SUPPORTING INFORMATION

FOR

What is the Structure of the Antitubercular Natural Product Eucapsitrione?

Glenn A. Pullella,[†] Duncan A. Wild,[†] Gareth L. Nealon,[‡] Mikhail Elyashberg,^P and Matthew J. Piggott[†]*

[†]School of Chemistry & Biochemistry, The University of Western Australia, Perth, Australia

[‡] Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth,

Australia

^P Moscow Department, Advanced Chemistry Development Ltd., 6 Akademik Bakulev St., Moscow

117513, Russian Federation

matthew.piggott@uwa.edu.au

CONTENTS

I. Additional ¹³ C and ¹ H NMR Data	
Table S1. Experimental ¹³ C NMR and ¹ H NMR chemical shifts for chrysazin (2)	S3
II. Additional ¹³ C NMR Data and Chemical Shift Calculations	
Table S2. Experimental and calculated ¹³ C NMR chemical shifts for 1	S4
III. References	S5
IV. NMR Spectra	
1-Hydroxy-8-acetoxy-9,10-anthraquinone	S6
1-Hydroxy-2-iodo-8-acetoxy-9,10-anthraquinone (3)	S7
(E)-Methyl 3'-(8-acetoxy-1-hydroxy-9,10-anthraquinon-2-yl)acrylate (4)	S9
(E)-Methyl 3'-(1,8-dihydroxy-9,10-anthraquinon-2-yl)acrylate (5)	S11
(<i>E</i>)-3'-(1,8-Dihydroxy-9,10-anthraquinon-2-yl)acrylic acid (6)	S13
(2-(Diisopropylcarbamoyl)-3-methoxyphenyl)boronic acid (9a)	S15
(2-(Diethylcarbamoyl)-3-methoxyphenyl)boronic acid (9c)	S16

1,8-Dihydroxy-2-iodo-9,10-anthraquinone (10a)
1-Methoxy-2-iodo-8-acetoxy-9,10-anthraquinone (10b)
1-Methoxy-2-iodo-8-hydroxy-9,10-anthraquinone (10c)
2-Iodo-4-nitrophenol (10e)
Dimethyl 3-hydroxy-4-iodo-6-methylphthalate (10f)
2'-(1,8-Dihydroxy-9,10-anthraquinon-2-yl)- <i>N</i> , <i>N</i> -diisopropyl-6'-methoxybenzamide (11a)S27
2'-(1,8-Dihydroxy-9,10-anthraquinon-2-yl)- <i>N</i> , <i>N</i> -diethyl-6'-methoxybenzamide (11c)
2'-Hydroxy- <i>N</i> , <i>N</i> -diisopropyl-3-methoxy-[1,1'-biphenyl]-2-carboxamide (11d)S31
2'-(Diisopropylcarbamoyl)-2-hydroxy-3'-methoxy-5-methyl-[1,1'-biphenyl]-3,4-dicarboxylic
acid (11f)
5'-(1,8-Dihydroxy-9,10-anthraquinon-2-yl)- <i>N</i> , <i>N</i> -diisopropyl-2'-methoxybenzamide (12a)S35
5'-(1,8-Dihydroxy-9,10-anthraquinon-2-yl)- <i>N</i> -isopropyl-2'-methoxybenzamide (13)S37
5'-(1,8-Dihydroxy-9,10-anthraquinon-2-yl)-2'-methoxybenzamide (14)
2'-(1,8-Dimethoxy-9,10-anthraquinon-2-yl)- <i>N</i> , <i>N</i> -diethyl-6'-methoxybenzamide (16)S42
2'-(1,8,9,10-Tetramethoxyanthracen-2-yl)- <i>N</i> , <i>N</i> -diethyl-6'-methoxy-benzamide (17)S44
1,5,6,7,11-Pentamethoxy-13 <i>H</i> -indeno[1,2- <i>b</i>]anthracen-13-one (18)
1,5,7-Trimethoxy-6 <i>H</i> -indeno[1,2- <i>b</i>]anthracene-6,11,13-trione (19)
1,5,7-Trihydroxy-6 <i>H</i> -indeno[1,2- <i>b</i>]anthracene-6,11,13-trione (1)
1,8-Dihydroxy-9,10-anthraquinone (<i>chrysazin</i> , 2)

I. Additional ¹³C and ¹H NMR Data

1,8-Dihydroxy-9,10-anthraquinone (chrysazin, 2)

¹H NMR (500 MHz, d_6 -DMSO) δ 11.90 (s, 2H, 2 × OH), 7.80 (dd, J = 8.0, 7.5 Hz, 2H, H3, H6), 7.70 (dd, J = 7.5, 1.0 Hz, 2H, H4, H5), 7.37 (dd, J = 8.5, 1.0 Hz, 2H, H2, H7). ¹H NMR (500 MHz, d_5 -pyridine) δ 12.20 (s, 2H, 2 × OH), 7.87 (dd, J = 7.5, 1.0 Hz, 1H, H4, H5), 7.62 (dd, J = 8.5, 7.5 Hz, 1H, H3, H6), 7.35 (dd, J = 8.3, 0.8 Hz, 1H, H2, H7); ¹³C NMR (125 MHz, d_5 -pyridine) δ 193.4 (C9), 182.0 (C10), 163.0 (C1, C8), 138.0 (C3, C6), 134.4 (C4a, C10a), 125.1 (C2, C7), 120.2 (C4, C5), 116.7 (C8a, C9a). NMR assignments made with the assistance of COSY, HSQC and HMBC experiments.

Table S1. Spectroscopic data for chrysazin (2). All data except the ¹³C NMR data in d_6 -DMSO were obtained by the authors.

¹³ C NMR (ppm)		¹ H NMR (ppm)		
<i>d</i> ₅ -pyridine ^a	Kukushkina <i>et al</i> . ¹	<i>d</i> ₅ -pyridine ^c	d_6 -DMSO ^c	
	d_6 -DMSO ^b			
193.4	192.9	12.20 (s, OH)	11.90 (s, OH)	
182.0	182.2	7.87 (dd)	7.80 (dd)	
163.0	162.3	7.62 (dd)	7.70 (dd)	
138.0	138.3	7.35 (dd)	7.37 (dd)	
134.4	134.1			
125.1	125.3			
120.2	120.2			
116.7	116.8			

^a 125 MHz. ^b 22.5 MHz.² ^c 500 MHz.

II. Additional ¹³C NMR Data and Chemical Shift Calculations

Table S2. Experimental ¹³C NMR chemical shifts for **1** (d_5 -pyridine) compared with the calculated ¹³C NMR shifts (DMSO) and with the shifts of eucapsitrione (d_6 -DMSO).³

$\frac{\delta_{\exp} 1}{(d_5 - \text{pyr})^a}$	δ_{exp} eucapsitrione ³	$\delta_{calc} 1$ HF/	δ _{calc} 1 B3LYP/ 6-31G* // HF/6-	δ _{calc} 1 B3LYP/	δ _{calc} 1 B3LYP/ 6-31G*//B3LYP/
	$(d_6$ -DMSO) ^b	6-31G*	311G+(2d,p)	6-31G*	6-311+G(2d,p)
		(DMSO)	(DMSO)	(DMSO)	(DMSO)
193.7	187.1	192.6	209.3	182.8	205.3
191.0	184.8	192.0	207.5	179.8	202.0
181.3	180.2	177.7	194.5	169.3	191.0
163.2	177.2	158.3	174.4	150.5	172.3
159.0	161.9	156.8	169.6	146.2	168.0
158.3	161.1	154.8	166.8	145.7	166.9
143.6	137.2	141.7	153.6	130.4	149.8
141.7	135.2	140.2	152.4	129.1	148.4
138.3	135.1	138.7	151.1	127.1	147.4
138.3	134.5	137.7	149.9	126.3	146.0
136.0 ^c	131.0	137.4	143.7	125.7	145.1
d	130.3	135.5	143.2	123.1	142.9
134.4	126.3	133.8	141.9	121.2	140.9
125.2	124.6	121.0	130.0	112.8	132.1
121.7	122.8	120.8	126.5	111.4	128.7
121.6	121.6	117.5	126.3	109.9	127.2
120.5	118.3	117.4	123.1	106.9	125.1
119.0	118.2	114.7	121.4	106.6	124.5
118.0	117.3	113.7	120.2	106.3	122.9
116.8	116.4	113.3	117.7	105.2	121.7
114.5	116.2	106.5	117.4	105.0	121.2
Mean $ \Delta \delta ^{e}$	3.7	2.8	8.1	11.9	7.5
Max $ \Delta \delta ^{e}$	14.0	8.0	16.5	13.6	11.6
3.7	Mean $ \Delta \delta ^{\rm f}$	5.3	9.8	10.5	9.5
14.0	Max $ \Delta \delta ^{f}$	18.9	22.7	26.7	18.2

 $|\Delta \delta|$ = Absolute chemical shift difference.

^a 125 MHz. ^b 225 MHz. ^c This signal is obscured by a solvent peak in the ¹³C NMR; the chemical shift is approximated from correlations observed in the HMBC spectrum. ^d A ¹³C NMR resonance of C11a or C12a in **1** could not be experimentally observed. It is expected to be obscured by the solvent peak at 136.5–135.5 ppm based upon ¹³C NMR chemical shift predictions (see also experimental for **1**), and so was excluded from these shift difference calculations.^e Mean and maximum $|\Delta\delta|$ calculated with respect to the experimental ¹³C NMR chemical shifts of **1** in d_5 -pyridine. ^f Mean and maximum $|\Delta\delta|$ calculated with respect to the ¹³C NMR chemical shifts reported for eucapsitrione in d_6 -DMSO.³

III. References

- (1) Kukushkina, M. L.; Gorelik, M. V.; Shapet'ko, N. N.; Bogachev, Y. S. *Zh. Obshch. Khim.* **1990**, *60*, 920.
- (2) Kukushkina, M. L.; Shapet'ko, N. N.; Bogachev, Y. S.; Gorelik, M. V. Zh. Obshch. Khim. **1990**, 60, 914.
- (3) Sturdy, M.; Krunic, A.; Cho, S.; Franzblau, S.; Orjala, J. J. Nat. Prod. 2010, 73, 1441.

ັຕ ้ณ

Figure S14: 100 MHz ¹³C NMR spectrum of 10a in CDCl₃

 $210 \ \ 200 \ \ 190 \ \ 180 \ \ 170 \ \ 160 \ \ 150 \ \ 140 \ \ 130 \ \ 120 \ \ 110 \ \ 100$

mqq

10

20

30

40

50

60

70

80

90

2

' ~

No 2 2 0 H

ى ى

Figure S21: 125 MHz ¹³C NMR spectrum of 10f in CDCl₃

Figure S22: 500 MHz ¹H NMR spectrum of 11a in CDCl₃

Figure S23: 125 MHz 13 C NMR spectrum of 11a in CDCl₃

Figure S24: 400 MHz ¹H NMR spectrum of 11c in CDCl₃

Figure S25: 100 MHz 13 C NMR spectrum of 11c in CDCl₃

Figure S26: 500 MHz ¹H NMR spectrum of 11d in CDCl₃

O

δ

Figure S29: 125 MHz ¹³C NMR spectrum of 11f in MeOD

Figure S30: 500 MHz ¹H NMR spectrum of 12a in CDCl₃

Figure S32: 600 MHz ¹H NMR spectrum of 13 in CDCl₃

Figure S33: 150 MHz 13 C NMR spectrum of 13 in CDCl₃

Figure S37: 400 MHz ¹H NMR spectrum of 16 in CDCl₃

÷

Figure S39: 400 MHz ¹H NMR spectrum of 17 in CDCl₃

Figure S40: 125 MHz ¹³C NMR spectrum of 17 in CDCl₃

Figure S47: 125 MHz DEPTQ NMR spectrum of 1 in d_5 -pyridine

Figure S48: 500 MHz COSY NMR spectrum of 1 in d5-pyridine

. ო

2

НО

ო

 \sim

ო