most of the cases.

V. ¹H- and ¹³C-NMR spectra copies of compounds **3a**, **4**, **5** and **6**

