Supporting Information

C-H Alkenylation of Heteroarenes: Mechanism, Rate, and Selectivity Changes Enabled by Thioether Ligands

Bradley J. Gorsline, Long Wang, Peng Ren, and Brad P. Carrow*
Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
*E-mail: bcarrow@princeton.edu

General remarks S2
Synthesis of sulfur compounds S3
Table S1 S9
Table S2 S12
C-H alkenylation reactions S13
Table S3 S15
Site selectivity experiments S47
Table S5 S59
Kinetic experiments S60
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\},{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra S78
References S217

General Methods. All reagents were purchased from commercial sources and used as received unless otherwise indicated. 2-methyl furan, butyl acrylate, and tert-butyl acrylate were distilled prior to use. Benzoquinone was sublimed under vacuum prior to use. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\},{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ nuclear magnetic resonance spectra (NMR) were obtained on a Bruker 300 MHz or 500 MHz or Varian 400 MHz spectrometers and chemical shifts reported in ppm (δ) referenced against residual $\mathrm{CHCl}_{3}, \mathrm{CD}_{2} \mathrm{HOD}$, etc. Spin-spin coupling constants are described as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint), broad (br) or multiplet (m), with coupling constants (J) in Hz. Flash column chromatography was performed on Teledyne IscoRediSep ${ }^{\circledR}$ prepacked silica gel columns. GC analysis was performed on an Agilent 6890 GC equipped with an HP-1 column (30 m x 0.32 mm ID x $0.25 \mu \mathrm{~m}$ film) and an FID detector. High resolution mass spectrometry (HR-MS) data were obtained using an Agilent 6210 High Resolution Electrospray TOFMS. Preparative TLC was performed on Merck 60 F254 silica gel plates ($20 \mathrm{~cm} \times 20 \mathrm{~cm}$ x 1 mm).

4-(ethylthio)- N, N-dimethylaniline (L7). 4 -(N, N-dimethylamino)benzenethiol (415 mg , 2.71 mmol), sodium hydroxide ($108 \mathrm{mg}, 2.71 \mathrm{mmol}$), and bromoethane ($0.20 \mathrm{~mL}, 2.7$ $\mathrm{mmol})$ were added to a 20 mL scintillation vial. Methanol (10 mL) was added and the mixture was stirred at room temperature for 4 h . Solvent was then removed under reduced pressure to give a moist solid. The crude residue was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to 70:30 to afford 415 mg (85%) of $\mathbf{L} 7$ as pale yellow liquid. NMR spectroscopic data agree with literature values. ${ }^{1}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{~s}$, $6 \mathrm{H}), 2.78(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.88,134.10,120.78,112.82,40.50,30.64,14.81$.
HRMS calc'd for $\left[\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NS}^{+}\right](\mathrm{M}+\mathrm{H}): 182.0998$, found: 182.0997.

ethyl(4-methoxyphenyl)sulfane (L8). 4-methoxybenzenethiol ($2.00 \mathrm{~g}, 14.3 \mathrm{mmol}$), potassium hydroxide ($800 \mathrm{mg}, 14.3 \mathrm{mmol}$), and bromoethane ($1.06 \mathrm{~mL}, 14.3 \mathrm{mmol}$) were mixed in 50 mL methanol. The reaction was stirred at room temperature for 4 h . The methanol was then removed under reduced pressure to give a moist solid. The solid was washed with water and extracted with ether. The organic layer was collected and dried over magnesium sulfate. Then the ether was removed under reduced pressure to give the crude product as a slightly yellow liquid. The product was purified via distillation under vacuum at $130^{\circ} \mathrm{C}$ to give $1.10 \mathrm{~g}(46 \%) \mathbf{L 8}$ as clear liquid. NMR spectroscopic data agree with literature values. ${ }^{2}$
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.48-7.27 (m, 2H), 6.94-6.74 (m, 2H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 2.84$ $(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.3,3 \mathrm{H})$.

L10
ethyl(phenyl)sulfane (L10). benzenethiol $(2.00 \mathrm{~g}, 18.2 \mathrm{mmol})$, potassium hydroxide $(1.02 \mathrm{~g}, 18.2 \mathrm{mmol})$, and bromoethane $(1.36 \mathrm{~mL}, 18.2 \mathrm{mmol})$ were mixed in 60 mL methanol. The reaction was stirred at room temperature for 4 h . The methanol was then removed under reduced pressure to give a moist solid. The solid was washed with water and extracted with ether. Then the organic layer was collected and dried over magnesium sulfate. The ether was removed under reduced pressure to give the crude product as a slightly yellow liquid. The product was purified via distillation under vacuum at $120{ }^{\circ} \mathrm{C}$ to give $1.10 \mathrm{~g}(44 \%) \mathbf{L 1 0}$ as clear liquid. NMR spectroscopic data agree with literature values. ${ }^{3}$
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{q}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.32(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.

ethyl(4-nitrophenyl)sulfane (L12). 4-nitrobenzenethiol ($2.00 \mathrm{~g}, 12.9 \mathrm{mmol}$), potassium hydroxide ($723 \mathrm{mg}, 12.9 \mathrm{mmol}$), and bromoethane ($0.96 \mathrm{~mL}, 13 \mathrm{mmol}$) were mixed in 40 mL methanol. The reaction was stirred for 24 h at $55^{\circ} \mathrm{C}$ upon which the heterogeneous reaction mixture turns from red to yellow. The reaction vessel was allowed to cool and the methanol was removed under reduced pressure to give a moist solid. The solid was washed with water and extracted with ether. The organic layer was collected and dried over magnesium sulfate. The ether was then removed under reduced pressure to give the crude product as a yellow-orange solid. The product was recrystallized from refluxing
acetone to give 213 mg (9\%) L12 as orange-red feathery crystals. NMR spectroscopic data agree with literature values. ${ }^{3}$
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15-8.10(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{q}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.

L13

1-(ethylsulfinyl)-4-methoxybenzene (L13). To a 100 mL flask ethyl(4methoxyphenyl)sulfane ($\mathbf{L 8}$) ($500 \mathrm{mg}, 2.97 \mathrm{mmol}$) was dissolved in 50 mL of acetonitrile and sealed. To the flask hydrogen peroxide ($0.34 \mathrm{~g}, 30 \mathrm{wt} \%, 3 \mathrm{mmol}$) and chlorotrimethylsilane $(0.38 \mathrm{~mL}, 3.0 \mathrm{mmol})$ were added. The reaction was stirred at room temperature for 4 h . The solvent was removed under vacuum to give a white solid that was washed with hexanes to give the $399 \mathrm{mg}(73 \%) \mathbf{L} 13$ as white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, 2.95-2.66 (m, 2H), $1.18(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 161.90,130.38,126.08,114.68,55.53,50.50,6.20$.
HRMS calc' d for $\left[\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~S}^{+}\right](\mathrm{M}+\mathrm{H})$: 185.0631, found: 185.0630.

L14
sodium 3-\{(4-methoxyphenyl)thio\}propane-1-sulfonate (L14). To a 100 mL round bottom flask 4-methoxybenzenethiol ($0.62 \mathrm{~mL}, 5.0 \mathrm{mmol}$) and sodium hydroxide (0.20 g , 5.0 mmol) were mixed in 10 mL methanol. Under rigorous stirring, 1,2-oxathiolane 2,2dioxide ($0.44 \mathrm{~mL}, 5.0 \mathrm{mmol}$) was added and white precipitate generated immediately. The reaction was stirred for 30 min at room temperature to allow full conversion, and 20
mL ether was added to fully precipitate out the product. The afforded suspension was filtered, and the solid was rinsed with ether ($20 \mathrm{~mL} \times 2$) . After air drying for $20 \mathrm{~min}, 1.39$ $\mathrm{g}(98 \%) \mathbf{L} \mathbf{1 4}$ was obtained as white solid.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.36(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}$, 4H), $2.98-2.87$ (m, 5H), $2.06-1.97$ (m, 2H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 160.58,134.55,127.29,115.63,55.74,51.23,35.55$, 26.01.

HRMS calc'd for $\left[\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~S}_{2}{ }^{+}\right]\left(\mathrm{RSO}_{3} \mathrm{H}_{2}{ }^{+}\right)$: 263.0406, found: 263.0405.

L15
sodium 3-(methylthio)propane-1-sulfonate (L15). To a 100 mL round bottom flask sodium methanethiolate ($350 \mathrm{mg}, 5.00 \mathrm{mmol}$) was dissolved in 10 methanol under nitrogen. The reaction system was cooled to $0^{\circ} \mathrm{C}$, and 1,2-oxathiolane 2,2-dioxide (0.44 $\mathrm{mL}, 5.0 \mathrm{mmol}$) was added dropwise via syringe. After stirring at room temperature for 3 h , the suspension was concentrated under reduced pressure at $30^{\circ} \mathrm{C}$ then the remaining suspension was filtered and rinsed with ether ($20 \mathrm{~mL} \times 2$). After air drying for 20 min , 831 mg (86%) L15 was obtained as white solid.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 2.95-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.10-2.02$ (m, 5H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 51.28,33.76,25.49,14.97$.
HRMS calc'd for $\left[\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~S}_{2}{ }^{+}\right]\left(\mathrm{RSO}_{3} \mathrm{H}_{2}{ }^{+}\right)$: 171.0144, found: 171.0143.

L16
lithium 2-(ethylthio)-4-methylbenzenesulfonate (L16). Lithium 4methylbenzenesulfonate ($1.78 \mathrm{~g}, 10.0 \mathrm{mmol}$) was dissolved in THF (100 mL) in a 500 mL round bottom flask in glove box. The flask was sealed with a septum then taken out of the glove box. After cooling down to $0^{\circ} \mathrm{C}$, n-butyllithium (2.5 M in hexanes, 6.9 mL ,

11 mmol) was injected dropwise and the colorless solution gradually became a yellow suspension. Diethyl disulfide ($1.23 \mathrm{~mL}, 10.0 \mathrm{mmol}$) was injected slowly and the solution became light yellow. The reaction was then warmed to room temperature and stirred for 18 h . An aqueous solution of $\mathrm{HCl}(100 \mathrm{~mL}, 2 \mathrm{M})$ was added to quench the reaction. The aqueous phase was separated and extracted with ether $(50 \mathrm{~mL} \times 3)$. The organic layers were combined and solvent was removed under vacuum to afford 6.1 g of a light yellow oil. The crude product was then dissolved in water and neutralized with LiOH . Recrystallization using THF/ether gave 2.04 g (86%) L16 as a white solid.
${ }^{1} \mathrm{H}$ NMR ($\left.501 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.82(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ $(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 141.86,141.17,137.68,129.34,129.06,125.81,27.64$, 21.23, 13.94.

HRMS calc'd for $\left[\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~S}_{2}{ }^{+}\right]\left(\mathrm{RSO}_{3} \mathrm{H}_{2}{ }^{+}\right)$: 233.0301, found: 233.0291.

L17
sodium 3-(4-(ethylthio)phenoxy)propane-1-sulfonate (L17). 4-(Ethylthio)phenol (771 $\mathrm{mg}, 5.00 \mathrm{mmol})$ and sodium hydroxide ($0.210 \mathrm{~g}, 5.25 \mathrm{mmol}$) were mixed with 10 mL methanol in a 25 mL round bottom flask. With rigorous stirring, sodium 3-bromopropane-1-sulfonate ($1.18 \mathrm{~g}, 5.25 \mathrm{mmol}$) was added and a white precipitate gradually formed. The reaction was stirred overnight at $60^{\circ} \mathrm{C}$. The resulting suspension was then filtered and the solid was rinsed with ether $(20 \mathrm{~mL} \times 3)$ and hexane $(20 \mathrm{~mL} \times 3)$. After air drying for $20 \mathrm{~min}, 0.88 \mathrm{~g}(59 \%) \mathbf{L 1 7}$ was obtained as a white solid.
${ }^{1} \mathrm{H}$ NMR ($\left.501 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.31(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{t}$, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.00-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.27-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.21$ (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 159.65,134.19,127.81,116.18,67.75,49.36,30.42$, 26.29, 15.03.

HRMS calc'd for $\left[\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~S}_{2}{ }^{+}\right]\left(\mathrm{RSO}_{3} \mathrm{H}_{2}{ }^{+}\right)$: 277.0563 , found: 277.0565.

L18
sodium 3-(4-methoxyphenoxy)propane-1-sulfonate (L18). 4-Methoxyphenol (0.62 g, $5.0 \mathrm{mmol})$ and sodium hydroxide $(0.20 \mathrm{~g}, 5.0 \mathrm{mmol})$ were mixed with 10 mL methanol in a 100 mL round bottom flask. Under rigorous stirring, 1,2-oxathiolane 2,2-dioxide (0.44 $\mathrm{mL}, 5.0 \mathrm{mmol}$) was added and white precipitate generated gradually. The reaction was stirred overnight at room temperature to allow full conversion, and 20 mL ether was added to fully precipitate out the product. The afforded suspension was filtered, and the solid was rinsed with ether ($20 \mathrm{~mL} \times 2$). After air dry for $20 \mathrm{~min}, 0.90 \mathrm{~g}(67 \%) \mathbf{L 1 8}$ was obtained as white solid.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.89-6.78(\mathrm{~m}, 4 \mathrm{H}), 4.04(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, $3.02-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.16(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 155.36,154.47,116.55,115.62,68.30,56.08,49.85$, 26.43.

HRMS calc'd for $\left[\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{5} \mathrm{~S}^{+}\right]\left(\mathrm{RSO}_{3} \mathrm{H}_{2}{ }^{+}\right)$: 247.0635 , found: 247.0636.

Table S1. Screening of sulfur ligand effects on C-H alkenylation of $\mathbf{1} .^{\text {a }}$

Entry	Ligand	$\mathbf{X}(\mathbf{m o l \%})$	$\mathbf{T}\left({ }^{\circ} \mathbf{C}\right)$	Time $(\mathbf{m i n})$	$\mathbf{Y : Z}$	\% Yield $^{\mathbf{b}}$
1	none	5%	50	75	$1.5: 1$	19.5%
2		1%	60	30	$1.5: 1$	2.0%
3		1%	60	180	$1: 2$	35.4%
4		1%	70	60	$1.5: 1$	23.7%
5		1%	80	60	$1.5: 1$	13.4%
6		1%	120	60	$1.5: 1$	13.7%
7		1%	50	60	$1.5: 1$	54.5%
8	$1: 1$ AcOH:DMSO solvent					

9

1%
50
$60 \quad 1.5: 1$
28.1%

10

5\%
50
60 1.5:1
94.8\%

11
$1 \%(0.5 \% \mathrm{~L}) \quad 50$
$60 \quad 1.5: 1$
27.2%

12
 $5 \% \quad 50$
$60 \quad 1.5: 1 \quad 2.8 \%$

13

5\%
50
60 1.5:1
5.0\%
$60 \quad 1.5: 1 \quad 41.7 \%$
1%
15

5\%
50
60
1.5:
82.0\%

18

19

1%
1%
45
60
$1.5:$
46.1\%

60
45

20

1%
60
30
1:2
6.1%

21

1%
50
$60 \quad 1.5 \cdot 1$
27.8\%
 1\% 45

60 1.5:1 5.7\%

23

$1 \% \quad 45$
60
1.5:1
15.7\%

24

1%
45
$60 \quad 1.5: 1$
11.8%
${ }^{\text {a }}$ Reactions conditions of Figure 1. ${ }^{\text {b }}$ Yield was determined by GC analysis versus internal standard.

Table S2. Screening of other ligands. ${ }^{\text {a }}$
Entry

[^0]

C-H Alkenylation of Furans and Thiophenes; General Procedure A. A stock solution $(0.17 \mathrm{M})$ was prepared by dissolving palladium acetate ($2.2 \mathrm{mg}, 10 \mu \mathrm{~mol}$), benzoquinone ($162 \mathrm{mg}, 1.50 \mathrm{mmol}$), tert-butyl acrylate ($0.29 \mathrm{~mL}, 2.0 \mathrm{mmol}$), and $\mathbf{L} 7(1.8 \mu \mathrm{l}, 10 \mu \mathrm{~mol}$) in $\mathrm{AcOH}(6.0 \mathrm{~mL})$. To a 4 mL vial equipped with a magnetic stir bar was added heteroarene $(0.25 \mathrm{mmol})$ then 1.5 mL of the stock solution. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 3 h . Solvent was then evaporated under vacuum at $45^{\circ} \mathrm{C}$. The solid residue was purified by silica gel chromatography.

C-H Alkenylation of Furans and Thiophenes; General Procedure B. A stock solution (0.17 M) was prepared by dissolving palladium acetate ($2.2 \mathrm{mg}, 10 \mu \mathrm{~mol}$), benzoquinone ($162 \mathrm{mg}, 1.50 \mathrm{mmol}$), 2-methylfuran ($82 \mathrm{mg}, 1.0 \mathrm{mmol}$), and $\mathbf{L} 7(1.8 \mu \mathrm{l}, 10 \mu \mathrm{~mol}$) in $\mathrm{AcOH}(6.0 \mathrm{~mL})$. To a 4 mL vial equipped with a magnetic stir bar was added olefin (0.50 $\mathrm{mmol})$ then 1.5 mL of the stock solution. The mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 3 h . Solvent was then evaporated under vacuum at $45{ }^{\circ} \mathrm{C}$. The solid residue was purified by silica gel chromatography.

C-H Alkenylation of N-heteroarenes: General Procedure C. N-heteroarene (0.50 $\mathrm{mmol})$, olefin (1.00 mmol), palladium acetate $(1.1 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$, copper(II) acetate (182
$\mathrm{mg}, 1.00 \mathrm{mmol}$), p-toluenesulfonic acid monohydrate ($9.5 \mathrm{mg}, 0.050 \mathrm{mmol}$), and $\mathbf{L 1 4}$ (14 mg , $50 \mu \mathrm{~mol}$) were combined in DMF (1.0 mL) under air in a 4 mL vial equipped with a magnetic stir bar. The reaction was then capped and stirred at $70^{\circ} \mathrm{C}$ until the initial dark green suspension became yellow-brown $(\mathrm{Cu}(\mathrm{II}) \rightarrow \mathrm{Cu}(\mathrm{I})$). After cooling to room temperature, water (20 mL) and ethyl acetate $(20 \mathrm{~mL})$ were added and the mixture was then filtered through a plug of Celite. The organic layer was separated, washed with brine ($20 \mathrm{~mL} \times 2$), and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated under reduced pressure at $45^{\circ} \mathrm{C}$ then the crude residue was purified by silica gel chromatography.

Table S3. Products from DHR reactions.

2
tert-butyl (\boldsymbol{E})-3-(5-methylfuran-2-yl)acrylate (2). The general procedure \mathbf{B} was followed using tert-butyl acrylate. The solid residue was purified by silica gel chromatography ($20: 1$ hexanes:ethyl acetate) to give 45 mg (85%) of $\mathbf{2}$ as a clear liquid. NMR spectroscopic data agree with literature values. ${ }^{4}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.48-6.42(\mathrm{~m}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=$ $15.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08-6.02(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H})$.

butyl (\boldsymbol{E})-3-(1H-indol-3-yl)acrylate (4). The general procedure \mathbf{C} was followed with $1 H$-indole and butyl acrylate. The reaction time was 1 h . The crude residue was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to 70:30 to afford 106 mg (87%) of $\mathbf{4}$ as yellow solid. NMR spectroscopic data agree with literature values. ${ }^{5}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.69(\mathrm{br}, 1 \mathrm{H}), 7.97-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 1.80-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.

6
tert-butyl (\boldsymbol{E})-3-(3-methylbenzofuran-2-yl)acrylate (6): The general procedure \mathbf{A} was followed with 3-methylbenzofuran. The crude product was purified by silica gel chromatography (20:1 hexanes:ethyl acetate) to give 54 mg (83%) of $\mathbf{6}$ as a clear liquid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.25 ($\mathrm{s}, 3 \mathrm{H}$), 1.45 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.62,154.86,148.71,129.98,128.47,126.56,122.86$, 120.17, 119.43, 111.30 (overlapping), 80.69, 28.36, 8.48.

HRMS calc'd for $\left[\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{O}_{2}{ }^{\bullet}\right]$ (M-O $\left.{ }^{t} \mathrm{Bu}\right)$: 185.0597, found: 185.0600.

12
(from aerobic reaction in Scheme 4)
tert-butyl (E)-3-(1-methyl-1H-indol-3-yl)acrylate (12). 1-methyl-1H-indole (131 mg, 1.00 mmol), palladium acetate ($11 \mathrm{mg}, 50 \mu \mathrm{~mol}$), p-toluenesulfonic acid monohydrate ($9.5 \mathrm{mg}, 50 \mu \mathrm{~mol}$) and $\mathbf{L} 14(14 \mathrm{mg}, 50 \mu \mathrm{~mol})$ were weighed into a 50 mL round bottom flask that was equipped with a magnetic stir bar. The container was sealed, evacuated then refilled three times with an O_{2} balloon then filled with a solution of tert-butyl acrylate ($0.29 \mathrm{~mL}, 2.0 \mathrm{mmol}$) and mesitylene ($0.14 \mathrm{~mL}, 1.0 \mathrm{mmol}$, as internal standard) in DMF (4 mL). After heating at $80^{\circ} \mathrm{C}$ for 4 h , a NMR sample was prepared by diluting $15 \mu \mathrm{~L}$ solution in 0.5 mL CDCl 3 . The yield was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. NMR spectroscopic data agree with literature values. ${ }^{5}$

13
tert-butyl (E)-3-(5-(tert-butyl)furan-2-yl)acrylate (13). The general procedure A was followed with 2-tert-butylfuran. The crude product was purified by silica gel chromatography ($20: 1$ hexanes:ethyl acetate) to give 54 mg (86%) of $\mathbf{1 3}$ as a slightly red liquid.
${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.26(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.18$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl3) $\delta 167.21,166.92,149.57,130.63,116.20,115.62,105.19$, 80.36, 33.19, 29.15, 28.44.

HRMS calc'd for [$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2} \bullet$] (M-O $\left.{ }^{t} \mathrm{Bu}\right)$: 177.0910, found: 177.0914.

tert-butyl (E)-3-(5-(2-methyl-1,3-dioxolan-2-yl)furan-2-yl)acrylate (14). The general procedure \mathbf{A} was followed with 2-(furan-2-yl)-2-methyl-[1,3]dioxolane that was prepared by literature method. ${ }^{6}$ The crude residue was purified by silica gel chromatography using a gradient of hexanes (with $3 \% \mathrm{NEt}_{3}$) and ethyl acetate from 100:0 to 70:30 to afford 40 $\mathrm{mg}(57 \%)$ of $\mathbf{1 4}$ as colorless liquid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}$, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-4.08(\mathrm{~m}, 4 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.24,156.48,150.85,129.89,118.18,114.30,108.86$, 104.45, 80.37, 65.21, 28.15, 24.24.

HRMS calc'd for $\left[\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{5}^{+}\right](\mathrm{M}+\mathrm{H}) 281.1384$; found 281.1384.

15
tert-butyl (E)-3-(3-methylbenzo[b]thiophen-2-yl)acrylate (15). The general procedure A was followed with 3-methylbenzothiophene. The crude product was purified by silica gel chromatography ($20: 1$ hexanes:ethyl acetate) to give 54 mg (79%) of $\mathbf{1 5}$ as a clear liquid.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.35(\mathrm{~m}$, 2 H), 6.22 ($\mathrm{d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.51 ($\mathrm{s}, 3 \mathrm{H}$), 1.55 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.37,140.74,139.22,135.86,134.88,133.98,126.46$, $124.57,122.75,122.55,120.71,80.86,28.35,12.22$.

HRMS calc'd for [$\left.\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{OS} \bullet\right]$ ($\mathrm{M}-\mathrm{O}^{t} \mathrm{Bu}$): 201.0369, found: 201.0369.

16
tert-butyl (E)-3-(5-chloro-3-methylbenzo[b]thiophen-2-yl)acrylate (16). The general procedure \mathbf{A} was followed with 5 -chloro-3-methylbenzo[b]thiophene and $3 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{L} 7$ was employed. Two parallel reactions (0.25 mmol each) were conducted and combined for isolation. The crude product was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to $90: 10$ to afford 115 mg (75%) of $\mathbf{1 6}$ as a white solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=15.4,1 \mathrm{H}), 7.72-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 1 \mathrm{H})$, 6.22 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.96,141.85,137.07,135.70,134.73,134.29,130.82$, 126.59, 123.41, 122.24, 121.44, 80.91, 28.20, 12.05 .

HRMS calc'd for $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ClO}_{2} \mathrm{~S}^{+}\right](\mathrm{M}+\mathrm{H})$: 309.0711 , found: 309.0715 .

17
tert-butyl (E)-3-(5-methylthiophen-2-yl)acrylate (17). The general procedure A was followed with 2 -methylthiophene. The crude product was purified by silica gel chromatography (20:1 hexanes:ethyl acetate) to give $48 \mathrm{mg}(85 \%)$ of $\mathbf{1 7}$ as a clear liquid. NMR spectroscopic data agree with literature values. ${ }^{7}$
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 7.59(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68$ $(\mathrm{d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H})$.

18
tert-butyl (E)-3-(5-phenylthiophen-2-yl)acrylate (18). The general procedure \mathbf{A} was followed with 2-phenylthiophene. The crude product was purified by silica gel chromatography ($20: 1$ hexanes:ethyl acetate) to give 67 mg (94%) of $\mathbf{1 8}$ as a white solid.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.36(\mathrm{~m}$, $2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.35,146.98$, 139.12, 136.24, 133.81, 131.96, 129.16, 128.43, 126.07, 124.01, 118.78, 80.67, 28.37.

HRMS calc'd for $\left[\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~S}^{+}\right](\mathrm{M}+\mathrm{H})$: 287.1100, found: 287.1106.

tert-butyl (E)-4-(5-(3-(tert-butoxy)-3-oxoprop-1-en-1-yl)furan-2-carbonyl)piperazine -1-carboxylate (19). tert-butyl 4-(furan-2-carbonyl)piperazine-1-carboxylate (140 mg , 0.500 mmol), tert-butyl acrylate ($0.15 \mathrm{~mL}, 1.0 \mathrm{mmol}$), palladium acetate $(5.6 \mathrm{mg}, 25$ $\mu \mathrm{mol})$, L7 ($4.4 \mu \mathrm{l}, 25 \mu \mathrm{~mol}$), and benzoquinone ($81 \mathrm{mg}, 0.75 \mathrm{mmol}$) were mixed in $\mathrm{AcOH}(3 \mathrm{~mL})$ in a 4 mL vial equipped with a magnetic stir bar. The reaction was capped and stirred at $60{ }^{\circ} \mathrm{C}$ for 6 h . Solvent was then evaporated under vacuum at $45{ }^{\circ} \mathrm{C}$. The crude residue was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to 0:100 to afford 116 mg (57\%) of $\mathbf{1 9}$ as a yellow solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(501 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}$, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{br}, 4 \mathrm{H}), 3.58-3.52(\mathrm{~m}, 4 \mathrm{H}), 1.53(\mathrm{~s}$, $9 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.74,158.78,154.66,152.01,148.72,129.47,120.61$, $118.90,114.82,81.13,80.54,46.63,43.36,28.50,28.26$.

HRMS calc'd for $\left[\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}\right]\left(\mathrm{M}+\mathrm{Na}^{+}\right): 407.2177$, found: 407.2176.

20
tert-butyl (E)-3-(5-(hydroxymethyl)thiophen-2-yl)acrylate (20). The general procedure A was followed with 2-thiophenemethanol. The crude product was purified by silica gel chromatography (20:1 hexanes:ethyl acetate) to give 52 mg (86%) of 20 as a clear liquid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}$, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.42,147.29,139.76,136.35,130.70,126.01,118.81$, 80.79, 60.34, 28.31.

HRMS calc'd for $\left[\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~S} \bullet\right]\left(\mathrm{M}-\mathrm{O}^{t} \mathrm{Bu}\right)$: 167.0161, found: 167.0161.

21
tert-butyl (E)-3-(3,5-dimethylthiophen-2-yl)acrylate (21). The general procedure A was followed with 2,4-dimethylthiophene. The crude product was purified by silica gel chromatography (20:1 hexanes:ethyl acetate) to give 39 mg (65%) of 21 as a clear liquid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=15.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.05,141.99,141.57$, 134.93, 131.96, 129.93, 116.52, 80.42, 28.47, 15.91, 14.27.

HRMS calc'd for $\left[\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~S}^{+}\right](\mathrm{M}+\mathrm{H}): 239.1100$, found: 239.1100.

22
tert-butyl (\boldsymbol{E})-3-(5-chloro-4-methylthiophen-2-yl)acrylate (22). The general procedure A was followed with 2-chloro-3-methylthiophene and $3 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{L} 7$ was employed. Two parallel reactions (0.25 mmol each) were conducted and combined for isolation. The crude product was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to 90:10 to afford 100 mg (78%) of $\mathbf{2 2}$ as a white solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.97$, 135.95, 135.57, 135.53, 132.23, 127.74, 118.68, 80.67, 28.19, 13.50.

HRMS calc'd for $\left[\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClO}_{2} \mathrm{~S}^{+}\right]\left(\mathrm{M}-{ }^{t} \mathrm{Bu}+\mathrm{H}\right):$ 202.9928, found: 202.9931.

23a

23b

The general procedure \mathbf{A} was followed with 2,5-dimethylthiophene and $3 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{L} 7$ was employed. Two parallel reactions (0.25 mmol each) were conducted and combined for isolation. The crude product was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to $90: 10$ to give $78 \mathrm{mg}(65 \%)$ of 23a as a colorless oil and also $19 \mathrm{mg}(10 \%)$ of 23b as a yellow solid. The reaction was not further optimized to increase the selectivity for either product.
tert-butyl (E)-3-(2,5-dimethylthiophen-3-yl)acrylate (23a).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=15.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.18,140.26,136.65,135.40,132.92,123.00,118.24$, 80.22, 28.24, 15.19, 13.14.

HRMS calc'd for $\left[\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~S}^{+}\right](\mathrm{M}+\mathrm{H}):$ 239.1100, found: 239.1098.
di-tert-butyl 3,3'-(2,5-dimethylthiophene-3,4-diyl)(2E,2'E)-diacrylate (23b).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ ($\mathrm{s}, 3 \mathrm{H}$), 1.52 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.46,136.83,136.81,132.46,123.02,80.60,77.41$, 77.16, 76.91, 28.34, 14.59.

HRMS calc'd for $\left[\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{~S}^{+}\right](\mathrm{M}+\mathrm{H}): 365.1781$, found: 365.1775 .

24
di-tert-butyl $\quad \mathbf{3 , 3}$ '-([2,2'-bithiophene]-5,5'-diyl)(2E,2'E)-diacrylate (24). 2,2'bithiophene ($42 \mathrm{mg}, 0.25 \mathrm{mmol}$), tert-butyl acrylate ($0.11 \mathrm{~mL}, 0.75 \mathrm{mmol}$), palladium acetate ($1.7 \mathrm{mg}, 7.5 \mu \mathrm{~mol}$), $\mathbf{L} 7(1.3 \mu \mathrm{l}, 7.5 \mu \mathrm{~mol}$), and benzoquinone ($81 \mathrm{mg}, 0.75 \mathrm{mmol}$) were mixed in $\mathrm{AcOH}(1.5 \mathrm{~mL})$ in a 4 mL vial equipped with a magnetic stir bar. The reaction was capped and stirred at $60{ }^{\circ} \mathrm{C}$ for 3 h . Solvent was then evaporated under vacuum at $45^{\circ} \mathrm{C}$. The solid residue was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to 70:30 to afford 100 mg (96%) of $\mathbf{2 4}$ as an orange solid.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 4 \mathrm{H}), 6.14(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.52$ (s, 18H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.11,139.57,139.09,135.67,131.80,125.29,119.47$, 80.82, 28.34.

HRMS calc'd for $\left[\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{~S}_{2}{ }^{+}\right](\mathrm{M}+\mathrm{H}): 419.1345$, found: 419.1354.

25

(S,E)-3-(5-(3-(tert-butoxy)-3-oxoprop-1-en-1-yl)thiophen-2-yl)-2-((tert-

butoxycarbonyl)amino)propanoic acid (25). BOC-3-(2-thienyl)-L-alanine (136 mg, 0.500 mmol), tert-butyl acrylate ($0.15 \mathrm{~mL}, 1.0 \mathrm{mmol}$), palladium acetate ($3.4 \mathrm{mg}, 15$ $\mu \mathrm{mol}$), L7 ($2.7 \mu \mathrm{l}, 15 \mu \mathrm{~mol}$), and benzoquinone ($81 \mathrm{mg}, 0.75 \mathrm{mmol}$) were mixed in $\mathrm{AcOH}(3.0 \mathrm{~mL})$ in a 4 mL vial equipped with a magnetic stir bar. The reaction was capped and stirred at $60^{\circ} \mathrm{C}$ for 3 h . Solvent was then evaporated under vacuum at $45^{\circ} \mathrm{C}$. The solid residue was purified by silica gel chromatography using a gradient of hexanes (with $2 \% \mathrm{AcOH}$) and ethyl acetate from 100:0 to $50: 50$ to afford $190 \mathrm{mg}(95 \%)$ of $\mathbf{2 5}$ as a white solid. Amide rotamers (below), identified by a NOESY experiment, account for the complicated ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 5} .{ }^{13} \mathrm{C}$ NMR data are reported for the major isomer.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.68(\mathrm{br}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.75\left(\mathrm{~m}, 0.4 \mathrm{H}, \mathbf{H}_{\mathrm{a}}\right), 6.05(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.27\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 0.6 \mathrm{H}, \mathbf{H}_{\mathbf{a}}\right), 4.64-4.56\left(\mathrm{~m}, 0.6 \mathrm{H}, \mathbf{H}_{\mathbf{b}}\right), 4.43-4.34\left(\mathrm{~m}, 0.4 \mathrm{H}, \mathbf{H}_{\mathbf{b}}\right), 3.44$ - $3.26\left(\mathrm{~m}, 1.6 \mathrm{H}, \mathbf{H}_{\mathbf{c}}\right), 3.19-3.10\left(\mathrm{~m}, 0.4 \mathrm{H}, \mathbf{H}_{\mathbf{c}}\right), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.43\left(\mathrm{~s}, 6 \mathrm{H}, \mathbf{H}_{\mathrm{d}}\right), 1.34(\mathrm{~s}$, $3 \mathrm{H}, \mathbf{H}_{\mathrm{d}}$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.71,166.68,155.41,141.12,139.26,136.44,131.00$, $127.98,118.33,80.86,80.65,54.05,32.76,28.42,28.29$.

HRMS calc'd for $\left[\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{6} \mathrm{~S}^{+}\right](\mathrm{M}+\mathrm{H}): 398.1632$, found: 398.1630.

26
tert-butyl (\boldsymbol{E})-3-(5-MIDA-furan-2-yl)acrylate (26). The general procedure A was followed with 2-furyl MIDA boronate (prepared by literature method) ${ }^{8}$ and $3 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{L} 7$ was employed. The crude product was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to 50:50 followed by a gradient of dichloromethane and methanol from 100:0 to $95: 5$ to give 80 $\mathrm{mg}(91 \%)$ of $\mathbf{2 6}$ as a yellow solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.37(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ $(\mathrm{d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~d}, J=17.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 169.00,166.79,154.86,130.95,130.93,121.45,118.73$, 115.79, 80.96, 62.53, 48.11, 28.23.
${ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.71$.
HRMS calc'd for $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BNNaO}_{7}^{+}\right]\left(\mathrm{M}+\mathrm{Na}^{+}\right)$372.1225; found 372.1228.

27
tert-butyl (E)-3-(5-MIDA-thiophen-2-yl)acrylate (27). The general procedure A was followed with 2-thiophenyl MIDA boronate (prepared by literature method) ${ }^{8}$ and $3 \mathrm{~mol} \%$ of $\operatorname{Pd}(\mathrm{OAc})_{2} / \mathrm{L} 7$ was employed. The crude product was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to 50:50 followed by a gradient of dichloromethane and methanol from 100:0 to $95: 5$ to give 87.8 mg (96%) of 27 as a light yellow solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.71(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~d}, J=17.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 168.86,166.55,144.25$ (possible overlap), 136.57, 135.18, 133.10, 120.05, 81.03, 62.46, 48.35, 28.24.
${ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 10.31$.
HRMS calc'd for $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BNNaO}_{6} \mathrm{~S}^{+}\right]\left(\mathrm{M}+\mathrm{Na}^{+}\right)$388.0997; found 388.0998.

(S)-N-BOC-duloxetine. ${ }^{9}$ (S)-duloxetine $\mathrm{HCl}(0.25 \mathrm{~g}, 0.84 \mathrm{mmol})$, triethylamine $(0.32$ $\mathrm{mL}, 2.3 \mathrm{mmol})$, and di-tert-buytyl dicarbonate $(0.20 \mathrm{~g}, 0.92 \mathrm{mmol})$ were added to a 50 mL round bottom flask. DCM (25 mL) was added and the mixture stirred at room temperature for 2 h . The reaction was washed with water then the organics were extracted with ethyl acetate. The organic layer was dried over magnesium sufonate and the solvent was removed under vacuum to give $0.30 \mathrm{~g}(90 \%)$ of the desired product as a brown liquid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.46-8.23(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=6.1$, $3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.02$ $(\mathrm{m}, 1 \mathrm{H}), 6.98-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 2.86(\mathrm{~s}, 4 \mathrm{H}), 2.53(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~d}, J=19.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{ddt}, J=14.2,9.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}$, 9H).
 yloxy)propyl)thiophen-2-yl)acrylate (28). The general procedure \mathbf{A} was followed with $(\mathrm{S})-N$-BOC-duloxetine. The crude product was purified by silica gel chromatography (20:1 hexanes:ethyl acetate) to give $73 \mathrm{mg}(56 \%)$ of $\mathbf{2 8}$ as a yellow viscous liquid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.37-8.30(\mathrm{~m}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=6.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}$, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=6.4,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.05$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=29.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 1 \mathrm{H})$, 2.30 (ddt, $J=14.3,7.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}{ }^{1} \mathrm{CNMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.03,155.76,152.85,147.77,139.17,135.90,134.61$, $130.35,130.15,127.57,126.46,125.90,125.61,125.41,121.89,120.96,119.00,106.59$, 80.51, 79.63, 73.50, 45.68, 28.43, 28.36, 28.18, 21.14.

HRMS calc'd for $\left[\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{NO}_{5} \mathrm{~S}^{+}\right](\mathrm{M}+\mathrm{H}): 524.2465$, found: 524.2459.

(E)-2-(((5-(3-(tert-butoxy)-3-oxoprop-1-en-1-yl)furan-2-yl)methyl)amino)-4-chloro-5sulfamoylbenzoic acid (29). furosemide ($165 \mathrm{mg}, 0.50 \mathrm{mmol}$), tert-butyl acrylate (0.15 $\mathrm{mL}, 1.0 \mathrm{mmol})$, palladium acetate ($3.4 \mathrm{mg}, 15 \mu \mathrm{~mol}$), L7 ($2.7 \mu \mathrm{l}, 15 \mu \mathrm{~mol}$), and benzoquinone ($81 \mathrm{mg}, 0.75 \mathrm{mmol}$) were mixed in $\mathrm{AcOH}(3 \mathrm{~mL})$ in a 4 mL vial equipped with a magnetic stir bar. The reaction was capped and stirred at $60^{\circ} \mathrm{C}$ for 3 h . Solvent was then evaporated under vacuum at $45^{\circ} \mathrm{C}$. The crude residue was purified by silica gel chromatography using a gradient of hexanes (with $2 \% \mathrm{AcOH}$) and acetone from 100:0 to 80:20 to afford 196 mg (86%) of 29 as a light yellow solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.59(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.67$ (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 1.50$ ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 170.28,168.01,155.61,154.26,152.03,138.33,135.32$, $131.35,127.84,118.06,116.91,114.70,111.16,109.92,81.74,40.68,28.41$.

HRMS calc'd for $\left[\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{7} \mathrm{~S}^{+}\right](\mathrm{M}+\mathrm{H})$ 457.0831; found 457.0825.

31
methyl (\boldsymbol{E})-3-(5-methylfuran-2-yl)acrylate (31). The general procedure \mathbf{B} was followed with methyl acrylate. The crude product was purified by silica gel chromatography (20:1 hexanes:ethyl acetate) to give 40 mg (96%) of $\mathbf{3 1}$ as a clear liquid. NMR spectroscopic data agree with literature values. ${ }^{10}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}$, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.10-6.05(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.

32
(\boldsymbol{E})-N,N-dimethyl-3-(5-methylfuran-2-yl)acrylamide (32). The general procedure B was followed with N, N-dimethylacrylamide. The crude product was purified by silica gel chromatography ($2: 3$ hexanes:ethyl acetate) to give 34 mg (75%) of $\mathbf{3 2}$ as a white solid. NMR spectroscopic data agree with literature values. ${ }^{11}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.43$ (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.07-6.01(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.

33
isobornyl (\boldsymbol{E})-3-(5-methylfuran-2-yl)acrylate (33). The general procedure \mathbf{B} was followed with isobornyl acrylate that was distilled from technical grade commercial reagent. Two parallel reactions (0.25 mmol each) were combined for isolation. The crude product was purified by silica gel chromatography (20:1 hexanes:ethyl acetate) to give $65.5 \mathrm{mg}(46 \%)$ of $\mathbf{3 3}$ as a colorless oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}$, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=3.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=7.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}$, $3 \mathrm{H}), 1.92-1.51(\mathrm{~m}, 6 \mathrm{H}), 1.22-1.07(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.91,155.29,149.61,130.70,116.23,114.65,108.76$, 80.85, 48.86, 46.98, 45.08, 38.90, 33.76, 27.09, 20.17, 20.02, 13.91, 11.49.

HRMS calc'd for [$\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{3}{ }^{+}$] (M+H): 289.1798, found: 289.1801.

34
(\boldsymbol{E})-4-(5-methylfuran-2-yl)but-3-en-2-one (34). The general procedure \mathbf{B} was followed with methyl vinyl ketone that was distilled from 90% (technical grade) methyl vinyl ketone. The crude product was purified by silica gel chromatography (20:1 hexanes:ethyl acetate) to give 35 mg (92%) of $\mathbf{3 4}$ as a slightly red liquid. NMR spectroscopic data agree with literature values. ${ }^{12}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}$, $J=21.7 \mathrm{~Hz}, 0 \mathrm{H}), 6.10(\mathrm{dt}, J=3.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$.

35
(\boldsymbol{E})-3-(5-methylfuran-2-yl)acrylaldehyde (35). The general procedure \mathbf{B} was followed with acrolein that was distilled from 90% (technical grade) acrolein. The crude product was purified by silica gel chromatography ($20: 1$ hexanes:ethyl acetate) to give 25 mg (74\%) of $\mathbf{3 5}$ as a slightly red liquid. NMR spectroscopic data agree with literature values. ${ }^{12}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}$, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=15.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-6.08(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$.

tert-butyl 3-\{(acryloyloxy)methyl\}azetidine-1-carboxylate. To a stirred solution of 1-BOC-3-azetidinemethanol ($4.7 \mathrm{~g}, 25 \mathrm{mmol}$) and triethylamine ($3.9 \mathrm{~mL}, 28 \mathrm{mmol}$) in dichloromethane (20 mL) was slowly added acryloyl chloride ($2.3 \mathrm{~mL}, 28 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 0.5 h , then removed from the ice bath and stirred for another 8 h at room temperature. Brine (100 mL) was added and extracted with dichloromethane $(100 \mathrm{~mL} \times 3)$. The combined organic layers were dried with MgSO_{4} then solvent was removed under vacuum. The crude product was then purified by column chromatography (hexane:ethyl acetate from 100:0 to $0: 100$ with gradient method) to give $4.82 \mathrm{~g}(71 \%)$ of the desired product as a light yellow oil .
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.41(\mathrm{dd}, J=17.5 \mathrm{~Hz} 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=17.5 \mathrm{~Hz}$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dd}, J=10.5 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{t}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.70(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.81-2.90(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 10 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.01,156.25,131.29,127.96,79.48,65.60,51.93$, 50.91, 28.34, 27.64.

HRMS calc'd for $\left[\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}_{4}{ }^{+}\right]\left(\mathrm{M}-{ }^{t} \mathrm{Bu}+\mathrm{H}\right) 186.0761$; found 186.0758 .

36
tert-butyl
(E)-3-[\{(3-(5-methylfuran-2-yl)acryloyl)oxy\}methyl]azetidine-1-
carboxylate (36). The general procedure \mathbf{B} was followed with 1-BOC-3((acryloyloxy)methyl)azetidine (1.2 equiv). The crude residue was purified by silica gel chromatography using a gradient of hexanes/ NEt_{3} (97:3) and ethyl acetate from 100:0 to 0:100 to afford $45 \mathrm{mg}(56 \%)$ of $\mathbf{3 6}$ as colorless liquid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{t}, J=8.5 \mathrm{~Hz}$, 2 H), 3.73 (dd, $J=8.5,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.82-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.18,156.28,155.66,149.34,131.60,116.87,113.13$, 108.87, 79.44, 65.37, 51.94, 50.97, 28.35, 27.77, 13.88.

HRMS calc'd for $\left[\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{5}^{+}\right]\left(\mathrm{M}-\mathrm{O}^{t} \mathrm{Bu}+\mathrm{H}\right)$ 266.1023; found 266.1017.

37
(\boldsymbol{E})-3-(5-methylfuran-2-yl)acrylaldehyde (37). The general procedure \mathbf{B} was followed with acrylic acid and $3 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathbf{L} 7$. Two parallel reactions (0.25 mmol scale) were combined for isolation. The crude product was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to 90:10 to afford 64.5 mg (85%) of $\mathbf{3 7}$ as a light yellow solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}$, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=3.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.86,156.35,149.42,133.22,117.79,112.99,109.23$, 14.11.

HRMS calc'd for $\left[\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{3}{ }^{+}\right](\mathrm{M}+\mathrm{H})$: 153.0546, found: 153.0547.

38
(E)-2-methyl-5-styrylthiophene (38). Catalyst stock solution was prepared by mixing $\mathrm{Pd}(\mathrm{OAc})_{2}(0.025 \mathrm{mmol}, 5.6 \mathrm{mg}), \mathbf{L 1 5}(0.025 \mathrm{mmol}, 4.8 \mathrm{mg})$ and $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(0.050$ $\mathrm{mmol}, 6.8 \mu \mathrm{~L}$) in 15 mL AcOH. In a 20 mL vial, 2-methylthiophene ($48.4 \mu \mathrm{l}, 0.50 \mathrm{mmol}$), styrene ($115 \mu \mathrm{l}, 1.00 \mathrm{mmol}$), benzoquinone $(81 \mathrm{mg}, \quad 0.75 \mathrm{mmol})$, $1,3,5-$ tris(trifluoromethyl)benzene ($31.0 \mu \mathrm{l}, 0.167 \mathrm{mmol}$) were mixed with 3.0 mL THF, and 3.0 mL of the catalyst stock solution was then added. The vial was capped and heated to $40{ }^{\circ} \mathrm{C}$ for 18 h . After completion of reaction, the crude was transferred to a separatory funnel that contained 100 mL saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aqueous solution and 100 mL EtOAc. The organic layer was retained and washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aqueous solution (50 $\mathrm{mL} \times 2$). The combined aqueous phase was back extracted with EtOAc ($50 \mathrm{~mL} \times 2$). Then, the organic layer was combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ for 30 min . The solvent was removed by evaporating under vacuum at $45^{\circ} \mathrm{C}$. The crude was purified by flash chromatography ($\mathrm{EtOAc} / \mathrm{Hexane}$ (contains $1 \% \mathrm{Et}_{3} \mathrm{~N}$) from 0% to 5% with gradient method) to give 88 mg (88%) of $\mathbf{3 8}$ as a white solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-$ $7.23(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.67(\mathrm{dd}, \mathrm{J}=3.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.95,139.39,137.30,128.77,127.42,127.15,126.53$, 126.26, 125.88, 122.28, 15.77.

HRMS calc'd for $\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~S}^{+}\right]\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 201.0732, found: 201.0731.

39
(E)-2-(4-fluorostyryl)-5-methylfuran (39). The general procedure B was followed with 4-fluorostyrene. The crude product was purified by silica gel chromatography (20:1 hexanes:ethyl acetate) to give 24 mg (48%) of $\mathbf{3 9}$ as a white solid. NMR spectroscopic data agree with literature values. ${ }^{13}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{dt}, J=3.3,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-115.22$.

40
methyl (E)-3,3-dimethyl-5-(5-methylthiophen-2-yl)pent-4-enoate (40). Catalyst stock solution was prepared by mixing $\operatorname{Pd}(\mathrm{OAc})_{2}(0.025 \mathrm{mmol}, 5.6 \mathrm{mg})$ and $\mathbf{L 1 5}(0.025 \mathrm{mmol}$, 4.8 mg) in 15 mL AcOH. In a 20 mL vial, 2-methylthiophene ($48.4 \mu \mathrm{l}, 0.50 \mathrm{mmol}$), methyl 3,3-dimethylpent-4-enoate ($158 \mu \mathrm{l}, 1.00 \mathrm{mmol}$), benzoquinone ($81 \mathrm{mg}, 0.75$ mmol), 1,3,5-tris(trifluoromethyl)benzene ($31.0 \mu \mathrm{l}, 0.167 \mathrm{mmol}$) were mixed with 3.0 mL AcOH , and 3.0 mL of the catalyst stock solution was then added. The vial was capped and heated to $40{ }^{\circ} \mathrm{C}$ for 18 h . After completion of reaction, the crude was transferred to a separatory funnel that contained 100 mL saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aqueous solution and 100 mL EtOAc. The organic layer was retained and washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aqueous solution ($50 \mathrm{~mL} \times 2$). The combined aqueous phase was back extracted with EtOAc $(50 \mathrm{~mL} \times 2)$. Then, the organic layer was combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ for 30 min . The solvent was removed by evaporating under vacuum at $45{ }^{\circ} \mathrm{C}$. The crude was purified by flash chromatography (EtOAc/Hexane (contains 1% $\mathrm{Et}_{3} \mathrm{~N}$) from 0% to 5% with gradient method) to give $94 \mathrm{mg}(79 \%)$ of $\mathbf{4 0}$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.67(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60-6.54(\mathrm{~m}, 1 \mathrm{H}), 6.38(\mathrm{~d}, \mathrm{~J}=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.36(\mathrm{~s}$, $2 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 172.14, 140.93, 138.26, 137.37, 125.42, 125.07, 120.18, 51.40, 47.09, 35.91, 27.41, 15.64.

HRMS calc'd for [$\left.\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~S}^{+}\right]\left(\mathrm{M}+\mathrm{H}^{+}\right):$239.1100, found: 239.1100.

butyl (\boldsymbol{E})-3-(5-methoxy-1H-indol-3-yl)acrylate (41). The general procedure \mathbf{C} was followed with 5-methoxy- 1 H -indole and butyl acrylate. The reaction time was 2 h . The crude residue was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to $70: 30$ to afford 120 mg (88%) of $\mathbf{4 1}$ as yellow oil. NMR spectroscopic data agree with literature values. ${ }^{14}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{br}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.38(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.51$ $-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.

42
butyl (E)-3-(5-methyl-1H-indol-3-yl)acrylate (42). The general procedure \mathbf{C} was followed with 5-methyl- 1 H -indole and butyl acrylate. The reaction time was 2 h . The crude residue was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to 70:30 to afford $115 \mathrm{mg}(89 \%)$ of $\mathbf{4 2}$ as yellow solid.
${ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{br}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.46(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.52$ - $1.41(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.73,138.65,135.52,131.14,129.25,125.63,125.00$, $120.44,113.29,113.10,111.53,64.25,31.06,21.76,19.40,13.95$.

HRMS calc'd for $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{2}{ }^{+}\right](\mathrm{M}+\mathrm{H})$ 258.1489; found 258.1488.

43
butyl (E)-3-(5-bromo-1H-indol-3-yl)acrylate (43). The general procedure \mathbf{C} was followed with 5-bromo- 1 H -indole and butyl acrylate. The reaction time was 18 h . The crude residue was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to $70: 30$ to afford 117 mg (73%) of $\mathbf{4 3}$ as yellow oil. NMR spectroscopic data agree with literature values. ${ }^{14}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.83(\mathrm{br}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.37(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.76-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.38(\mathrm{~m}$, $2 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.

44
butyl (E)-3-(5-fluoro-1H-indol-3-yl)acrylate (44). The general procedure \mathbf{C} was followed with 5-fluoro- 1 H -indole and butyl acrylate. The reaction time was 3 h . The crude residue was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to $70: 30$ to afford 109 mg (83%) of $\mathbf{4 4}$ as light yellow solid. NMR spectroscopic data agree with literature values. ${ }^{14}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.79(\mathrm{br}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=9.7$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=8.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{td}, J=8.9,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.55-$ $1.39(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.

45
butyl (E)-3-(5-formyl-1H-indol-3-yl)acrylate (45). The general procedure \mathbf{C} was followed with 5 -formyl- $1 H$-indole and butyl acrylate. The reaction time was 18 h . The crude residue was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to 70:30 to afford 84 mg (62%) of $\mathbf{4 5}$ as yellow solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.05(\mathrm{~s}, 1 \mathrm{H}), 9.99(\mathrm{br}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.91$ (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.50$ $-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.84,168.45,140.97,137.43,130.74,130.59,127.79$, $125.40,123.61,114.75,114.73,112.86,64.55,30.91,19.31,13.86$.

HRMS calc'd for $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{3}{ }^{+}\right](\mathrm{M}+\mathrm{H}) 272.1281$; found 272.1275 .

46
butyl (E)-3-(5-nitro-1H-indol-3-yl)acrylate (46). The general procedure \mathbf{C} was followed with 5-nitro- 1 H -indole and butyl acrylate. The reaction time was 18 h . The crude residue was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to 0:100 to afford $114 \mathrm{mg}(79 \%)$ of $\mathbf{4 6}$ as yellow solid. NMR spectroscopic data agree with literature values. ${ }^{5}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.95(\mathrm{br}, 1 \mathrm{H}), 8.86(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{dd}, J=9.0$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.53(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.40(\mathrm{~m}$, $2 \mathrm{H}), 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.

47
butyl (E)-3-(6-chloro-1H-indol-3-yl)acrylate (47). The general procedure \mathbf{C} was followed with 6-chloro- 1 H -indole and butyl acrylate. The reaction time was 18 h . The crude residue was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to 70:30 to afford $119 \mathrm{mg}(86 \%)$ of 47 as light yellow solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.72(\mathrm{br}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.42(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.39(\mathrm{~m}$, $2 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.43,137.72,137.59,129.32,129.27,124.00,122.25$, $121.41,114.23,113.75,111.91,64.40,31.01,19.38,13.93$.

HRMS calc'd for $\left[\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{ClNO}_{2}{ }^{+}\right](\mathrm{M}+\mathrm{H})$ 278.0942; found 278.0944.

48
butyl (E)-3-(6-cyano-1H-indol-3-yl)acrylate (48). The general procedure \mathbf{C} was followed with 1 H -indole-6-carbonitrile and butyl acrylate. The reaction time was 24 h . The crude residue was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to 70:30 to afford 71 mg (53\%) of $\mathbf{4 8}$ as light yellow solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.06(\mathrm{br}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.46(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.39(\mathrm{~m}$, $2 \mathrm{H}), 0.97$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 168.04, 136.68, 136.00, 131.23, 128.66, 124.41, 121.28, $120.09,116.72,115.49,114.14,106.00,64.54,30.98,19.38,13.93$.

HRMS calc'd for $\left[\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}^{+}\right](\mathrm{M}+\mathrm{H})$ 269.1285; found 269.1266.

49
butyl (E)-3-(1-methyl-1H-indol-3-yl)acrylate (49). The general procedure \mathbf{C} was followed with 1-methyl- 1 H -indole and butyl acrylate. The reaction time was 6 h . The crude residue was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to $70: 30$ to afford 113 mg (88%) of 49 as yellow solid. NMR spectroscopic data agree with literature values. ${ }^{5}$
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-$ $7.13(\mathrm{~m}, 4 \mathrm{H}), 6.35(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.59$ $(\mathrm{m}, 2 \mathrm{H}), 1.49-1.31(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.

50
butyl (\boldsymbol{E})-3-(imidazo[1,2-a]pyridin-3-yl)acrylate (50). The general procedure \mathbf{C} was followed with imidazo[1,2-a]pyridine and butyl acrylate. The reaction time was 24 h . The crude residue was purified by silica gel chromatography using a gradient of dichloromethane and methanol from 100:0 to 90:10 to afford 49 mg (40\%) $\mathbf{5 0}$ as yellow solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.30(\mathrm{~d}, J=6.9,1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=15.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.68(\mathrm{~d}, J=9.0,1 \mathrm{H}), 7.30(\mathrm{ddd}, J=9.0,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{td}, J=6.8,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.40(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.28$ (m, 2H), 0.96 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.42,148.08,137.18,128.54,126.15,124.23,121.82$, 118.67, 114.27, 114.03, 64.66, 30.92, 19.32, 13.89.

HRMS calc'd for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}^{+}\right](\mathrm{M}+\mathrm{H})$ 245.1285; found 245.1281.

51
butyl (E)-3-(1-methyl-1H-pyrrol-2-yl)acrylate (51). The general procedure \mathbf{C} was followed with methyl 1-methyl-1H-pyrrole and butyl acrylate. The reaction time was 18 h. The crude residue was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to 70:30 to afford 65 mg (62%) $\mathbf{5 1}$ as yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.70(\mathrm{~m}, 1 \mathrm{H}), 6.66(\mathrm{dd}, J$ $=4.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-6.12(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.60$ (m, 2H), $1.51-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.08,132.35,129.41,126.98,112.82,111.99,109.42$, 64.25, 34.54, 30.97, 19.33, 13.90.

HRMS calc'd for $\left[\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}\right](\mathrm{M}+\mathrm{H})$ 208.1332; found 208.1338.

52
methyl (\boldsymbol{E})-2-(3-butoxy-3-oxoprop-1-en-1-yl)-1H-pyrrole-1-carboxylate (52). The general procedure \mathbf{C} was followed with methyl $1 H$-pyrrole-1-carboxylate and butyl acrylate. The reaction time was 18 h . The crude residue was purified by silica gel
chromatography using a gradient of hexanes and ethyl acetate from 100:0 to 70:30 to afford 74 mg (59\%) 52 as yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=3.3,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.72 (ddd, $J=3.6,1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.33-6.19(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{~s}$, $3 \mathrm{H}), 1.72-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.34(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 167.22,151.08,134.27,131.61,124.71,117.30,115.16$, 112.29, 64.40, 54.44, 30.91, 19.32, 13.89.

HRMS calc'd for $\left[\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{4}{ }^{+}\right](\mathrm{M}+\mathrm{H}) 252.1230$; found 252.1222.

53
butyl (E)-3-(2,5-dimethyl-1H-pyrrol-3-yl)acrylate (53). The general procedure \mathbf{C} was followed with 2,5 -dimethyl- 1 H -pyrrole and butyl acrylate. The reaction time was 2 h . The crude residue was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to 70:30 to afford $\mathbf{6 5 ~ m g}$ (59\%) $\mathbf{5 3}$ as light yellow solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{br}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~d}, J=1.0$ $\mathrm{Hz}, 3 \mathrm{H}), 1.74-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.87,138.14,130.95,128.02,117.09,111.13,103.77$, 63.94, 31.03, 19.35, 13.91, 12.93, 11.25.

HRMS calc'd for $\left[\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{2}{ }^{+}\right](\mathrm{M}+\mathrm{H})$ 222.1489; found 222.1497.

2-(4-(2,5-dimethyl-1H-pyrrol-1-yl)phenyl)acetic acid (183 mg, 0.800 mmol), methyl acrylate ($0.14 \mathrm{~mL}, 1.6 \mathrm{mmol}$), palladium acetate $(5.4 \mathrm{mg}, 24 \mu \mathrm{~mol})$, $\mathbf{L 1 4}(23 \mathrm{mg}, 80$ $\mu \mathrm{mol}$), p-toluenesulfonic acid monohydrate ($15 \mathrm{mg}, 80 \mu \mathrm{~mol}$), and copper(II) acetate ($291 \mathrm{mg}, 1.60 \mathrm{mmol}$) were mixed in DMF (5.0 mL) under air in a 50 mL round bottom flask equipped with a magnetic stir bar. The reaction was then sealed and stirred at $70{ }^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the crude was partitioned between water (30 mL) and ethyl acetate (30 mL) then filtered through a plug of Celite. The layers were separated and the organic layer was washed with brine ($30 \mathrm{~mL} \times 2$) then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed by evaporating under reduced pressure at $45^{\circ} \mathrm{C}$, and the crude residue was purified by silica gel chromatography using a gradient of hexanes (with $2 \% \mathrm{AcOH}$) and ethyl acetate from 100:0 to 50:50 to afford 165 mg (66%) of $\mathbf{5 4 a}$ as light yellow solid and separately $49 \mathrm{mg}(15 \%)$ of $\mathbf{5 4 b}$ as yellow solid.

(E)-2-(4-(3-(3-(tert-butoxy)-3-oxoprop-1-en-1-yl)-2,5-dimethyl-1H-pyrrol-1-

 yl)phenyl)acetic acid (54a).${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 2.08(\mathrm{~s}$, $3 \mathrm{H}), 1.99$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.46,169.11,138.42,137.16,133.72,133.29,131.04$, $130.55,128.37,116.89,111.06,104.07,51.46,40.59,12.97,11.06$.

HRMS calc'd for $\left[\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{4}{ }^{+}\right](\mathrm{M}+\mathrm{H}) 314.1387$; found 314.1388.

2-(4-(3,4-bis((E)-3-(tert-butoxy)-3-oxoprop-1-en-1-yl)-2,5-dimethyl-1H-pyrrol-1yl)phenyl)acetic acid (54b).

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.03(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.32,168.44,138.25,136.39,134.47,132.35,130.82$, $128.39,116.17,115.89,51.67,40.61,12.24$.

HRMS calc'd for $\left[\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{6}{ }^{+}\right](\mathrm{M}+\mathrm{H})$ 398.1598; found 398.1600.

tert-butyl (E)-3-(1H-indol-3-yl)acrylate (56). The general procedure \mathbf{C} was followed with $1 H$-indole and tert-butyl acrylate. The reaction time was 2 h . The crude residue was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to $70: 30$ to afford $106 \mathrm{mg}(87 \%)$ of $\mathbf{5 6}$ as yellow solid. NMR spectroscopic data agree with literature values. ${ }^{5}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.63(\mathrm{br}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=15.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.41(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H})$.

(E)-3-($\mathbf{1 H}$-indol-3-yl)- N, N-dimethylacrylamide (57). The general procedure \mathbf{C} was followed with 1 H -indole and N, N-dimethylacrylamide. The reaction was run for 2 h . The crude residue was purified by silica gel chromatography using a gradient of dichloromethane and methanol from 100:0 to $90: 10$ to afford 95 mg (89%) of $\mathbf{5 7}$ as light brown solid. NMR spectroscopic data agree with literature values. ${ }^{5}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.84(\mathrm{~m}$, $1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=15.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H})$.

(\boldsymbol{E})-3-styryl- \mathbf{H}-indole (58). The general procedure \mathbf{C} was followed with 1 H -indole and styrene. The reaction was run for 2 h . The crude residue was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to 70:30 to afford 66 mg (60%) of $\mathbf{5 8}$ as light yellow solid. NMR spectroscopic data agree with literature values. ${ }^{5}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18(\mathrm{br}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, 2H), $7.44-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=16.4 \mathrm{~Hz}, 1 \mathrm{H})$.

59
isobornyl (E)-3-(1H-indol-3-yl)acrylate (59). The general procedure \mathbf{C} was followed with $1 H$-indole and isobornyl acrylate. The reaction time was 2 h . The crude residue was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to $0: 100$ to afford 135 mg (83%) $\mathbf{5 9}$ as light yellow sticky oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.78(\mathrm{br}, 1 \mathrm{H}), 7.94-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{t}$, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{td}, J=12.2,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.22(\mathrm{ddd}, J=13.0,9.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.17-1.07(\mathrm{~m}, 4 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.11,137.98,137.20,128.79,125.44,123.40,121.55$, $120.50,114.10,113.64,111.94,80.85,49.03,47.13,45.23,39.08,33.93,27.24,20.32$, 20.23, 11.71 .

HRMS calc'd for $\left[\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{2}{ }^{+}\right](\mathrm{M}+\mathrm{H}) 324.1958$; found 324.1951.

tert-butyl (E)-3-[\{(3-(1H-indol-3-yl)acryloyl)oxy\}methyl]azetidine-1-carboxylate (60). The general procedure \mathbf{C} was followed with $1 H$-indole and 1.5 equiv of tert-butyl 3-((acryloyloxy)methyl)azetidine-1-carboxylate. The reaction was run for 2 h . The crude residue was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from 100:0 to 0:100 to afford $147 \mathrm{mg}(83 \%) \mathbf{6 0}$ as yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.91(\mathrm{br}, 1 \mathrm{H}), 8.02-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 4.07(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{dd}, J=8.8,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.97-2.83(\mathrm{~m}, 1 \mathrm{H})$, $1.46(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.30,156.58,139.20,137.28,129.44,125.36,123.49$, $121.69,120.61,113.57,112.54,112.00,79.74,65.42,52.09,51.17,28.55,28.03$.

HRMS calc'd for $\left[\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}^{+}\right](\mathrm{M}+\mathrm{H}) 357.1809$; found 357.1800.

The general procedure \mathbf{C} was followed with $1 H$-indole and methyl methacrylate. The reaction was run for 2 h . The crude residue was purified by silica gel chromatography
using a gradient of hexanes and ethyl acetate from 100:0 to 70:30 to afford $31 \mathrm{mg}(29 \%)$ 61a as yellow oil and separately 41 mg (38%) of $\mathbf{6 1 b}$ as light gray solid. The Z / E configuration was confirmed by NOESY NMR.
methyl 2-((1H-indol-3-yl)methyl)acrylate (61a).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{br}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20(\mathrm{ddd}, J=8.1,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{ddd}, J=8.0,7.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.95,139.57,136.46,127.42,125.75,122.93,122.13$, $119.51,119.23,112.99,111.26,52.02,27.75$.

HRMS calc'd for $\left[\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{2}{ }^{+}\right](\mathrm{M}+\mathrm{H})$ 216.1019; found 216.1019.
methyl (E)-3-(1H-indol-3-yl)-2-methylacrylate (61b).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.60(\mathrm{br}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.18(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~d}, J$ $=1.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 169.70,135.55,130.37,127.76,125.74,123.27,123.00$, 120.90, 119.07, 113.36, 111.39, 52.08, 15.23.

HRMS calc'd for $\left[\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{2}{ }^{+}\right](\mathrm{M}+\mathrm{H})$ 216.1019; found 216.1024.

observed NOE (A-B)

62
ethyl (\boldsymbol{E})-3-($\mathbf{1 H}$-indol-3-yl)but-2-enoate (62). The general procedure \mathbf{C} was followed with $1 H$-indole and trans-ethyl crotonate. The reaction was run for 18 h . The crude residue was purified by silica gel chromatography using a gradient of hexanes and ethyl acetate from $100: 0$ to $70: 30$ to afford $74 \mathrm{mg}(65 \%)$ of 62 as white solid. The Z / E configuration was confirmed by NOESY experiment.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.65(\mathrm{br}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{dd}, J=6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.12,150.60,137.14,125.83,125.83,124.78,121.23$, 121.00, 119.21, 112.97, 111.85, 59.73, 18.41, 14.59.

HRMS calc'd for $\left[\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{+}\right](\mathrm{M}+\mathrm{H})$ 230.1176; found 230.1181.

64
methyl (E)-3-(3-methylthiophen-2-yl)acrylate (64). Catalyst stock solution was prepared by mixing $\mathrm{Pd}(\mathrm{OAc})_{2}(0.025 \mathrm{mmol}, 5.6 \mathrm{mg}), \mathbf{L 1 5}(0.025 \mathrm{mmol}, 4.8 \mathrm{mg})$ and $\mathrm{HBF}_{4} \bullet \mathrm{Et}_{2} \mathrm{O}(0.050 \mathrm{mmol}, 6.8 \mu \mathrm{~L})$ in 15 mL AcOH . In a 20 mL vial, 3-methylthiophene (1.00 mmol, $97 \mu \mathrm{~L}$), methyl acrylate ($0.50 \mathrm{mmol}, 45 \mu \mathrm{~L}$), 1,3,5tris(trifluoromethyl)benzene ($0.167 \mathrm{mmol}, 31 \mu \mathrm{~L}$), benzoquinone ($0.75 \mathrm{mmol}, 81 \mathrm{mg}$) were mixed with 3.0 mL THF , and 3.0 mL of the catalyst stock solution was then added. The vial was capped and heated to $40^{\circ} \mathrm{C}$ for 18 h . After completion of reaction, solvent was removed by evaporating under vacuum at $45^{\circ} \mathrm{C}$. The crude was purified by flash chromatography (EtOAc/Hexane from 0% to 3% with gradient method) to give 73 mg (80% yield) of $\mathbf{6 4}$ as a yellow oil. The NMR data agree with literature values. ${ }^{15}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84\left(\mathrm{~d}, J_{6,7}=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}_{6}\right), 7.24\left(\mathrm{~d}, J_{4,5}=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathbf{H}_{5}\right), 6.85\left(\mathrm{~d}, J_{4,5}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}_{4}\right), 6.16\left(\mathrm{~d}, J_{6,7}=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}_{7}\right), 3.78(\mathrm{~s}, 3 \mathrm{H}, \mathbf{O M e})$, 2.33 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.64,141.42,135.80,133.65,131.23,127.05,115.57$, 51.72, 14.25.
$J_{4,5}=4.9-5.1 \mathrm{~Hz}$

65
methyl (E)-3-(3-hexylthiophen-2-yl)acrylate (65). Catalyst stock solution was prepared by mixing $\mathrm{Pd}(\mathrm{OAc})_{2}(0.025 \mathrm{mmol}, 5.6 \mathrm{mg}), \mathbf{L 1 5}(0.025 \mathrm{mmol}, 4.8 \mathrm{mg})$ and $\mathrm{HBF}_{4} \bullet \mathrm{Et}_{2} \mathrm{O}$ $(0.050 \mathrm{mmol}, 6.8 \mu \mathrm{~L})$ in 15 mL AcOH. In a 20 mL vial, 3-hexylthiophene (1.00 mmol , $180 \mu \mathrm{~L}$), methylacrylate ($0.50 \mathrm{mmol}, 45 \mu \mathrm{~L}$), 1,3,5-tris(trifluoromethyl)benzene (0.167 $\mathrm{mmol}, 31 \mu \mathrm{~L}$), benzoquinone ($0.75 \mathrm{mmol}, 81 \mathrm{mg}$) were mixed with 3.0 mL THF, and 3.0 mL of the catalyst stock solution was then added. The vial was capped and heated to 40 ${ }^{\circ} \mathrm{C}$ for 18 h . After completion of reaction, solvent was removed by evaporating under vacuum at $45^{\circ} \mathrm{C}$. The crude was purified by flash chromatography (EtOAc/Hexane from 0% to 3% with gradient method) to give 102 mg (80% yield) of $\mathbf{6 5}$ as a brown oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86\left(\mathrm{~d}, J_{6,7}=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}_{6}\right), 7.26\left(\mathrm{~d}, J_{4,5}=4.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathbf{H}_{5}\right), 6.90\left(\mathrm{~d}, J_{4,5}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}_{4}\right), 6.19\left(\mathrm{~d}, J_{6,7}=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}_{7}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}$, OMe $)$, $2.70\left(\mathrm{t}, J_{8,9}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H}_{\mathbf{8}}\right), 1.62-1.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathbf{H}_{\mathbf{9}}\right), 1.36-1.25\left(\mathrm{~m}, 6 \mathrm{H}, \mathbf{H}_{\mathbf{1 0}}-\mathbf{H}_{\mathbf{1 2}}\right)$, $1.04-0.81\left(\mathrm{~m}, 3 \mathrm{H}, \mathbf{H}_{13}\right)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.75,146.98,135.80,133.46,130.25,127.17,115.61$, 51.78, 31.76, 31.22, 29.13, 28.68, 22.72, 14.22.

HRMS calc'd for $\left[\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~S}^{+}\right](\mathrm{M}+\mathrm{H}):$ 253.1257, found: 253.1256.

methyl (E)-3-(4-hexylthiophen-2-yl)acrylate (S1). Palladium acetate ($5.6 \mathrm{mg}, 25 \mu \mathrm{~mol}$) and benzoquinone ($81 \mathrm{mg}, 0.75 \mathrm{mmol}$) were dissolved in 6 mL AcOH in a 20 mL vial that was equipped with a magnetic stir bar. Methyl acrylate ($45 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$), 3hexylthiophene ($0.45 \mathrm{~mL}, 2.5 \mathrm{mmol}$), 1,3,5-tris(trifluoromethyl)benzene ($31 \mu \mathrm{~L}, 0.167$ mmol , as internal standard), and pyridine $(4.0 \mu \mathrm{~L}, 50 \mu \mathrm{~mol})$ were then added. The vial was capped and heated to $60{ }^{\circ} \mathrm{C}$ for 3 h . After completion of reaction, solvent was removed by evaporating under vacuum at $45{ }^{\circ} \mathrm{C}$. The crude was purified by flash chromatography ($\mathrm{EtOAc} / \mathrm{Hexane}$ from 0% to 10% with gradient method) to give 112 mg (89% combined yield) of $\mathbf{S} 1$ as a brown oil. Removal of minor amounts of $\mathbf{6 5}$ was not successful by simple flash chromatography.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73\left(\mathrm{~d}, J_{6,7}=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}_{6}\right), 7.08\left(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H}_{3}\right), 6.96(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathbf{H}_{5}\right), 6.20\left(\mathrm{~d}, J_{6,7}=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}_{7}\right), 3.78(\mathrm{~s}, 3 \mathrm{H}, \mathbf{O M e}), 2.56\left(\mathrm{t}, J_{8,9}=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathbf{H}_{\mathbf{8}}\right), 1.65-1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathbf{H}_{9}\right), 1.35-1.28\left(\mathrm{~m}, 6 \mathrm{H}, \mathbf{H}_{\mathbf{1 0}}-\mathbf{H}_{\mathbf{1 2}}\right), 0.94-0.83\left(\mathrm{~m}, 3 \mathrm{H}, \mathbf{H}_{\mathbf{1 3}}\right)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.56,144.52,139.24,137.76,132.37,123.54,116.07$, 51.81, 31.77, 30.46, 30.38, 29.04, 22.73, 14.23.

HRMS calc'd for [$\left.\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~S}^{+}\right](\mathrm{M}+\mathrm{H})$: 253.1257, found: 253.1259.

S2

2-(4-(thiophen-3-yl)phenyl)acetic acid (S2). methyl 2-(4-(thiophen-3-yl)phenyl)acetate ($500 \mathrm{mg}, 2.15 \mathrm{mmol}$) was dissolved in 30 mL MeOH in a 100 mL round bottom flask. A solution of lithium hydroxide $(0.26 \mathrm{~g}, 11 \mathrm{mmol})$ in 10 mL water was then added in portions. Reaction was stirred at room temperature for 3 h after which TLC indicated full conversion. The solution was then quenched with $20 \mathrm{~mL} \mathrm{HCl}(1 \mathrm{M})$ followed by extraction with ether ($20 \mathrm{~mL} \times 3$). The organic layers were combined and dried over anhydrous magnesium sulfate. Solvent was then evaporated to afford 398 mg (85\%) S2 as white solid.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.65-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 174.81$, 143.22, 135.92, 134.90, 130.87, 127.34, 127.24, 127.09, 121.11, 66.92.

HRMS calc'd for $\left[\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~S}^{+}\right](\mathrm{M}+\mathrm{H}):$ 219.0474, found: 219.0472.
$J_{4,5}=5.1 \mathrm{~Hz}$

66a
(E)-2-(4-(2-(3-methoxy-3-oxoprop-1-en-1-yl)thiophen-3-yl)phenyl)acetic acid (66a). Catalyst stock solution was prepared by mixing $\mathrm{Pd}(\mathrm{OAc})_{2}(0.025 \mathrm{mmol}, 5.6 \mathrm{mg}), \mathbf{L 1 5}$ $(0.025 \mathrm{mmol}, 4.8 \mathrm{mg})$ and $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(0.050 \mathrm{mmol}, 6.8 \mu \mathrm{~L})$ in 15 mL AcOH. In a 4 mL vial, $\mathbf{S 2}(0.40 \mathrm{mmol}, 87 \mathrm{mg})$, methyl acrylate $(0.20 \mathrm{mmol}, 18 \mu \mathrm{~L}), 1,3,5-$ tris(trifluoromethyl)benzene ($0.067 \mathrm{mmol}, 12 \mu \mathrm{~L}$), benzoquinone ($0.30 \mathrm{mmol}, 32 \mathrm{mg}$) were mixed with 1.2 mL THF , and 1.2 mL of the catalyst stock solution was then added. The vial was capped and heated to $40{ }^{\circ} \mathrm{C}$ for 18 h . After completion of reaction, solvent was removed by evaporating under vacuum at $45^{\circ} \mathrm{C}$. The crude was purified by flash chromatography ($\mathrm{EtOAc} / \mathrm{Hexane}$ (contains $2 \% \mathrm{AcOH}$) from 0% to 20% with gradient
method) to give 58 mg (96% combined yield) of $\mathbf{6 6 a} / \mathbf{6 6 b}$ (8:1) as a light brown oil. Removal of 66b by simple flash chromatography was not successful.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81\left(\mathrm{~d}, J_{9,10}=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}_{9}\right), 7.41-7.32\left(\mathrm{~m}, 5 \mathrm{H}, \mathbf{H}_{5}-\right.$ $\left.\mathbf{H}_{8}\right), 7.10\left(\mathrm{~d}, J_{4,5}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}_{4}\right), 6.29\left(\mathrm{~d}, J_{9,10}=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}_{10}\right), 3.75(\mathrm{~s}, 3 \mathrm{H}, \mathbf{O M e})$, 3.71 (s, 2H, H8).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.34,167.47,145.30,136.83,134.46,134.37,133.17$, 130.46, 129.93, 129.64, 127.23, 117.33, 51.85, 40.85.

HRMS calc'd for $\left[\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~S}^{+}\right](\mathrm{M}+\mathrm{H}): 303.0686$, found: 303.0682 .

66b
(E)-2-(4-(5-(3-methoxy-3-oxoprop-1-en-1-yl)thiophen-3-yl)phenyl)acetic acid (66b). A stock solution was prepared by mixing palladium acetate ($2.8 \mathrm{mg}, 13 \mu \mathrm{~mol}$), benzoquinone ($41 \mathrm{mg}, 0.38 \mathrm{~mol}$), methyl acrylate ($23 \mu \mathrm{~L}, 0.25 \mathrm{~mol}$), pyridine ($2.0 \mu \mathrm{l}, 25$ $\mu \mathrm{mol}$), and $1,3,5$-tris(trifluoromethyl)benzene ($16 \mu \mathrm{~L}, 0.083 \mathrm{mmol}$, as internal standard) in 1.5 mL AcOH. To a 4 mL vial equipped with a magnetic stir bar was added 2-(4-(thiophen-3-yl)phenyl)acetic acid ($55 \mathrm{mg}, 250 \mu \mathrm{~mol}$), stock solution (0.30 mL), and additional 0.3 mL AcOH. The vial was capped and stirred at $60{ }^{\circ} \mathrm{C}$ for 3 h . After completion of reaction, $20 \mu \mathrm{~L}$ aliquot was taken from the crude system and mixed with $500 \mu \mathrm{~L} \mathrm{CDCl}_{3}$. NMR yield was determined for 66b (78\%) and 66a (6\%). Two parallel reactions (0.05 mmol scale) were combined for isolation. The solvent was removed by evaporating under vacuum at $45{ }^{\circ} \mathrm{C}$. The crude residue was purified by flash chromatography (EtOAc and hexane (contains $2 \% \mathrm{AcOH}$) from 0% to 30% with
gradient method to give 19 mg (63%) of $\mathbf{6 6 b}$ as a white solid. The mass loss resulted from the difficulty in separating $\mathrm{C}(2) / \mathrm{C}(5)$ isomers.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80\left(\mathrm{~d}, J_{9,10}=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}_{9}\right), 7.53\left(\mathrm{~d}, J_{6,7}=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathbf{H}_{6}\right), 7.49\left(\mathrm{~d}, J_{2,4}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}_{3}\right), 7.46\left(\mathrm{~d}, J_{2,4}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}_{5}\right), 7.33\left(\mathrm{~d}, J_{6,7}=8.0 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, \mathbf{H}_{7}\right), 6.27\left(\mathrm{~d}, J_{9,10}=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}_{\mathbf{1 0}}\right), 3.80(\mathrm{~s}, 3 \mathrm{H}, \mathbf{O M e}), 3.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathbf{H}_{8}\right)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 177.02, 167.39, 142.86, 140.23, 137.38, 134.26, 132.77, $130.11,129.86,126.68,123.36,117.01,51.95,40.69$.

HRMS calc'd for $\left[\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~S}^{+}\right](\mathrm{M}+\mathrm{H}): 303.0686$, found: 303.0686 .

S3
methyl (\boldsymbol{E})-3-(2-(2-ethoxy-2-oxoethyl)-5-(thiophen-3-yl)phenyl)acrylate (S3). The reaction was set up on 0.10 mmol scale using a reported protocol ${ }^{16}$. Upon completion, the reaction was diluted with EtOAc and let stand for 2 weeks during which the product underwent esterification. The mixture was filtered through Celite, and the filtrate partitioned by $20 \mathrm{~mL} \mathrm{HCl}(1 \mathrm{M})$ and 20 mL EtOAc . The aqueous layer was extracted with EtOAc ($20 \mathrm{~mL} \times 2$), and the organic layer was combined and backwashed with 20 mL brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated under vacuum at $45^{\circ} \mathrm{C}$, and the crude residue was purified by chromatography (EtOAc and hexane (contains 2% $\mathrm{AcOH})$) from 0% to 30% with gradient method to give 3 mg of the ethyl ester $\mathbf{S 3}$ as white solid. This pure material was sufficient to confirm by NMR analysis the structure of the product formed from the dehydrogenative Heck reaction.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99\left(\mathrm{~d}, J_{10,11}=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}_{\mathbf{1 0}}\right), 7.80\left(\mathrm{~d}, J_{6,7}=2.0 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathbf{H}_{\mathbf{6}}\right), 7.57\left(\mathrm{dd}, J_{7,8}=8.0, J_{6,7}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}_{7}\right), 7.49-7.46\left(\mathrm{~m}, 1 \mathrm{H}, \mathbf{H}_{2}\right), 7.44-7.37$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathbf{H}_{\mathbf{4}} \& \mathbf{H}_{5}\right), 7.32\left(\mathrm{~d}, J_{7,8}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}_{\mathbf{8}}\right), 6.45\left(\mathrm{~d}, J_{10,11}=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}_{\mathbf{1 1}}\right), 4.17$
$\left(\mathrm{q}, J_{12,13}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H}_{12}\right), 3.82(\mathrm{~s}, 3 \mathrm{H}, \mathbf{O M e}), 3.78\left(\mathrm{~s}, 2 \mathrm{H}, \mathbf{H}_{9}\right), 1.26\left(\mathrm{t}, J_{12,13}=7.1 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathbf{H}_{13}$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.02,167.24,142.13,141.43,135.66,134.53,132.61$, $131.76,128.32,126.69,126.31,124.98,120.93,120.42,61.34,51.97,38.83,14.28$.

HRMS calc'd for $\left[\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~S}^{+}\right](\mathrm{M}+\mathrm{H}): 331.0999$, found: 331.0996.
Table S4. Condition optimization for $\mathbf{C}(2)$ versus $\mathbf{C}(5)$ selectivity during the $\mathbf{C}-\mathbf{H}$ alkenylation of $\mathbf{S 4}$.
$\left.\begin{array}{ccccc}\hline \text { Entry } & \text { Condition } & \begin{array}{c}\text { 69a } \\ (\%)\end{array} & \begin{array}{c}\text { 69b } \\ (\%)\end{array} & \text { ratio } \\ \hline 11^{17} & \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{BuOOBz}(1 \mathrm{equiv}) \\ \text { Dioxane/ } \mathrm{HOAc} / \mathrm{DMSO} \\ 40^{\circ} \mathrm{C}, 24 \mathrm{~h}\end{array}\right)$

S4
methyl 3-phenyl-1H-pyrrole-1-carboxylate (S4). ${ }^{\mathbf{1 8}}$ To a stirred solution of 3-phenyl$1 H$-pyrrole ($445 \mathrm{mg}, 3.11 \mathrm{mmol}$) in 5 mL THF in a 20 mL scintillation vial was added sodium hydride ($248 \mathrm{mg}, 6.21 \mathrm{mmol}, 60 \%$ dispersion in mineral oil) at $0{ }^{\circ} \mathrm{C}$. Stirring
continued until bubbles were no longer visibly generated, then methyl chloroformate ($0.48 \mathrm{~mL}, 6.2 \mathrm{mmol}$) was then added slowly. The resulting suspension was warmed to room temperature and stirred for additional 2 h . The mixture was then quenched with $\mathrm{HCl}(10 \mathrm{~mL}, 1 \mathrm{M})$ then extracted with EtOAc $(10 \mathrm{~mL} \times 3)$. The organic layers were combined and backwashed with 20 mL brine, then dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated under vacuum at $45{ }^{\circ} \mathrm{C}$. The crude residue was purified by flash chromatography (EtOAc and hexane) from 0% to 20% with gradient method to give 298 $\mathrm{mg}(48 \%)$ of $\mathbf{S 4}$ as a white solid.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.30$ (m, 1H), $7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=3.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.98,134.13,128.89,128.50,126.91,125.69,121.16$, 115.92, 111.27, 54.33.

HRMS calc'd for $\left[\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{2}^{+}\right](\mathrm{M}+\mathrm{H})$: 202.0863, found: 202.0858.

67a
no clear NOE observed
methyl (E)-2-(3-methoxy-3-oxoprop-1-en-1-yl)-3-phenyl-1H-pyrrole-1-carboxylate (67a). Stock solution (A) was prepared by mixing palladium acetate ($6.7 \mathrm{mg}, 30 \mu \mathrm{~mol}$), $\mathbf{L 1 5}(5.8 \mathrm{mg}, 30 \mu \mathrm{~mol})$, p-toluenesulfonic acid ($5.7 \mathrm{mg}, 30 \mu \mathrm{~mol}$), and methyl acrylate $(90 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$ in 12 mL AcOH. A stock solution (B) was prepared by mixing benzoquinone ($41 \mathrm{mg}, 0.38 \mathrm{mmol}$), 1,3,5-tris(trifluoromethyl)benzene ($16 \mu \mathrm{~L}, 83 \mu \mathrm{~mol}$, as internal standard), and 3 mL of stock solution \mathbf{A}. To a 4 mL vial equipped with a magnetic stir bar was added 0.6 mL of stock solution \mathbf{B} and methyl 3-phenyl-1 H -pyrrole-1-carboxylate ($20 \mathrm{mg}, 0.10 \mathrm{mmol}$). The vial was capped and the mixture stirred at room temperature for 18 h . After completion of reaction, the solvent was evaporated under vacuum at $45{ }^{\circ} \mathrm{C}$. The crude residue was purified by flash chromatography (EtOAc and
hexane from 0% to 10% with a gradient method to give 5 mg of $\mathbf{6 7 a} / \mathbf{6 7 b}$ (3:1) as a white solid. Spectral data are reported for $\mathbf{6 7 a}$ in this inseparable mixture of isomers.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21\left(\mathrm{~d}, J_{9,10}=16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}_{9}\right), 7.44\left(\mathrm{~d}, J_{4,5}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathbf{H}_{4}\right), 7.39$ - $7.37\left(\mathrm{~m}, 4 \mathrm{H}, \mathbf{H}_{6}\right.$ and $\left.\mathbf{H}_{7}\right), 7.34-7.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathbf{H}_{8}\right), 6.29\left(\mathrm{~d}, J_{4,5}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathbf{H}_{5}\right), 5.90\left(\mathrm{~d}, J_{9,10}=16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}_{\mathbf{1 0}}\right), 4.01(\mathrm{~s}, 3 \mathrm{H}, \mathbf{O M e}), 3.70(\mathrm{~s}, 3 \mathrm{H}, \mathbf{O M e})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 167.65,151.20,135.21,133.81,132.96,129.00,128.92$, $127.75,125.70,123.96,119.46,114.84,54.54,51.68$.

HRMS calc'd for $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{4}{ }^{+}\right](\mathrm{M}+\mathrm{H}): 286.1074$, found: 286.1075

methyl (E)-2-(3-methoxy-3-oxoprop-1-en-1-yl)-4-phenyl-1H-pyrrole-1-carboxylate (67b). A literature protocol was followed. ${ }^{17}$ A stock solution was prepared by mixing methyl acrylate ($23 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$), tert-butyl benzoperoxoate ($47 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$), 1,3,5-tris(trifluoromethyl)benzene ($16 \mu \mathrm{~L}, 83 \mu \mathrm{~mol}$, as internal standard), AcOH (0.23 $\mathrm{mL})$, dioxane $(0.69 \mathrm{~mL})$, and DMSO $(80 \mu \mathrm{~L})$. To a 4 mL vial equipped with a magnetic stir bar was added 0.2 mL of the stock solution, palladium acetate ($1.1 \mathrm{mg}, 5.0 \mu \mathrm{~mol}$), and methyl 3-phenyl-1H-pyrrole-1-carboxylate ($20 \mathrm{mg}, 0.10 \mathrm{mmol}$). The vial was capped and the mixture stirred at $40^{\circ} \mathrm{C}$ for 24 h . After completion of reaction, the solvent was evaporated under vacuum at $45{ }^{\circ} \mathrm{C}$. The crude residue was purified by flash chromatography (EtOAc and hexane from 0% to 10% with a gradient method to give 5 mg of $\mathbf{6 7 a} / 67 \mathrm{~b}$ (1:3) as a white solid. Spectral data are reported for 67 b in this inseparable mixture of isomers.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.32\left(\mathrm{~d}, J_{9,10}=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}_{9}\right), 7.69\left(\mathrm{~d}, J_{2,4}=1.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathbf{H}_{5}\right), 7.52\left(\mathrm{~d}, J_{6,7}=8.2,2 \mathrm{H}, \mathbf{H}_{6}\right), 7.41-7.36\left(\mathrm{~m}, 3 \mathrm{H}, \mathbf{H}_{7}\right.$ and $\left.\mathbf{H}_{8}\right), 7.04\left(\mathrm{~d}, J_{2,4}=1.8 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathbf{H}_{\mathbf{3}}\right), 6.32\left(\mathrm{~d}, J_{9,10}=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}_{\mathbf{1 0}}\right), 4.03(\mathrm{~s}, 3 \mathrm{H}, \mathbf{O M e}), 3.80(\mathrm{~s}, 3 \mathrm{H}, \mathbf{O M e})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.48,151.02,134.35,133.81,133.07,129.01,127.74$, $127.43,125.69,120.44,117.38,113.26,54.61,51.83$.

HRMS calc'd for $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{4}{ }^{+}\right](\mathrm{M}+\mathrm{H})$: 286.1074, found: 286.1075.

Figure S1. Attempted DHR using a prototypical electron-poor heteroarene.

H/D Exchange Experiment. $\operatorname{Pd}(\mathrm{OAc})_{2}(1.3 \mathrm{mg}, 6.0 \mu \mathrm{~mol})$, $\mathbf{L 1 4}(1.7 \mathrm{mg}, 3.0 \mu \mathrm{~mol})$, benzoquinone ($32 \mathrm{mg}, 0.30 \mathrm{mmol}$), $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}\left(1.6 \mu \mathrm{~L}, 6.0 \mu \mathrm{~mol}\right.$) and 1.0 mL AcOD- d_{4} were mixed in a 4 mL vial to afford a yellow homogeneous solution. $500 \mu \mathrm{~L}$ of such solution was transferred to a NMR tube that contained 2-methylthiophene ($9.7 \mu \mathrm{~L}, 0.10$ $\mathrm{mmol})$ and methyl acrylate ($18 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$). The NMR tube was capped and shaken, then the ${ }^{1} \mathrm{H}$ NMR spectrum collected immediately. After that, the NMR tube was warmed to $40^{\circ} \mathrm{C}$ in a pre-heated oil bath for 20 min , and the second spectrum was collected.

Figure S2. ${ }^{1} \mathrm{H}$ NMR collected before heating (top) and after heating at $40{ }^{\circ} \mathrm{C}$ for 20 min (bottom). The substrate methyl group resonance was used as internal standard.

H/D Exchange Experiment. $\operatorname{Pd}(\mathrm{OAc})_{2}(1.3 \mathrm{mg}, 6.0 \mu \mathrm{~mol})$, $\mathbf{L 1 4}(1.7 \mathrm{mg}, 3.0 \mu \mathrm{~mol})$, benzoquinone ($32 \mathrm{mg}, 0.30 \mathrm{mmol}$), $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(1.6 \mu \mathrm{~L}, 6.0 \mu \mathrm{~mol})$ and 1.0 mL AcOD- d_{4} were mixed in a 4 mL vial to afford a yellow homogeneous solution. $500 \mu \mathrm{~L}$ of such solution was transferred to a NMR tube that contained 3-methylbenzofuran ($13 \mu \mathrm{~L}, 0.10$ $\mathrm{mmol})$. The NMR tube was capped and shaken, then the ${ }^{1} \mathrm{H}$ NMR spectrum was collected immediately. After that, the NMR tube was warmed to $40^{\circ} \mathrm{C}$ in a pre-heated oil bath, and additinoal spectra were collected at 20 min and 40 min .

Figure S3. ${ }^{1} \mathrm{H}$ NMR collected before heating (top) and after heating at $40{ }^{\circ} \mathrm{C}$ for 20 min (middle) and 40 min (bottom). The substrate methyl group resonance was used as internal standard.

Intermolecular Competition Experiments. Stock solution (A) was prepared by dissolving $\mathrm{Pd}(\mathrm{OAc})_{2}(5.6 \mathrm{mg}, 25 \mu \mathrm{~mol})$ and ligand in 5.0 mL AcOH. Stock solution (B) was prepared by mixing 2-methylthiophene ($0.484 \mathrm{ml}, 5.00 \mathrm{mmol}$), 2-chlorothiophene ($0.461 \mathrm{ml}, 5.00 \mathrm{mmol}$), methyl acrylate ($0.090 \mathrm{ml}, 1.0 \mathrm{mmol}$), benzoquinone (0.162 g , 1.50 mmol) and $1,3,5-\operatorname{tris}($ trifluoromethyl $)$ benzene $(0.062 \mathrm{ml}, 0.33 \mathrm{mmol}$, internal standard) in 6.0 mL AcOH. 0.60 mL stock solution (A) and 0.60 mL stock solution (B) were mixed in a 4 mL vial that was equipped with a magetic stir bar, and the vial was capped and heated up to $60{ }^{\circ} \mathrm{C}$ for 12 hours. Upon completion of reaction, $20 \mu \mathrm{~L}$ of reaction mixture was diluted by $0.50 \mathrm{mLCDCl} 3_{3}$, and ${ }^{1} \mathrm{H}$ NMR was used to determine the product ratios.

Table S5. Intermolecular competition experiments with 2-substituted thiophenes. ${ }^{\text {a }}$

entry	ligand	yield (\%)	$\mathbf{9} / \mathbf{1 0}$
1^{c}	$\mathbf{L 1 4}(3 \mathrm{~mol} \%)$	39	$>20: 1$
2^{c}	$\mathbf{L 1 5}(3 \mathrm{~mol} \%)$	38	$>20: 1$
3	4,5-diazafluorenone $(3 \mathrm{~mol} \%)$	90	$5.0: 1$
4	4,5 -diazafluorenone $(1.5 \mathrm{~mol} \%)$	95	$3.5: 1$
6	pyridine $(6 \mathrm{~mol} \%)$	88	$0.9: 1$
7	pyridine $(3 \mathrm{~mol} \%)$	87	$1.4: 1$
5	$\mathbf{L 7}(3 \mathrm{~mol} \%)$	89	$1.9: 1$
1	$\mathbf{L 8}(3 \mathrm{~mol} \%)$	97	$2.6: 1$
2	$\mathbf{L 9}(3 \mathrm{~mol} \%)$	95	$2.5: 1$
3^{c}	$\mathbf{L 9}(3 \mathrm{~mol} \%)$	71	$4.5: 1$
4	$\mathbf{L 1 0}(3 \mathrm{~mol} \%)$	96	$2.6: 1$
5	$\mathbf{L 1 1}(3 \mathrm{~mol} \%)$	99	$2.6: 1$
6	$\mathbf{L 1 2}(3 \mathrm{~mol} \%)$	94	$3.1: 1$

[^1]

Figure S4. Reaction of $\mathbf{1}(0.17 \mathrm{M})$, tert-butyl acrylate $(0.33 \mathrm{M})$, BQ $(0.25 \mathrm{M}), \mathrm{Pd}(\mathrm{OAc})_{2}$ (1.7 mM) , and $\mathbf{L} 7(0.42-3.3 \mathrm{mM})$ in AcOH at $50^{\circ} \mathrm{C}$.

Table S6. Tabular data for reactions in Figure S4.

[\mathbf{L}7](mM)	180	360	540	720
	$2.58 \mathrm{E}-03$	$6.54 \mathrm{E}-03$	$1.08 \mathrm{E}-02$	$1.55 \mathrm{E}-02$
0.83	$2.89 \mathrm{E}-03$	$9.70 \mathrm{E}-03$	$1.68 \mathrm{E}-02$	$2.31 \mathrm{E}-02$
1.3	$3.36 \mathrm{E}-03$	$1.21 \mathrm{E}-02$	$2.04 \mathrm{E}-02$	$3.12 \mathrm{E}-02$
1.7	$4.05 \mathrm{E}-03$	$1.40 \mathrm{E}-02$	$2.40 \mathrm{E}-02$	$3.42 \mathrm{E}-02$
2.5	$3.79 \mathrm{E}-03$	$1.21 \mathrm{E}-02$	$2.28 \mathrm{E}-02$	$3.08 \mathrm{E}-02$
3.3	$2.81 \mathrm{E}-03$	$8.11 \mathrm{E}-03$	$1.42 \mathrm{E}-02$	$1.80 \mathrm{E}-02$

Table S7. Tabular data for data in Figure 4a.

$[\mathbf{L} 7](\mathrm{mM})$	$k_{\text {obs }}\left(\mathrm{M} \mathrm{s}^{-1}\right)$	Standard Error	R^{2}
0.42	$2.39 \mathrm{E}-05$	$6.03 \mathrm{E}-07$	0.998
0.83	$3.76 \mathrm{E}-05$	$6.62 \mathrm{E}-07$	0.999
1.3	$5.11 \mathrm{E}-05$	$2.12 \mathrm{E}-06$	0.995
1.7	$5.58 \mathrm{E}-05$	$2.61 \mathrm{E}-07$	1.000
2.5	$5.10 \mathrm{E}-05$	$2.04 \mathrm{E}-06$	0.995
3.3	$2.87 \mathrm{E}-05$	$1.73 \mathrm{E}-06$	0.989

Figure S5. Reaction of $\mathbf{1}(0.083-1.0 \mathrm{M})$, tert-butyl acrylate (0.33 M), BQ (0.25 M), $\mathrm{Pd}(\mathrm{OAc})_{2}(1.7 \mathrm{mM})$, and $\mathbf{L} 7(1.7 \mathrm{mM})$ in AcOH at $50^{\circ} \mathrm{C}$,

Table S8. Tabular data for reactions in Figure S5.

[1](M)	0	240	480	time (s)	
	0	$24 \mathrm{E}-03$	960		
0.083	0	$1.07 \mathrm{E}-03$	$2.66 \mathrm{E}-03$	$3.77 \mathrm{E}-03$	$5.39 \mathrm{E}-03$
0.17	0	$2.69 \mathrm{E}-03$	$7.33 \mathrm{E}-03$	$1.13 \mathrm{E}-02$	$1.56 \mathrm{E}-02$
0.33	0	$5.04 \mathrm{E}-03$	$1.33 \mathrm{E}-02$	$2.16 \mathrm{E}-02$	$2.97 \mathrm{E}-02$
0.67	0	$8.18 \mathrm{E}-03$	$1.95 \mathrm{E}-02$	$3.23 \mathrm{E}-02$	$4.41 \mathrm{E}-02$
1.0	0	$1.04 \mathrm{E}-02$	$2.40 \mathrm{E}-02$	$3.60 \mathrm{E}-02$	$5.13 \mathrm{E}-02$

Table S9. Tabular data for reactions in Figure 4b.

$[\mathbf{1}](\mathrm{M})$	$k_{\text {obs }}\left(\mathrm{M} \mathrm{s}^{-1}\right)$	Standard Error	R^{2}
0.083	$5.46 \mathrm{E}-06$	$1.24 \mathrm{E}-07$	0.997
0.17	$1.58 \mathrm{E}-05$	$4.62 \mathrm{E}-07$	0.996
0.33	$2.99 \mathrm{E}-05$	$9.88 \mathrm{E}-07$	0.995
0.67	$4.45 \mathrm{E}-05$	$1.29 \mathrm{E}-06$	0.996
1.0	$5.16 \mathrm{E}-05$	$1.14 \mathrm{E}-06$	0.998

Figure S6. Reaction of $\mathbf{1}(0.17 \mathrm{M})$, tert-butyl acrylate ($0.02-0.40 \mathrm{M}$), BQ (0.25 M), $\mathrm{Pd}(\mathrm{OAc})_{2}(1.7 \mathrm{mM})$, and $\mathbf{L} 7(1.7 \mathrm{mM})$ in AcOH at $50^{\circ} \mathrm{C}$ as monitored by disappearance of $\mathbf{1}$ by ${ }^{1} \mathrm{H}$ NMR.

Table S10. Tabular data for reactions in Figure S6.

time (s)	[olefin] $=0.0 \mathrm{M}$		[olefin] $=0.04 \mathrm{M}$		[olefin] $=0.10 \mathrm{M}$		[olefin] $=0.40 \mathrm{M}$	
	conv. 1	$-\Delta[1]^{*}$						
0	7.3\%	1.23	8.3\%	1.41	4.6\%	0.78	4.0\%	0.69
60	8.9\%	1.51	9.5\%	1.61	5.7\%	0.97	5.3\%	0.90
120	10.6\%	1.81	10.6\%	1.80	6.7\%	1.14	6.4\%	1.09
180	12.1\%	2.06	11.8\%	2.01	7.8\%	1.33	7.6\%	1.30
240	13.6\%	2.32	12.7\%	2.16	8.8\%	1.49	8.9\%	1.51
300	14.8\%	2.52	13.6\%	2.31	9.8\%	1.67	10.0\%	1.71
360	16.1\%	2.73	14.6\%	2.48	10.9\%	1.85	11.1\%	1.88
420	17.8\%	3.03	15.6\%	2.66	11.9\%	2.02	12.2\%	2.07
480	19.2\%	3.27	16.6\%	2.83	12.9\%	2.19	13.2\%	2.25
540	20.4\%	3.48	17.5\%	2.98	14.0\%	2.37	14.3\%	2.43
600	21.4\%	3.64	18.6\%	3.16	14.8\%	2.52	15.4\%	2.62
660	22.8\%	3.87	19.6\%	3.34	15.8\%	2.68	16.3\%	2.77
720	23.9\%	4.07	20.7\%	3.53	16.8\%	2.86	17.4\%	2.95

780	25.1%	4.26	21.7%	3.69	17.7%	3.01	18.3%	3.11
840	26.3%	4.47	22.8%	3.88	18.6%	3.15	19.3%	3.28
900	27.3%	4.65	23.7%	4.03	19.5%	3.31	20.3%	3.46
960	28.5%	4.84	24.5%	4.17	20.4%	3.46	21.4%	3.65
1020	29.4%	5.00	25.5%	4.34	21.3%	3.62	22.4%	3.80
1080	30.4%	5.18	26.4%	4.48	22.3%	3.79	23.3%	3.97
1140	31.6%	5.37	27.2%	4.63	23.2%	3.94	24.2%	4.11
1200	32.6%	5.54	28.1%	4.78	24.1%	4.09	25.1%	4.27
1260	33.7%	5.73	29.0%	4.93	24.9%	4.23	26.0%	4.42
1320	34.7%	5.89	29.9%	5.08	25.8%	4.38	27.0%	4.58
1380	35.6%	6.05	30.7%	5.22	26.5%	4.51	27.9%	4.74
1440	36.5%	6.20	31.5%	5.36	27.4%	4.65	28.7%	4.87
1500	37.3%	6.35	32.3%	5.49	28.1%	4.78	29.5%	5.02
1560	38.2%	6.49	33.0%	5.62	28.9%	4.92	30.4%	5.17
1620	39.1%	6.65	33.8%	5.75	29.6%	5.04	31.4%	5.33
1680	39.9%	6.78	34.5%	5.86	30.4%	5.17	32.0%	5.45
1740	40.7%	6.92	35.2%	5.99	31.3%	5.32	32.9%	5.59
1800	41.5%	7.05	35.9%	6.11	32.0%	5.44	33.7%	5.73

Table S11. Kinetic data for reactions in Figure 4c.

[olefin] (M)	$k_{\text {obs }}\left(\mathrm{M} \mathrm{s}^{-1}\right)$	Standard Error	R^{2}
0.00	$3.19 \mathrm{E}-05$	$3.19 \mathrm{E}-06$	0.991
0.04	$2.87 \mathrm{E}-05$	$2.87 \mathrm{E}-06$	0.997
0.10	$2.59 \mathrm{E}-05$	$2.59 \mathrm{E}-06$	0.997
0.40	$2.79 \mathrm{E}-05$	$2.79 \mathrm{E}-06$	0.997

Figure S7. Dependence of the formation of $\mathbf{2}$ on the concentration of tert-butyl acrylate $(0.02-0.64 \mathrm{M})$ during the reaction with $1(0.17 \mathrm{M})$, benzoquinone $(0.25 \mathrm{M}), \operatorname{Pd}(\mathrm{OAc})_{2}$ $(1.7 \mathrm{mM})$, and $\mathbf{L} 7(1.7 \mathrm{mM})$ in $\mathrm{AcOH}(1.5 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$.

Table S12. Tabular data for reactions in Figure S7.

[tert-butyl acrylate] (M)	$k_{\text {obs }}\left(\mathrm{M} \mathrm{s}^{-1}\right)$	Error
0.020	$4.68 \mathrm{E}-05$	$7.38 \mathrm{E}-06$
0.040	$9.71 \mathrm{E}-05$	$1.05 \mathrm{E}-05$
0.060	$1.36 \mathrm{E}-04$	$1.22 \mathrm{E}-05$
0.080	$1.65 \mathrm{E}-04$	$1.24 \mathrm{E}-05$
0.160	$2.12 \mathrm{E}-04$	$7.48 \mathrm{E}-06$
0.240	$2.22 \mathrm{E}-04$	$1.63 \mathrm{E}-05$
0.320	$2.40 \mathrm{E}-04$	$1.50 \mathrm{E}-05$
0.640	$2.18 \mathrm{E}-04$	$1.70 \mathrm{E}-06$

Note: The yield of $\mathbf{2}$ is significantly diminished at low [alkene], presumably due to the instability of the arylpalladium intermediate that is diverted to side product(s). This must have a negative impact on the apparent observed rate constant calculated from the formation of 2 over time, which accounts for the observed curvature in Figure S4 as opposed to the zeroth order behavior apparent in Figure 4c calculated instead from rate of consumption of $\mathbf{1}$.

Figure S8. Reaction of $\mathbf{1}(0.17 \mathrm{M})$, tert-butyl acrylate (0.33 M), BQ ($0.083-0.33 \mathrm{M}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(1.7 \mathrm{mM})$, and $\mathbf{L} 7(1.7 \mathrm{mM})$ in AcOH at $50^{\circ} \mathrm{C}$.

Table S13. Tabular data for reactions in Figure S8.

[\mathrm{BQ}](M)	0	time (s)				
	0	240	480	960	1200	
0.083	0	$4.79 \mathrm{E}-03$	$1.28 \mathrm{E}-02$	$2.89 \mathrm{E}-02$	$3.87 \mathrm{E}-02$	
0.17	0	$4.41 \mathrm{E}-03$	$1.16 \mathrm{E}-02$	$2.81 \mathrm{E}-02$	$3.84 \mathrm{E}-02$	
0.25	0	$4.38 \mathrm{E}-03$	$1.11 \mathrm{E}-02$	$2.79 \mathrm{E}-02$	$3.79 \mathrm{E}-02$	
0.33	0	$4.79 \mathrm{E}-03$	$1.21 \mathrm{E}-02$	$2.87 \mathrm{E}-02$	$4.04 \mathrm{E}-02$	

Table S14. Tabular data for reactions in Figure 4d.

$[\mathrm{BQ}](\mathrm{M})$	$k_{\text {obs }}\left(\mathrm{M} \mathrm{s}^{-1}\right)$	Standard Error	R^{2}
0.083	$3.07 \mathrm{E}-05$	$1.16 \mathrm{E}-06$	0.993
0.17	$3.01 \mathrm{E}-05$	$1.44 \mathrm{E}-06$	0.989
0.25	$2.97 \mathrm{E}-05$	$1.47 \mathrm{E}-06$	0.988
0.33	$3.13 \mathrm{E}-05$	$1.57 \mathrm{E}-06$	0.988

Figure S9. Reaction of $\mathbf{1}(0.17 \mathrm{M})$, tert-butyl acrylate (0.33 M), BQ (0.25 M), sodium acetate ($0.0030-0.34 \mathrm{M}), \mathrm{Pd}(\mathrm{OAc})_{2}(1.7 \mathrm{mM})$, and $\mathbf{L} 7(1.7 \mathrm{mM})$ in AcOH at $50^{\circ} \mathrm{C}$.

Table S15. Tabular data for reactions in Figure S9.

[\mathrm{NaOAc}](M)	0	210	420	time (s)		
	0	630	840	1200		
0.0030	0	$1.02 \mathrm{E}-02$	$2.30 \mathrm{E}-02$	$3.52 \mathrm{E}-02$	$4.69 \mathrm{E}-02$	-
0.020	0	$8.16 \mathrm{E}-03$	$1.58 \mathrm{E}-02$	$2.75 \mathrm{E}-02$	$3.86 \mathrm{E}-02$	-
0.045	0	$5.61 \mathrm{E}-03$	$1.36 \mathrm{E}-02$	$2.06 \mathrm{E}-02$	$3.03 \mathrm{E}-02$	$4.18 \mathrm{E}-02$
0.087	0	$4.42 \mathrm{E}-03$	$1.16 \mathrm{E}-02$	$1.77 \mathrm{E}-02$	$2.30 \mathrm{E}-02$	$3.26 \mathrm{E}-02$
0.17	0	$2.89 \mathrm{E}-03$	$7.65 \mathrm{E}-03$	$1.17 \mathrm{E}-02$	$1.34 \mathrm{E}-02$	$2.13 \mathrm{E}-02$
0.34	0	$1.53 \mathrm{E}-03$	$4.08 \mathrm{E}-03$	$5.61 \mathrm{E}-03$	$7.99 \mathrm{E}-03$	$1.21 \mathrm{E}-02$

Table S16. Tabular data for reactions in Figure 4e.

$[\mathrm{NaOAc}](\mathrm{M})$	$k_{\text {obs }}\left(\mathrm{M} \mathrm{s}^{-1}\right)$	Standard Error	R^{2}
0.0030	$5.55 \mathrm{E}-05$	$6.71 \mathrm{E}-07$	0.999
0.020	$4.39 \mathrm{E}-05$	$1.44 \mathrm{E}-06$	0.995
0.045	$3.45 \mathrm{E}-05$	$6.93 \mathrm{E}-07$	0.998
0.087	$2.73 \mathrm{E}-05$	$3.78 \mathrm{E}-07$	0.999
0.17	$1.74 \mathrm{E}-05$	$4.53 \mathrm{E}-07$	0.996
0.34	$9.69 \mathrm{E}-06$	$2.28 \mathrm{E}-07$	0.997

General procedure for kinetic experiments to determine the dependence of the rate on [catalyst]. A stock solution (A) was prepared by mixing 2-methylfuran ($0.18 \mathrm{ml}, 2.0$ mmol), tert-butyl acrylate ($0.58 \mathrm{~mL}, 4.0 \mathrm{mmol}$), benzoquinone ($324 \mathrm{mg}, 3.00 \mathrm{mmol}$), nitrobenzene ($0.21 \mathrm{~mL}, 2.0 \mathrm{mmol}$, as internal standard) in AcOH (8.0 mL). Another stock solution (B) was then prepared by mixing palladium acetate ($11.2 \mathrm{mg}, 50 \mu \mathrm{~mol}$) and $\mathbf{L} 7(8.9 \mu \mathrm{l}, 50 \mu \mathrm{~mol})$ in $\mathrm{AcOH}(2.0 \mathrm{~mL})$. To one 4 mL vial was added 1.15 mL of stock solution (A). To another 4 mL vial was added stock solution (B) and then AcOH to give a total volume of 0.5 mL . These two vials were preheated at $45^{\circ} \mathrm{C}$ for 2 min then combined. Yield was determined by GC at 2-6 min. Sample were prepared by quenching a $15 \mu \mathrm{l}$ aliquot onto a silica pad followed by elution with $\operatorname{EtOAc}(1.0 \mathrm{~mL})$.

Figure S10. Reaction of $\mathbf{1}(0.17 \mathrm{M})$, tert-butyl acrylate (0.33 M), BQ (0.25 M), and L7-$\mathrm{Pd}(\mathrm{OAc})_{2}(0.40-15 \mathrm{mM})$ in AcOH at $45^{\circ} \mathrm{C}$.

Table S17. Tabular data for reactions in Figure S10.

[catalyst]	time (s)	yield	[2] (M)	[catalyst]	time (s)	yield	[2] (M)
$\begin{aligned} & 0.3 \% \mathrm{Pd} / \mathrm{L} \\ & (0.45 \mathrm{mM}) \end{aligned}$	0	0	0		0	0	0
	480	1.3\%	$2.24 \mathrm{E}-03$		180	3.9\%	$6.69 \mathrm{E}-03$
	960	2.8\%	$4.77 \mathrm{E}-03$	2.0\% Pd/L	360	8.9\%	$1.52 \mathrm{E}-02$
	1440	5.9\%	$1.00 \mathrm{E}-02$	$(3.0 \mathrm{mM})$	540	14.8\%	$2.52 \mathrm{E}-02$
	1920	9.2\%	$1.56 \mathrm{E}-02$		720	21.3\%	3.62E-02
	2400	12.0\%	$2.04 \mathrm{E}-02$		900	27.1\%	$4.60 \mathrm{E}-02$
	0	0	0		0	0	0
$\begin{aligned} & 0.5 \% \mathrm{Pd} / \mathrm{L} \\ & (0.76 \mathrm{mM}) \end{aligned}$	360	1.1\%	$1.92 \mathrm{E}-03$		180	7.3\%	$1.25 \mathrm{E}-02$
	720	3.8\%	$6.39 \mathrm{E}-03$	$3.0 \% \mathrm{Pd} / \mathrm{L}$	360	14.9\%	$2.53 \mathrm{E}-02$
	1080	7.2\%	$1.22 \mathrm{E}-02$	$(4.5 \mathrm{mM})$	540	22.9\%	$3.90 \mathrm{E}-02$
	1440	11.6\%	$1.98 \mathrm{E}-02$		720	31.1\%	$5.29 \mathrm{E}-02$
	1800	15.0\%	$2.55 \mathrm{E}-02$		900	34.8\%	5.91E-02
$\begin{gathered} 1.0 \% \mathrm{Pd} / \mathrm{L} \\ (1.5 \mathrm{mM}) \end{gathered}$	0	0	0		0	0	0
	240	1.3\%	$2.19 \mathrm{E}-03$		120	7.9\%	$1.35 \mathrm{E}-02$
	480	5.1\%	8.72E-03	5.0\% Pd/L	240	15.3\%	$2.60 \mathrm{E}-02$
	720	8.9\%	$1.52 \mathrm{E}-02$	$(7.6 \mathrm{mM})$	360	22.4\%	$3.81 \mathrm{E}-02$
	960	13.6\%	$2.31 \mathrm{E}-02$		480	30.2\%	5.13E-02
	1200	18.2\%	$3.09 \mathrm{E}-02$		600	36.0\%	$6.13 \mathrm{E}-02$
$\begin{gathered} 1.5 \% \mathrm{Pd} / \mathrm{L} \\ (2.3 \mathrm{mM}) \end{gathered}$	0	0	0		0	0	0
	180	1.5\%	$2.60 \mathrm{E}-03$		60	7.8\%	$1.33 \mathrm{E}-02$
	360	5.0\%	8.52E-03	$10.0 \% \mathrm{Pd} / \mathrm{L}$	120	13.3\%	$2.26 \mathrm{E}-02$
	540	10.2\%	$1.73 \mathrm{E}-02$	(15 mM)	180	19.2\%	$3.26 \mathrm{E}-02$
	720	13.8\%	$2.34 \mathrm{E}-02$		240	25.0\%	$4.25 \mathrm{E}-02$
	900	19.7\%	$3.34 \mathrm{E}-02$		300	31.2\%	$5.30 \mathrm{E}-02$

Table S18. Tabular data for reactions in Figure 4f.

$\left[\mathbf{L} 7-\mathrm{Pd}(\mathrm{OAc})_{2}\right](\mathrm{mM})$	$k_{\text {obs }}\left(\mathrm{M} \mathrm{s}^{-1}\right)$	Standard Error	R^{2}
0.45	$8.78 \mathrm{E}-06$	$7.43 \mathrm{E}-07$	0.965
0.76	$1.48 \mathrm{E}-05$	$1.26 \mathrm{E}-06$	0.965
1.5	$2.66 \mathrm{E}-05$	$1.97 \mathrm{E}-06$	0.973
2.3	$3.78 \mathrm{E}-05$	$3.05 \mathrm{E}-06$	0.968
3.0	$5.22 \mathrm{E}-05$	$2.05 \mathrm{E}-06$	0.992
4.5	$6.83 \mathrm{E}-05$	$3.06 \mathrm{E}-06$	0.990
7.6	$1.03 \mathrm{E}-04$	$1.97 \mathrm{E}-06$	0.998
15	$1.73 \mathrm{E}-04$	$4.28 \mathrm{E}-06$	0.997

Figure S11. Yield of 10 during the reaction of 9 (black) or $9-2-d$ (red) $(0.17 \mathrm{M})$, tertbutyl acrylate $(0.33 \mathrm{M})$, benzoquinone $(0.25 \mathrm{M}), \mathrm{Pd}(\mathrm{OAc})_{2}(1.7 \mathrm{mM})$, and $\mathbf{L} 7(1.7 \mathrm{mM})$ in AcOH at $50^{\circ} \mathrm{C}$.

Table S19. Tabular data for reactions in Figure S11.

time (s)	yield	with 9 [product] (M)	yield	with 9-2-d [product] (M)
0	0	0	0	0
180	1.5%	$2.51 \mathrm{E}-03$	0.5%	$9.35 \mathrm{E}-04$
360	4.5%	$7.68 \mathrm{E}-03$	1.3%	$2.15 \mathrm{E}-03$
540	8.7%	$1.48 \mathrm{E}-02$	3.2%	$5.48 \mathrm{E}-03$
720	12.1%	$2.05 \mathrm{E}-02$	4.1%	$6.93 \mathrm{E}-03$
900	15.7%	$2.66 \mathrm{E}-02$	4.7%	$8.00 \mathrm{E}-03$
1800	-	-	11.5%	$1.95 \mathrm{E}-02$

Figure S12. Yield of 2 during reactions of $\mathbf{1}(0.17 \mathrm{M})$, tert-butyl acrylate (0.33 M), benzoquinone $(0.25 \mathrm{M}), \mathrm{Pd}(\mathrm{OAc})_{2}(1.7 \mathrm{mM})$, nitrobenzene (0.25 mmol , internal standard) and $\mathbf{L} 7(1.7 \mathrm{mM})$ in AcOH at $60^{\circ} \mathrm{C}$ in the presence or absence of an added Hg drop.

Figure S13. ${ }^{1} \mathrm{H}$ NMR titration of L 7 with $\operatorname{Pd}(\mathrm{OAc})_{2} .\left[\mathrm{Pd}(\mathrm{OAc})_{2}\right]=8.4 \mathrm{mM},[\mathrm{L} 7]=4.2-$ $50.4 \mathrm{mM} . T=$ room temperature. Solvent $=\mathrm{AcOD}-d_{4}$.
a)

b)

Figure S14. (a) Selected internal standards for MW determination by DOSY NMR; (b) 1 H NMR spectrum of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathbf{L 7}$ (1:1) combined with all standards.

Figure S15. DOSY spectrum of $\operatorname{Pd}(\mathrm{OAc})_{2} / \mathbf{L} 7$ (1:1) recorded at $25^{\circ} \mathrm{C}$ on Bruker 500 MHz .

Table S20. Results from DOSY NMR ($\mathrm{Pd} / \mathrm{L} 7=1: 1$) for all internal standards. The molecular weight of species Y was calculated by linear regression.

Standards	MW	$\log (\mathrm{MW})$	D	$\log (\mathrm{D})$
A	744.9	2.87	$3.56 \mathrm{E}-06$	-5.45
B	392.3	2.59	$5.99 \mathrm{E}-06$	-5.22
C	264.3	2.42	$4.60 \mathrm{E}-06$	-5.34
D	281.1	2.45	$7.49 \mathrm{E}-06$	-5.13
E	112.2	2.05	$1.02 \mathrm{E}-05$	-4.99
F	78.1	1.89	$1.33 \mathrm{E}-05$	-4.88
$\operatorname{Pd}(\mathbf{L 7})_{2}(\mathrm{OAc})_{2}$	587.1	2.77	$2.92 \mathrm{E}-06$	-5.53

Species	MW	$\log (\mathrm{MW})$	D	$\log (\mathrm{D})$
\mathbf{Y}			$2.62 \mathrm{E}-06$	
		$2.67 \mathrm{E}-06$		
	1036	3.02	$2.64 \mathrm{E}-06$	-5.55

Figure S16. Plot of $\log (\mathrm{MW})$ versus $\log (\mathrm{D})$. Blue dots for standards and red dot for species \mathbf{Y}.

Figure S17. DOSY spectrum of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathbf{L 7}$ (1:2) recorded at $25^{\circ} \mathrm{C}$ on Bruker 500 MHz.

Table S21. Results from DOSY NMR ($\mathrm{Pd} / \mathrm{L} 7=1: 2$) for all internal standards. The molecular weight of species X was calculated by linear regression.

Standards	MW	$\log (\mathrm{MW})$	D	$\log (\mathrm{D})$
A	744.9	2.87	$2.92 \mathrm{E}-06$	-5.53
B	392.3	2.59	$5.69 \mathrm{E}-06$	-5.24
C	264.3	2.42	$3.91 \mathrm{E}-06$	-5.41
D	281.1	2.45	$7.02 \mathrm{E}-06$	-5.15
E	112.2	2.05	$9.71 \mathrm{E}-06$	-5.01
F	78.1	1.89	$1.22 \mathrm{E}-05$	-4.91
$\operatorname{Pd}(\mathbf{L} 7)_{2}(\mathrm{OAc})_{2}$	587.1	2.77	$2.65 \mathrm{E}-06$	-5.58

Species	MW	$\log (\mathrm{MW})$	D	$\log (\mathrm{D})$
\mathbf{X}			$2.79 \mathrm{E}-06$	
		$2.76 \mathrm{E}-06$		
			$2.82 \mathrm{E}-06$	
	834	2.92	$2.79 \mathrm{E}-06$	-5.55

Figure S18. Plot of $\log (\mathrm{MW})$ versus $\log (\mathrm{D})$. Blue dots for standards, red dot for species X.

Figure S19. High-resolution mass spectrometry (HRMS) of $\operatorname{Pd}(\mathrm{OAc})_{2} / \mathbf{L} 7$ mixture. Sample was prepared by mixing $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathbf{L} 7$ (5:1) in acetic acid. Direct injection method with $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN} / \mathrm{HCOOH}(90: 10: 0.1)$ as carrying solvent. We obtained similar spectra with varied $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathbf{L} 7$ ratios.

Figure S20. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CO}_{2} \mathrm{D}$) of $\mathrm{Pd}(\mathrm{OAc})_{2}(8.4 \mathrm{mM})$ and $\mathbf{L 7}(8.4 \mathrm{mM})$ before (bottom) and after (top) addition of NaOAc (0.17 M).

Figure S21. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{L} 7$.

Figure S22. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{L} 7$.

Figure S23. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{L 8}$.

Figure S24. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{L 1 0}$.

Figure S25. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{L 1 2}$.

Figure S26. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{L 1 3}$.

Figure S27. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of L13.

Figure S28. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, ~ C D 3 O D\right) ~ o f ~ L 14 . ~$

Figure S29. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) of $\mathbf{L 1 4}$.

Figure S30. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) of $\mathbf{L 1 5}$.

Figure S31. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) of $\mathbf{L 1 5}$.

Figure S32. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) of L16.

Figure S33. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) of $\mathbf{L 1 6}$.

Figure S34. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, ~ C D 3 O D\right) ~ o f ~ L 17 . ~$

Figure S35. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) of $\mathbf{L 1 7}$.

Figure S36. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) of $\mathbf{L 1 8}$.

Figure S37. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CD3OD) of $\mathbf{L 1 8}$.

Figure S38. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2}$.

Figure S39. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 4.

Figure S40. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{6}$.

Figure S41. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6}$.

Figure S42. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 3}$.

Figure S43. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 3}$.

Figure S44. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 4}$.

Figure S45. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 4}$.

Figure S46. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 5 .}$

Figure S47. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 5}$.

Figure S48. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 6 .}$

Figure S49. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 16 .

Figure S50. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 7}$.

Figure S51. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 8}$.

Figure S52. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 8}$.

Figure S53. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 9}$.

Figure S54. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 9}$.

Figure S55. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 0}$.

Figure S56. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 0}$.

Figure S57. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 21.

Figure S58. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 1}$.

Figure S59. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 2}$.

Figure S60. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 2}$.

Figure S61. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 23a.

Figure S62. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 23a.

Figure S63. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 23b.

Figure S64. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 23b.

Figure S65. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 4}$.

Figure S66. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 4}$.

Figure S67. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 5}$.

Figure S68. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 25. (Arrows indicate minor rotamer peaks)

Figure S69. NOESY $\left\{{ }^{1} \mathrm{H}\right\}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 5}$.

Figure S70. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ of 26.

Figure S71. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of $\mathbf{2 6}$.

Figure S72. ${ }^{11}$ B NMR ($96 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of 26.

Figure S73. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ of 27.

Figure S74. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of 27.

Figure S75. ${ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ of 27.

Figure S76. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 8}$.

Figure S77. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 28.

Figure S78. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 29.

Figure S79. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 29.

Figure S80. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 1}$.

Figure S81. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 2}$.

Figure S82. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 3}$.

Figure S83. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 3}$.

Figure S84. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 4}$.

Figure S85. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 5}$.

Figure S86. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 6}$.

Figure S87. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 6}$.

Figure S88. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 7}$.

Figure S89. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 7}$.

Figure S90. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 8}$.

Figure S91. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 8}$.

Figure S92. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 9}$.

Figure S93. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 9}$.

Figure S94. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 0}$.

Figure S95. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 0}$.

Figure S96. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 1}$.

Figure S97. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 2}$.

Figure S98. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 2}$.

Figure S99. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 3}$.

Figure S100. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 44.

Figure S101. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 45.

Figure S102. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 5}$.

Figure S103. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 46.

Figure S104. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 47.

Figure S105. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 47 .

Figure S106. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 48.

Figure S107. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 48 .

Figure S108. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 49.

Figure S109. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 0}$.

Figure S110. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 0}$.

Figure S111. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 1 .}$

Figure S112. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 1}$.

Figure S113. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 52.

Figure S114. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 52.

Figure S115. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 53.

Figure S116. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 53 .

Figure S117. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 4 a}$.

Figure S118. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $54 a$.

Figure S119. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 4 b}$.

Figure S120. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 4 b}$.

Figure S121. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 6}$.

Figure S122. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 57.

Figure S123. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 58.

Figure S124. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 59.

Figure S125. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 59.

Figure S126. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 0}$.

Figure S127. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 0}$.

Figure S128. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 1 a}$.

Figure S129. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 61a.

Figure S130. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 1 b}$.

Figure S131. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 1 b}$.

Figure S132. NOESY $\left\{{ }^{1} \mathrm{H}\right\}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{6 1 b}$.

Figure S133. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 2}$.

Figure S134. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 2}$.

Figure S135. NOESY NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 2}$.

Figure S136. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 4}$.

Figure S137. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 4}$.

Figure S138. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S} \mathbf{S}$. Minor amount of $\mathbf{6 5}$ could not be completely removed.

Figure S139. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of \mathbf{S}. Minor amount of $\mathbf{6 5}$ could not be completely removed

Figure S140. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 5}$. Minor amount of $\mathbf{S} 1$ could not be completely removed.

Figure S141. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 5}$. Minor amount of $\mathbf{S} 1$ could not be completely removed.

Figure S142. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of methyl 2-(4-(thiophen-3-yl)phenyl)acetate.

Figure S143. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of methyl 2-(4-(thiophen-3-yl)phenyl)acetate.

Figure S144. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) of $\mathbf{S 2}$.

Figure S145. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) of $\mathbf{S 2}$.

Figure S146. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 6 a}$.

Figure S147. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 6 a}$.

Figure S148. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 6 b}$.

Figure S149. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 6 b}$.

Figure S150. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 3}$.

Figure S151. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 3}$.

Figure S152. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 3}$.

Figure S153. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{S 4}$.

Figure S154. ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{S} 4$.

Figure S155. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 7 a}$ (major). Minor amount of $\mathbf{6 7 b}$ could not be completely removed.

Figure S156. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 7 a}$ (major). Minor amount of $\mathbf{6 7 b}$ could not be completely removed.

Figure S157. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 7 b}$ (major). Minor amount of $\mathbf{6 7 a}$ could not be completely removed.

Figure S158. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 7 b}$ (major). Minor amount of $\mathbf{6 7 a}$ could not be completely removed.

References

(1) Cabiddu, M. G.; Cabiddu, S.; Cadoni, E.; Cannas, R.; De Montis, S.; Fattuoni, C.; Melis, S. J. Organomet. Chem. 2001, 620, 263.
(2) Prasad, D. J. C.; Naidu, A. B.; Sekar, G. Tetrahedron Lett. 2009, 50, 1411.
(3) Tang, R.-y.; Zhong, P.; Lin, Q.-1. Synthesis 2007, 2007, 85.
(4) Hashmi, A. S. K.; Wölfle, M.; Ata, F.; Hamzic, M.; Salathé, R.; Frey, W. Adv. Synth. Catal. 2006, 348, 2501.
(5) Grimster, N. P.; Gauntlett, C.; Godfrey, C. R. A.; Gaunt, M. J. Angew. Chem. Int. Ed. 2005, 44, 3125.
(6) Dang, Q.; Liu, Y.; Cashion, D. K.; Kasibhatla, S. R.; Jiang, T.; Taplin, F.; Jacintho, J. D.; Li, H.; Sun, Z.; Fan, Y.; DaRe, J.; Tian, F.; Li, W.; Gibson, T.; Lemus, R.; van Poelje, P. D.; Potter, S. C.; Erion, M. D. J. Med. Chem. 2011, 54, 153.
(7) El-Batta, A.; Jiang, C.; Zhao, W.; Anness, R.; Cooksy, A. L.; Bergdahl, M. J. Org. Chem. 2007, 72, 5244.
(8) Knapp, D. M.; Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2009, 131, 6961.
(9) Kamal, A.; Khanna, G. B. R.; Ramu, R.; Krishnaji, T. Tetrahedron Lett. 2003, 44, 4783.
(10) Knight, D. W. Tetrahedron Lett. 1979, 20, 469.
(11) Zhao, J.; Huang, L.; Cheng, K.; Zhang, Y. Tetrahedron Lett. 2009, 50, 2758.
(12) Jia, C.; Lu, W.; Kitamura, T.; Fujiwara, Y. Org. Lett. 1999, 1, 2097.
(13) Aouf, C.; Thiery, E.; Le Bras, J.; Muzart, J. Org. Lett. 2009, 11, 4096.
(14) Huang, Q.; Song, Q.; Cai, J.; Zhang, X.; Lin, S. Adv. Synth. Catal. 2013, 355, 1512.
(15) Hajime, S. Bull. Chem. Soc. Jpn. 1984, 57, 473.
(16) Wang, D.-H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q. Science 2010, 327, 315.
(17) Beck, E. M.; Hatley, R.; Gaunt, M. J. Angew. Chem. Int. Ed. 2008, 47, 3004.
(18) Pavri, N. P.; Trudell, M. L. J. Org. Chem. 1997, 62, 2649.

[^0]: ${ }^{\text {a }}$ Reactions conditions of Figure $1 .{ }^{\text {b }}$ Yield was determined by GC analysis versus internal standard.

[^1]: ${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$ NMR versus $1,3,5-\left(\mathrm{CF}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ as internal standard. ${ }^{\text {b }}$ Combined yield of 9 and 10. ${ }^{\mathrm{c}} \mathrm{HBF}_{4}$ ($6 \mathrm{~mol} \%$) added.

